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Abstract: In order to improve the diagnostic capability in Ambulatory Electrocardiogram signal and to reduce the noise signal impacts, there is a need for more robust 

models in place. In terms of improvising to the existing solutions, this article explores a novel binary classifier that learns from the features optimized by fusion of 

diversity assessment measures, which performs Quality Assessment of Ambulatory Electrocardiogram Signals (QAAES) by Noise Detection. The performance of 

the proposed model QAAES has been scaled by comparing it with contemporary models. Concerning performance analysis, the 10-fold cross-validation has been 

carried on a benchmark dataset. The results obtained from experiments carried on proposed and other contemporary models for cross-validation metrics have been 

compared to signify the sensitivity, specificity, and noise detection accuracy. 
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1 Introduction 

The ECG (electrocardiogram) has been a basic device in 

cardiac health screening programs. In this approach, cost-

effectiveness has been exhibited in overall age groups such as 

neonates, adults as well as young athletes [1]. Nevertheless, 

because of this test shortness probably, definite abnormalities 

of heart rhythm cannot be detected or identified. It is because 

of deficiency of continuous measurement started a shift 

towards monitoring devices or equipment. Moreover, these 

devices enable monitoring over a long period, hence 

improves the likelihood of abnormalities detection.  

Because of these devices’ ambulatory nature, loose 

electrodes, motion artifacts as well as interference from other 

types of electric devices might cause signal violations or 

distortions. These distortions are indicated as artifacts, which 

might lower the monitoring device diagnostic capabilities and 

make a wrong decision in treatment.  

Divergent technologies have been projected for 

identifying artifacts and improve the quality of the signal. 

One of such models has been ICA, which is a separation of 

blind sources [2]. Further, this model performs on the entire 

signal and leads to an improvement in ECG signal quality. 

Nevertheless, none of the information on the location of the 

artifact might be extracted through this approach. A 

commonly used approach for overcoming this issue is to 

divide signals. The classification step and feature extraction 

have conventionally followed it. The statistical and spectral 

information have been used often as features in [3], [4]. 

Moreover, different ML (machine learning) models 

have been used for segment classification. This technique 

downside is required for the gold benchmark. The novel 

approach has been projected for detecting the location of the 

artifact automatically in ECG recording for the long term. 

Also, this model begins by dividing the signal of ECG and 

characterizing every segment through their ACF 

(autocorrelation function). Features have been derived and 

are fed as RUS-Boost algorithm towards classification. The 

selection for ACF has been motivated because it considers the 

advantage of ECG signal repetitiveness [5].  

Often, ECG signals have been corrupted with 

distinct types of artifacts, and noises like drift and baseline 

wander muscle artifacts and powerline interference, making 

it impossible almost for performing RR interval and 

morphological analysis of such contaminated signals of ECG 

as in [6-8]. Many of the current ECG analysis models have 
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been designed for handling comparatively ECG signals that 

are free from noise [6]. Current systems in such scenarios 

render unreliable and inaccurate measurements that result in 

generating maximal false alarm rates for ECG noisy signals 

as in [8]. Subsequently, common false alarms have been not 

only disturbing and annoying both patients and clinicians 

however also result in cardiac arrhythmias misdiagnosis [8-

12]. Moreover, problem-related to alarm rates of heart rate 

and maximal false arrhythmia impacts the usage of ECG due 

to 2 reasons: (a) artifacts and noise in ECG signal isoelectric 

line are identified incorrectly as abnormal or normal beats, 

(b) severe contamination of ECG beats have been 

misclassified because of imprecise measurements of required 

ECG feature aspects [9-12]. Hence, ECG noisy signals shall 

be either filtered or discarded before feature aspects 

extraction.  

ECG signals have been extensively acquired for several 

applications like arrhythmias detection, sleep apnea 

identification, abrupt cardiac arrest estimations, physical and 

emotional activity recognition, or identification systems as in 

[13]-[18]. Overall, these application systems of ECG demand 

highly the correct fiducial point’s determination of ECG 

signal for reliable and accurate morphological features 

measurements like U-wave, QRS-complex, P-wave and T-

wave and finally interval features as in [16-18]. Many ECG 

analysis models need comparatively ECG signals free from 

noise in order to attain the measurements of ECG more 

reliably as well as precisely [18]. Often, ECG signals have 

been corrupted with distinct noises types like baseline 

wander, the noise of instrumentation and making it 

impossible almost for performing morphological 

investigation of such contaminated beats of ECG as in [18-

21], [6], [7]. Hence, automatic measurement of ECG signal 

has been demanded highly by lowering false alarms because 

of unacceptable noise levels. 

In this paper, electrocardiogram introduction and 

several other models has been discussed in section 1. In 

section 2, related work in terms of electrocardiogram for 

detecting the noise has been explored and various literatures 

have been reviewed and presented. Section 3 contains 

methods and materials. Section 4 contains experimental 

study, where the performance of the proposed model and 

contemporary model are compared using several metrics. 

Section 5 is the conclusion followed by references.  

2 Related work 

Many of the IoT-enabled devices in real-time applications 

perform on restricted power batteries over a long period. The 

consumption of energy becomes critical design consideration 

for improving the overall lifespan of the network [22]. Hence, 

data exchange controlling might lower the expenditure and 

enhances the usage of the network. The work [22] researched 

the possible data-driven triggering in real-time scenarios like 

tracing public transport. The research exhibited that even 

data-driven triggering can enhance the usage of the network 

and effectiveness of the network. The long-term cardiac 

continuous health monitoring system demands maximum 

battery-power for ECG signals transmission and enhances the 

cost of treatment and bandwidth and traffic load diagnostic 

server. Also, event triggering has been a favorable term, 

which can address the above-stated significant challenges 

adequately. 

Moreover, in our former contributions, the 

automated less complexity robust event cardiac change 

identification model has been projected for health monitoring 

applications long-term [23]. The review exhibited that a 

lifetime of battery for IoT-enabled devices has been impacted 

highly by power consumption. Hence, intelligent solutions 

have been demanded to enhance the IoT device’s battery life 

and to lower the usage costs of bandwidth and diagnostic 

traffic.  Subsequently, muscle artifacts decrease the quality of 

the signal, resolution of the spectrum, and outcomes in higher 

amplitudes. For instance, small local amplitude waves (U, T, 

P) have been obscured by higher amplitudes of muscle 

artifacts. Hence, it has been complexing for physicians to 

observe and to locate the non-existence or existence of these 

minimal amplitude waves, which might offer prominent 

clinical information needed for diagnosing definite 

abnormalities of the heart. Furthermore, it has been intricate 

for performing higher reliable and accurate morphological 

aspects measurements like polarity, timings, amplitude, 

shape, and interval pause for the local-waves, which are 

significant for accurate monitoring of heart rate, recognition 

of heartbeat pattern, and arrhythmia detection as in [24].  

The work [25] examined the MSEnt (multiscale 

entropy) performance to measure the quality of the ECG 

signal. Moreover, the outcomes exhibited that MSEnt for the 

clean ECG and LF noise monotonously enhance with the 

increment in the scale factor. Also, MSEnt for noise PL 

(periodic signals) shows variation. The model has been 

assessed on MITBIHNST and MITBIHA databases. 

Outcomes exhibited that MSEnt has been sensitive towards 

noise-level within ECG signals and hence depicted valuable 

device for ECG signal measurement quality. Also, this 

contribution has primarily eradicated the baseline wander 

from original signals of ECG due to baseline wander 

comprised in ECGs might result in imprecise outcomes and 

later designed novel real-time signals of ECG.  

The work [26] presented a model for quality 

estimation of ECG signal under divergent activities and 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication  

ISSN: 2321-8169 Volume: 10 Issue: 10 

DOI: https://doi.org/10.17762/ijritcc.v10i10.5739 

Article Received: 28 July 2022 Revised: 05 September 2022 Accepted: 12 September 2022  

___________________________________________________________________________________________________________________ 

 
93 

IJRITCC | October 2022, Available @ http://www.ijritcc.org 

postures. The model has been developed depending on 

features, and PCA like complete range among 0.2 & 15mV, 

power ratio in the range of frequency is 5-20Hz towards 

overall 0-62.5Hz, correlation towards averaged beat, 

correlation towards other leads. Also, minimal distributed 

ECG segment in leads has been detected automatically and 

utilized for reconstruction of overall results in such segment. 

Also, this model has been measured by utilizing 12 lead 

ECGs for 4 hours comprising divergent activities 

incorporating controlling breathing for 36 min and exercise 

for 96 min from 6 healthy related subjects. Moreover, 

estimation of confidence has been changed from 0.58-0.90 

for major movement towards remaining recordings of ECG 

in respective order. 

The work [27] presented an enhanced quality of 

ECG signal using diversity and correlation-based models. 

Intolerable values have been derived from criteria based on 

scores incorporating the following: saturation, flat line; stable 

voltage superior towards 2mV; channel off and baseline drift; 

drifts over 2.5mV, minimal amplitude as maximal amplitude 

greater than 125 µV.  

The work [28] developed an evaluation model for 

ECG quality based on the Kors matrix and correlation. The 

model has been measured using a database called PICC and 

correct results of 92% classification with 75.1 % Sp and 97% 

Se.  

The work [29] presented a quality ECG classifier 

based on residuals among noticed and filtered signals and 

among effective subset linear estimations without filtered 

data and constant term. The coefficients of prediction or 

estimation have been identified from the acceptable quality 

of ECG using the robust model. This model attained an 

accuracy of 96.9 % Se, 88.3% NPV, 94.5% NPV, 80.4% Sp 

on database PICC. The model yielded 90.0% of accuracy over 

test data.  

The work [30] discussed the heuristic policies, 

which have been used for identifying frequent issues in 

recordings of ECG in real-scenario over a phone. The 

approved or tolerable signals have extremely high or small 

ranges of amplitude. When the range has been higher than 

15mV and lower than 0.2mV, then the signal has been likely 

unacceptable or intolerable. Five rules have been developed 

to identify poor contact, maximal amplitude artifact, missing 

lead as in [4]. The outcomes exhibited that integration of 

various rules has been capable of identifying the most of poor 

ECG signal quality correctly, as shown by using database 

PICC. Moreover, this model attained 0.896 and 0.913 for 

testing and training sets in respective order. 

The work [31] depicted an algorithm depending on 

thresholds set for measuring the signal quality of ECG over 

mobile. This model identifies poor signal quality, minimal 

amplitude, steep slope, saturation, and many more. Moreover, 

the model has been measured by using 500 ECGs considered 

from the database PICC. Also, it has 85.7% of accuracy. The 

work [32] explained the false alarm reduction algorithm using 

one ABP waveform (arterial blood pressure). By utilizing 

simultaneous ABP and ECG recordings, the entire rate of FA 

has been decreased from 42.7 – 17.2% 

The work [9] presented ECG index quality based on 

modulation spectrum for the applications of telehealth. 

Moreover, MSSR (modulation spectral signal representation) 

has been utilized for quantifying the variance among noise 

sources and ECG waveforms. The model has been measured 

on 12-lead ECGs and 2- lead ambulatory-ECGs from 

MITBIHA and PICC databases in respective order. The 

artificial ECGs with changing levels of noise and ECGs in 

real-time have been attained by utilizing Hexoskin garment at 

the time of 3 activities such as running, sitting, and walking. 

The outcomes exhibited that the model performs better in 

quality metrics like sample kurtosis ECG and spectral power-

ratio.   

The work [33] discussed several models 

incorporating analysis of time, frequency, cross-correlation, 

entropy, time-frequency for measuring the quality of ECG. 

Also, the quality of ECG has been evaluated by regularity 

matrix spectral radius. The measurement of the PICC 

database exhibited that algorithms are having 93.5% and 90% 

in training and testing set in respective order.  

The work [34] presented noise artifact and automatic 

motion identification in Holter ECGs by utilizing EMD 

(experimental mode decomposition) as well as statistical 

features like variance, Shannon entropy, and mean for 

primary IMF (intrinsic mode-function). Also, the model 

attained a Sp and Se of 94.73 % and 96.63% in respective 

order for 30 sets of testing data and 15 sets of training data.  

The work [35] presented a model depending on 

RMS (root mean square) and residual errors after isolating the 

noises from the ECG signal by utilizing Karhunen-Loeve-

Transform. Also, this model had 99.98% of Sp and 99.57% 

of Se on the European database ST-T. Many of the models 

extracted the distinct features from noisy as well as noise-free 

signals of ECG. The work [36] presented a novel quality 

index of ECG based on spectral modulation signal 

representation. The SVM and LDA classifiers have been 

tested for discriminating among non-usable and usable 

segments of ECG.  
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The work [37] presented a model depending on the 

cross-covariance matrix amongst several leads, covariance 

matrix eigenvalues, and SVM and supervised-decision tree 

classifier. The outcomes on database PICC exhibited that the 

model is having 0.89 of accuracy over test data.  

The work [38] presented a model for physiological 

signals quality measurement at ambulatory measurements 

depending on cumulative plots frequency and KS-test. They 

also presented the quality indices of signal and fusion of data 

to define ECGs acceptability gathered in noisy environments. 

Moreover, in this contribution, 6 SQIs like Psql, kSQL, Fsql, 

bSQL, and iSQL and five classifiers (ANN, SVM, NB, and 

MLP) have been utilized to measure the quality of the signal. 

The model has been assessed by utilizing the database PICC. 

Moreover, the model had 99% of accuracy in set a, and 92.6% 

of accuracy in test data, 95% of accuracy in set b.  

The work [39] presented a model for automatic 

recognition of reliable heart rates computed from PPG and 

ECG waveforms. Also, this model has been measured by 

utilizing 158 records gathered at the time of helicopter 

transport from suffering patients. This model attained an 

exact classification of 92%. The review exhibited that; single 

signal processing model has not been enough for eradicating 

divergent types of artifacts and noises in signals of ECG as in 

[40]. Furthermore, denoising outcomes exhibited that every 

filtering strategy might introduce distinct types of the 

waveform-distortion. Hence, it has been prominent for 

recognizing the noise’s nature in ECG recordings and 

selecting suitable signal processing models suitable for noise 

types. Moreover, in some recording scenarios of ECG, the 

artifacts and noises might partially occur in 10s of ECG signal 

as in [19]. Hence, it has been prominent for determining 

localized boundaries noisy ECG portions either for marking 

as unreliable evaluations or for eradicating the noisy 

segments of ECG from the extraction of feature 

The earlier studies exhibited that; contaminated signals 

of ECG might cause a reduction of classification accuracy 

because of detection errors of R-peak in the existence of noise 

or artifacts in the signal of ECG [16]. Moreover, in such 

cases, the incorrectly detected beats might be categorized as 

abnormal or normal beats inexactly. Hence, preprocessing 

phase of many models uses the denoising model for 

eradicating noise and artifacts from signals of ECG. 

Moreover, every denoising strategy distorts distinct local 

waves like T-wave, P-wave, and QRS complex. It introduces 

divergent waveform distortions types like reduction of 

amplitude, shape variation, and width widening. 

Moreover, normal heartbeats have been misclassified as 

normal heartbeats and vice versa because of detection errors 

of R-peak and delineation errors of ECG waveform. Hence, 

some heartbeat classification models used the quality 

measurement of ECG signal for discriminating among bad 

and good quality signals of ECG. Nevertheless, many of these 

models have been presented depending on interval and 

morphological features and ML models [10], [41]. Current 

models demand huge collections of abnormal and normal bad 

and good quality ECG signals for capturing distinct features 

of divergent kinds of noises, artifacts, and heartbeat 

waveforms.  

In a previous study, "Supervised Learning-based Noise 

Detection to Improve the Performance of Filter-based ECG 

Signal Denoising (SLND)" [42], the topic of supervised 

learning-based noise detection in electrocardiograms was 

covered. The approach discussed in [42] uses supervised 

learning to identify unlabeled electrocardiograms based on 

the y-coordinates of x-factors in electrocardiograms tagged as 

noisy and benign. The other recent approach is indeed an 

ensemble technique constructed with RUSBOOST [43], 

which uses auto correlation to find artefacts in the provided 

ECG by comparing its five second epochs to other labelled 

electrocardiograms. Despite these contributions showing a 

performance with little false alarms, the model's detection 

accuracy for electrocardiograms with little noise at targeted 

peaks is in doubt. 

3 Methods and Materials 

The suggested method for detecting noise in 

electrocardiogram signals uses supervised learning and learns 

from the best digital features that are combined from metrics 

for diversity evaluation. Using a hierarchical label prediction 

process, a classifier has been created using the heuristic 

search method known as cuckoo search. Based on the Likert 

Scale, we have developed a system to assign relative 

importance to the positive (noise-prone) and negative (noise-

free) labels for features [44]. The main idea behind the 

strategy is as follows. 

The next section's features must be extracted from the 

electrocardiogram signals that are supplied and fall under one 

of the labels for noise or benign. A two-dimensional matrix 

will be used to display the features of recordings with positive 

(noise-prone) labels as a result. The electrocardiogram 

signal's related features are shown in each row, and their 

values are represented in each column. A two-dimensional 

matrix corresponding to the feature values of the negative 

recordings (electrocardiogram signals devoid of noise) must 

be generated. 

Both the features of the positive and negative labels 

will be used in the fusion assessment metrics. This relates to 

making the best feature-features for both labels. For the 
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purposes of determining whether or not an electrocardiogram 

signal is noisy (positive), the ideal column to use is the one 

that corresponds to the observed diversity (negative). The 

"cuckoo search" heuristic search approach is used to build the 

classifier in the latter phase, which creates n-grams from the 

best features of each label. The proposal's last stage involves 

determining whether or not a specific electrocardiogram 

signal is noise-prone. 

Regarding the fusion of diversity evaluations, the 

suggestion used the KS-Test (Kolmogorov-Smirnov test), the 

MWU-Test (Mann-Whitney U Test), and the dual tailed t-test 

(T-test) as three distribution diversity evaluations [46, 47, 

48]. 

3.1 The data structure and features 

Irregularities in the heartbeat rhythm are referred to as 

arrhythmia, and the abnormalities scale to the conditions of a 

higher or lower rate of heartbeats which are generally non-

conducive for good health. The data format in terms of ECG 

signal series is the pattern used for understanding the 

heartbeat rate and any variations imperative in heart 

functioning. In the contemporary diagnosis models, such 

signals are clustered based on distinct tridimensional features 

explored in the section below.  

3.1.1 Intervals 

RR Interval: Over the ECG readings, the time-lapse observed 

for the sub-sequential R-waves in the QRS signals are 

technically termed as the RR intervals. While the objective is 

to understand the autonomic influence conditions and sinus 

node aspects, alongside the heart rate functions, the role of 

RR intervals can be more significant.  

PR Interval: Over the instances of developing a QRS 

complex, the time consumed towards the successful onset of 

the P wave is termed as PR interval. It refers to the conduction 

depending on the node AV. In general, the PR frequency is 

within 120-200ms of duration. In the instances of PR interval 

resulting above >200ms, it is imperatively indicating the 

possibility of first-degree heart block.  

QT interval is the parameter enabling track of heart 

performance over multiple durations. In general, the QT 

interval is around 0.4 to 0.44 seconds. It is a medically 

examined fact that the QT intervals in the female patients are 

seen to be higher than that of the males. At times, the 

tendency of lower heart rate results in longer QT interval 

conditions.  

QRS duration is rated in general around 0.08 to 0.10 

seconds, and any range reported in terms of 0.10 to 0.12 

seconds, wherein such range is considered as moderate, and 

the values that could be seen to have slightly prolonged. Any 

kind of QRS duration results with more than 0.1 seconds is 

considered aberrant. 

QTc frequency is about defining the generic range 

of 0.40s t 0.44s. If there is an immediate arrest of heart 

functions, there is a spectrum range of QTc envisaged for 

male patients having 0.43 to 0.45 seconds, and the female 

patient ranges are at 0.45 to 0.47 seconds.  

3.1.2 Axis 

Axis works as a critical metric referring to the key directions 

in terms of electrical conditions of the body in aggregate 

taking place over the varying heart performance. Such an 

instance can result in any direction per say right or left or 

normal. In certain conditions, it can lead to significant 

variations resulting in inclination to the northwest axis.  

P wave Axis variance refers to the conditions 

wherein the atrial depolarization emerges, with many of the 

sinus nodes active, and is determined as a sinoatrial node. It 

triggers the conditions in terms of depolarizing the atria. P 

wave in a conducive scenario should result in lead II, with 

action potential resulting in SA nodes more effectively.  

The intensity of T wave Axis: T wave in an ECG 

denotes the repolarization aspect of the ventricles. An 

absolute refractory period is seen when the frequency range 

amidst the T waves apex and the QRS complex is complex 

and are usually considered as abnormally inverted T wave 

conditions that could be transforming to a set of cardiac and 

non-cardiac constraints. In exceptions to the right precordial 

leads, generally when the T wave is intensely transiting to the 

QRS conditions.  

QRS Wave Axis Intensity: The axis range is 

advocated as normalcy if the band is of -30 to +90 degrees. 

Variations envisaged towards the left side can be vectors 

ranging variation of -30 to -90 degrees. Similarly, any 

variation of QRS towards the right side is imperative for a 

range of +90 to +180 degrees.  

However, in either case of P or T wave, the 

procedures, in general, refer to the QRS axis conditions, and 

the limb refers to the conditions that require investigation. In 

general, the QRS axis needs to be in the interval of -30 to +90 

degrees. As mentioned above, the left axis and right axis 

ranges too are to be considered. Thus, the indeterminate range 

of the axis can be termed as 
 ( / )190, 90+ − −

. 

3.1.3 Signal 

Periodical impact leading to changes in the statistical features 

of biomedical signals is a common phenomenon. Wavelet 
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transform plays a vital role in signal representation in 

handling both time and significant frequency domains. It shall 

also help in understanding the quasiperiodic signals like the 

ones determined in ECG. In processing the ECG signals for a 

more effective range of feature extractions [49], heartbeat 

recognition [50], and de-noising [51]. The role of wavelet 

transformation can be impeccable. In the prototyped solution, 

if the DWT is used in tasking the feature extraction, the 

possibility of dissection into lower or higher frequency levels 

of approximation factors is evident.  

DWT is used as it is vividly used for reasons like 

orthogonality properties like the Coiflets [52], Symlets, 

Daubechies, and Discrete Meyer [52], [53]. Heartbeat-related 

input is fragmented according to definitive impulse response 

instance emerging for the Discrete Mayer’s wavelet 

transform frequency intensity as fourth-level approximation 

sub-band in the range of 011.25Hz and level four detail sub-

band in the range of 11.2522 Hz. 

Around two hundred coefficients are garnered using the 

wavelet features processed by ICA, envisaging potential 

address of dimensionality reduction issues. In aggregate, six 

of the components of ICA are chosen from the basket of sub-

bands DWT, and the requisite twelve structural features 

essential are generated.  

3.2 Preprocessing 

In the preprocessing stages, the input ECGs are classified 

towards positive or negative as arrhythmia and benign, 

respectively, from the datasets adapted for training.  

In furtherance, the features of the formats are enlisted as 

interval CS , Axis AS , 

• Accordingly, the respective signals FS of each input 

ECG value for the training datasets were chosen. 

• The record of frequencies r r CS   , otherwise 

denoted as intervals, signifies the varying 

frequencies stacked in corresponding ECG.  

• The count of axis values ar ar AS  of the ECG 

depicts the divergences imperative in the axis 

formats.  

• Also, it attains the count of signal n-grams

 fo fo FS   of each ECG of the chosen datasets. 

3.3 Mann-Whitney U Test 

The MWU-Test (Mann-Whitney U Test) [47] is one 

of the diversity assessment labels that excludes consideration 

of the distribution structure that is appropriate for the majority 

of datasets with labelled diversity. The MWU-Test 

implementation procedure is described as follows: 

The vector distributions
1 2,v v have been used as 

input to the MWU-Test, which is the technique used to 

determine the degree of diversity between related vectors as 

follows: 

All of the entries from the vectors
1 2,v v are first 

transferred to the new vector v . The vector should also be 

sorted by ascending order of values, and the indices of the 

vector's ordered values should be treated as the corresponding 

ranks R . The rank of any individual identical value will be 

determined by the average of its indices. The ranks given to 

the values of the vector 1v are denoted as the set 1R as well as 

the ranks allocated to the values of the vector 2v  are denoted 

as the set 2R . The rank-sum threshold ( 1RST ) of the vector

1v is afterwards determined by the procedure using the 

aggregate of the items in the set 1R as 1RS , which is 

subsequently utilised in (Eq 1) as follows: 

( ) 1

1 1 1 1(| | 1) | | 2RST RS v v −= − +       ... (Eq 1) 

( ) 1

2 2 2 2(| | 1) | | 2RST RS v v −= − +     ... (Eq 2) // rank-sum 

threshold 2RST of the vector 2v  

// the notations 1 2| |,v v  denotes the size of the vectors

1 2v and v . 

Then the rank-sum threshold RST of the vectors 
1 2,v v can be 

estimated as follows: 

1

2

RST RST

RST RST

+ =

+ =
  ... (Eq 3) 

The z-score [53] can be found as follows:  

12RSTm RST −=   ... (Eq 4) //average of the RST 

( )

( )( )
( )

( ) ( )

1

1 2

1

11 2 3

1

(| | 1) | | * | |

| | 1

| | * | |
| | *(| | 1)

RST

k

i i

i

v v v v

vd

v v v
t t v v

−

−

−

=

 +   −
 
  + − =   
   

−  −  
   


 ... (Eq 5) 

//deviation of the RST 

The ‘ k ’ denotes the total distinct ranks, the ‘
it ’ 

denotes the total entries ranked as ‘ i ’ 

Further, the z-core assesses as follows: 

( ) ( )
1
*RST RSTz d RST m

−
= −  ... (Eq 6) 
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Then, in the z-table [54], locate the p-value for the z-score 

that is shown. The distribution of 1,  2v v vectors is 

determined to be more diverse if the p-value is larger than the 

specified probability threshold. Otherwise, the distribution is 

equivalent.  

3.4 KS-test 

KS -test (Kolmogorov-Smirnov test) is the diversity in terms 

of distribution imperative among two datasets mentioned as 

distance metric [46]. Distance metrics do not depend on the 

size of the information about the distribution kind of data 

differing KS-test in lines with the other methods for detecting 

distribution-related diversities. Application of the KS-test is 

carried out based on the following information.  

Let Values of two vectors be ,a bv v  and KS -test 

shall be implemented based on evaluating the distributions 

for two vectors similar or divergent to the conditions.  

The procedure leads to aggregating ( ), ( )a bAg v Ag v

values of ,a bv v vectors, in sequential and accordingly, the 

cumulative ratio is predicted for each entry of the vectors 

chosen. 
 
 

 
| |

1

0

( )

j

j

v

i i j
i

i

j

v

pr

e e v begin

e
pr pr

Ag v

CR pr

end

=

=

  

= +



 ...(Eq 7) 

Thus, as depicted in the equation.7, ie
 implies each 

element of a vector jv
. The interpretation 

pr
refers to the 

aggregate ratio of the prior element in iteration; the depiction

( )jAg v
refers to the summation values denoted in the jv

, and 

notion jvCR
refers to the set constituting accumulated ratios 

of fundamental elements available as 
jv
. The values 

depicting the conditions mentioned above refers to 

identifying aggregated ratios of values represented in 

specified 
,a bv v

vectors as corresponding sets 
,

a bv vCR CR
 

Further discovers the nonnegative difference of 

“aggregated ratios” related to values implicit at a related 

index of both ,a bv v  vectors.
 
 

 
max(| |,| |)

1
( ), ( ) ( ) ( )

v va b

a b

CR CR

i a i b i a v i b v
i

c v c v c v CR c v CR
=
    

Begin // for each index i , values present in ,
a bv vCR CR  

( )( ) ( )
v va b

CR CR i a i bAD abs c v c v  −   

// the non-negative difference AD  of aggregated ratios 

presented in sets” ,
a bv vCR CR at the index i , which is 

further stored in the set
v va b

CR CRAD  . 

End 

In furtherance, observe for d-stat, which contains 

max value implied in the v va b
CR CRAD   

Observe for d-critic in the KS-table targeting at

( ), ( )a bAg v Ag v  mentioned as “degree of probability 

threshold” p  (generally 0.05). 

In the instance of d-stat being more than the d-critic 

value, the distribution of the vectors could be resulting as 

similar.  

3.5 Dual Tailed Variance-Test 

Assessment of distribution diversity in the suggested fusion 

procedure, a dual-tailed diversity test, often known as a t-test, 

has been employed. Applying this technique, we may 

ascertain the variation in projected feature values (y-

coordinates) across records with distinct labels (x-

coordinates). The dual-tailed t-test results improved in recent 

contributions [48], [55], [56], [57] have prompted to use this 

approach in the suggested fusion strategy.  

The t-score is the diversity amongst the chosen 

vectors  ,i jr r i j   distributions, is estimated based using 

equation-8 mentioned below.  

( ) ( ) ( )( ) ( ) ( )( )
1

,
i j

i j i j r r
f r r r r   

−

= −  + ...(Eq 8) 

The vector’s ,i jr r  t-score is represented by the 

function ( ),i jf r r . The symbols ( ), ( )i jr r   represent the 

mean values regarding the respective vectors. The associated 

vectors' deviation is denoted by the notations ( ) ( ),
i jr r  . 

The significant variability among the selected vector 

distributions is shown by t-score observations that are smaller 

than the stated p-value (probability value) [54], [53].  
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3.6 The classifier 

Modern meta-heuristic algorithms were developing and 

gaining popularity for tackling a variety of engineering 

challenges after being inspired by nature. The CS (cuckoo 

search) method is used in this work. Even though they may 

destroy other people's eggs to increase the likelihood that 

their own eggs would hatch, these cuckoos place their eggs in 

nests. A significant number of species have accepted the 

responsibility of brood parasitism by depositing eggs in the 

nests of other host-birds. There were three main categories of 

brood parasitism: Cooperative breeding, nest invasion, and 

intra-specific brood parasitism are the first three. The host 

bird may either discard the alien eggs or just quit the nest and 

build a new one after realizing the eggs are not their own. 

3.7 Optimal Feature Selection 

 Find the best features in comparison to the opposite set for 

each pair of positive as well as negative labels representing 

the respective sets ,M M+ − . If the values anticipated for the 

corresponding feature xi of the counterpart set M −  match 

those projected for the corresponding feature in the set M + , 

then that feature is in its optimum state. The algorithm will 

estimate the diversity weight that is the absolute difference 

among maximal similarity one and likely similarity observed 

(0 < p-value <= 1), with each feature xi of the set M +  when 

compared to the values of the feature xi in the set M − . The 

following description is a mathematical model for extracting 

the best features out of each pair of sets. 

 
1

, ,
cl

i i i i
i

c c c M c M+ − + −

+ −
=
    Begin // for all the features 

1idw = // the diversity of the 
thi feature towards

,M M+ −   

( )

( )

( )

,

,

,

ks i i

mwu i i

dt i i

p KS test c c

p MWU test c c

p DT test c c

+ −

+ −

+ −

= −



= − 


= − 

  // diversity 

assessment of the
thi feature towards ,M M+ −

  

( )
j ki D Dd x d = //Diversity of the feature

ix

towards j k
D D is set to d  

( ) ( ) ( )( )ks mwu dtif p p p p p p        

Begin// if one of the diversity assessment measures 

exhibit the similarity that is greater than the given 

threshold p  

( )1i ks mwu dtdw p p p= −   // the diversity
idw

of the
thi feature between the sets ,M M+ −

has 

been discovered from the fusion of the 

diversity estimation measures. 

End //of the condition  

( )iif dw d  

Begin 

oF i  

End 

// if the diversity weight
idw

of the
thi feature is greater 

than or at least equal to d  

denotes that the 

corresponding feature is 

optimal 

End // of iterations 

// Preprocess the datasets of diversified labels// 

 
1

cl

i
i i oF

=
   Begin // for each optimal feature

ix  of the set

jD which is labelled as j  

M + ic+ // discarding the column of values projected 

to the corresponding
thi feature from the set M +  

M − ic− // discarding the column of values projected 

to the corresponding
thi feature from the set M −  

End 

// n-grams selection// 

 
1

M

i i
i

r r M
+

+
=
   Begin// for each record

ir of the set M +  

( )( )inG nG nGrams r+ + //finding the possible 

combination of n-grams of sizes 1 to n, and adding the 

unique, non-existent n-grams that result to the 

collection nG+
. 

End 

 
1

M

i i
i

r r M
−

−
=
   Begin// for each record

ir of the set M −  

( )( )inG nG nGrams r− = //finding the possible 

combination of n-grams of sizes 1 to n, and adding the 

unique, non-existent n-grams that result to the 

collection nG−
 

End 
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The next step is to calculate the label level positive, 

negative, purity, and decision-supporting n-gram occurrence 

probabilities for the relevant set. 

 
1

nG

i i
i

ng ng nG
=
    Begin // for each n-gram i ing ng nG   

of the set nG  

  ( )
1

1

1

M

i i k k

k

ngp ng r r M M
+

−+

+ +

=

 
=       
 
  // the n-gram 

ing 's probability of being positive ingp+
with respect to set

M+
 

  ( )
1

1

1

M

i i k k

k

ngp ng r r M M
+

−−

− =

=

 
=       
 
  // the n-gram 

ing 's probability of being negative ingp−
with respect to set

M−
 

( )1 *i i ingw ngp ngp+ −= −  //The purity of the n-gram
ing

towards the set jD that derived through Gini-impurity 

estimation [56]  

End //of the iterations  

Find-positive-decision weights: Begin //Decision weights of 

the n-grams towards the positive label 

 1iip =  // initializing the impurity
iip of the n-gram to 

1 

 
1

nG

i i
i

ng ng nG
+

+
=
    Begin // For each n-gram

 i i jng ng nG   of the set jD  

  ( )1 *i i i iip ip ngw ng nG−= −    // Updating the 

impurity
iip  of the n-gram

ing  

End  

 
1

nG

i i
i

ng ng nG
+

+
=
    Begin // For each n-gram

 i ing ng nG+   of the set M+
 

i i ingdw ngw ip+ = −  // The decision weight ingdw+
 of the 

n-gram  ,j i
ng towards the set M +  

( )iif ngdw d+   begin // If the decision weight ingdw+
 of 

the n-gram
ing towards the set M + is less than the decision 

weight threshold d  

 \ inG ng+
 // Discarding the n-gram

ing of the set M+
 

End  

End 

Find-negative-decision weights: //Decision weights of the n-

grams towards the negative label 

 1iip =  // The overall impurity
iip  of the n-gram

ing  

is initialized to maximum, which is 1 

 
1

nG

i i
i

ng ng nG
−

−
=
    Begin // For each n-gram

 i ing ng nG−   of the set M −  

  ( )1 *i i i iip ip ngw ng nG+= −    // Updating the 

impurity
iip  of the n-gram

ing  towards the negative label 

End  

 
1

nG

i i
i

ng ng nG
−

−
=
    Begin // for each n-gram

 i ing ng nG−   of the set M −  

i i ingdw ngw ip− = −  // the decision weight ingdw−
 of the n-

gram
ing towards the set M −  

( )iif ngdw d−   Begin // If the decision weight ingdw−
 of 

the n-gram
ing towards the set M − is less than the decision 

weight threshold d  

 \ inG ng−
 // Discarding the n-gram

ing of the set M−
 

End  

End // of assessing negative decision weights of the n-grams 

3.8 Build the Classifier 

Regarding the performance of the proposed cuckoo search-

based classifier, the classifier's learning phase depicts the 

perch hierarchy towards each label in the training corpus, 

with each level of the hierarchy having one or more perches. 

Each level's perch displays the same-sized n-gram features. 

Each perch of the hierarchy represents a feature (n-gram 

representation of x-coordinates). The n-gram features of the 

perches listed in a level of the hierarchy are smaller than the 

n-grams of the perches in the antecedent level and larger than 

the n-gram features of the perches in the descendant level. 

Placing distinct n-gram feature values (n-gram y-coordinates) 

of related n-gram features on the perches of hierarchy (as 

eggs) of each label is the next job of the learning phase. 
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3.9 Label Prediction Phase  

In the testing phase, the predictive analytic task that forecasts 

the label of the given record executes as follows. 

Let the test record be represented by the notation tr . 

Let 
trnG  denote the set of all conceivable unique n-gram 

patterns, with size | |tr equal to the size of the test record tr . 

| |

1 1 1

tr idx

i

nG H l
i j

tr

i idx j
j idx

idx

ngdw

ng p
f

p l

l H

+

+

+

+

+
= = =

+

 
 

  
=  

  
 

 

   

// denotes the test 

record's positive 

fitness, which is 

determined by 

adding the 

decision weights 

assigned to each 

of its n-grams in 

relation to the 

positive label 

hierarchy. 

| |

1 1 1

tr idx

i

nG H l
i j

tr

i idx j
j idx

idx

ngdw

ng p
f

p l

l H

−

−

−

−

−
= = =

−

 
 

  
=  

  
 

 

   

//The decision-

weights of all the 

n-grams in the test 

record are also 

combined; these 

decision weights 

indicate how well 

the test record is 

suited for the 

negative label. 
1

| |

1

H

tr tr idx

idx

epdw f l
+

−

+ +

=

 
=  

 
  

//Determining the 

empirical-

probability of the 

decision weights 

of the test record's 

n-grams in favor 

of the negative 

label hierarchy. 
1

| |

1

H

tr tr idx

idx

epdw f l
−

−

− −

=

 
=  

 
  

///Determining 

the divergence of 

the n-gram 

judgement 

weights from the 

positive label 

hierarchy in the 

test record. 

( )
2

| |

1 1 1

tr idx

tr i

nG H l

i j
tr

i idx j

j idx

idx

f ngdw

ng p

p l

l H


+

+ +

+
+

+= = =

+

 
−  

   =  
  
 

  

   

//Determining the 

decision weights 

of the test record's 

n-grams that 

deviate from the 

hierarchy of the 

positive label. 

( )
2

| |

1 1 1

tr idx

tr i

nG H l

i j
tr

i idx j

j idx

idx

f ngdw

ng p

p l

l H


−

− −

−
−

−= = =

−

 
−  

   =  
  
 

  

   

/Determining the 

decision weights 

of the test record's 

n-grams that 

deviate from the 

hierarchy of the 

negative label. 

The empirical-probabilities of the decision-weights 

obtained for all feasible n-grams of the provided test record 

and the corresponding deviations for both labels, as 

mentioned in the explanation above, will be evaluated.   

3.9.1 Label Prediction 

The decision about the recommended label positive (noise 

prone) or negative (noise-free) of the given test record tr shall 

perform as follows: 

( )1tr tr trip epdw + − −= − −  

//impurity trip+
of the test 

record tr  towards the 

positive label 

( )tr tr tr trmf epde ip+ + + += − −  

// minimal fitness trmf +
 of 

the given record tr towards 

the positive label 

( )1tr tr trip epdw − + += − −  

//impurity trip=
of the test 

record tr  towards the 

negative label 

( )tr tr tr trmf epdw ip− − − −= − −  

// minimal fitness trmf +
 of 

the given record tr towards 

the positive label 

End  

Finally, it prioritizes the provided record through the 

empirical-probability of decision-weights, relative deviation, 

and the minimal fitness towards the associated labels. This is 

true for both labels that signal positive and negative emotions. 

This strategy was inspired by the Likert scale notion [58], 

[59], [60], [61]. 

The empirical-probability as well as deviation are in 

the appropriate order after the minimal fitness of the 

unlabeled record towards the positive as well as negative 

labels, which is strongly valued. Using the Likert-scale, the 

parameter having the least importance will have an index of 

1, while the progressively more important factors will each 
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have index increases of 1. The values representing the 

parameters must be multiplied by their normalized value 

indexed in the manner shown below in order to determine the 

correlation among the given record and the related label. 

The range of the index will be 1, 2, as well as 3, 

representing deviation, empirical probability, and minimal 

fitness in that order because three parameters are taken into 

consideration for the correlation assessment. From this point 

forward, the test record's correlation with both labels will be 

calculated as follows. 

( ) ( ) ( )( )1 1 11 *(1 1 ) * *(1 2 ) * *(1 3 )tr tr tr trcr epdw mf+ + − + − + −= − − − −   

// finding correlation trcr+
 of the test record tr towards 

positive (noise prone) label 

( ) ( ) ( )( )1 1 11 *(1 1 ) * *(1 2 ) * *(1 3 )tr tr tr trcr epdw mf− − − − − − −= − − − −  

// finding correlation trcr−
 of the test record tr towards 

negative (noise-free) label 

Further concludes that the test record is noise prone if 

the positive correlation trcr+
is greater than or equal to the 

negative correlation trcr−
. Else the record shall be stated as 

noise-free  

4 Experimental Study 

This section of the study provides insights into how the 

experimental studies for the proposed model indicate the 

efficacy of the proposed model. However, to ensure the 

authenticity of the proposed model, two of the other 

comparable models, SLND [42], RUSBOOST [43], are used 

alongside the proposed model under similar testing 

conditions to understand how the proposed and the reviewed 

models are faring in terms of the metrics referring to the 

effectiveness of the models.  

For the proposed study, using the datasets, the 

comparative analysis is carried out among three distinct 

models, one proposed in this manuscript and the other two 

SLND [42] and RUSBOOST [43]. Based on the feature 

selections for the respective models and the classification 

used, the following analysis based on certain critical 

parameters is discussed.  

Table 1 is exhibiting the mean values and respective 

deviations of the cross-validation metrics. The values 

obtained from QAAES are outperforming the other two 

contemporary models. The true positive rate and true negative 

rate of the proposed method QAAES are exhibiting that both 

labels’ detection imbalanced prediction accuracy is robust 

and far better than the contemporary models. The QAAES 

model has approximately 7% more imbalanced prediction 

accuracy than SLND and 12% more than RUSBOOST 

The table-1 detailed below, represents the conditions 

wherein the average and the deviation values for various 

parameters are considered for all the three models used for 

comparative analysis. Based on the descriptive statistics of 

the datasets used, the positive predictive value, true negative 

rate, true positive rate, imbalanced prediction accuracy, and 

harmonic mean values related mean value are garnered, and 

even the variance for the same is estimated in significant 

ways.  

In terms of simple interpretation of the values 

towards its impact and coherence to the mean values, the 

standard deviation assessment can be more significant. Low 

standard deviation refers to the conditions wherein the data 

are clustered around the mean, and higher levels of standard 

deviation refer to the conditions wherein it is spread out. 

Standard deviation is closer to zero refers to the data points 

being closer to the mean value, and any high or low standard 

deviation refers to the points being far above or below the 

mean value.  

 

Table 1: The table exhibiting average and deviation values. 

Average and deviation values 

 QAAES RUSBOOST SLND 

Positive Predictive Value 0.94312± 0.005376579 0.92951± 0.011729744 0.87186± 0.013604499 

True Negative Rate 0.94243± 0.005503099 0.92992± 0.011477526 0.86923± 0.016763237 

True Positive Rate 0.960522222± 0.010787683 0.933755556± 0.021049238 0.893788889± 0.013265297 

Imbalanced Prediction Accuracy 0.95235± 0.006133881 0.93274± 0.015653639 0.88164± 0.008954798 

Harmonic Mean 0.94274± 0.005424426 0.9297± 0.011586371 0.87052± 0.01514865 

Phi coefficient 0.90497± 0.012438895 0.86555± 0.031333824 0.76383± 0.017743396 

 

In the table-1 above, it is evident that across all the metrics 

assessed for the three models respectively, the mean value is 

comparatively higher in the QAAES when compared to the 

other models like RUSBOOST and SLND. Also, in the 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication  

ISSN: 2321-8169 Volume: 10 Issue: 10 

DOI: https://doi.org/10.17762/ijritcc.v10i10.5739 

Article Received: 28 July 2022 Revised: 05 September 2022 Accepted: 12 September 2022  

___________________________________________________________________________________________________________________ 

 
102 

IJRITCC | October 2022, Available @ http://www.ijritcc.org 

standard deviation values, though the majority of the values 

in the matrix are lesser, and it signifies that the standard 

deviation values are clustered around the mean value. 

However, in the case of the QAAES, the values are more 

clustered compared to the other models and their variance 

values.  

4.1 Positive Predictive Value (PPV) 

The Positive Predictive Value is the probability referring to 

the positive results over a hypothesis test indicating there is a 

significant effect. In an illustrative scenario, it can be stated 

that the probability of patients testing positive being positive. 

Despite that, the degree of variance is feasible and could 

grade the level of impact. Still, the baseline impact is seen as 

positive. For instance, when a patient is tested for heart 

problem identification using specific metrics, if the values 

remain positive, it refers to the possibility of a person 

suffering from a heart problem. However, the intensity is not 

evident in the PPV values.  

The PPV values for the datasets are estimated using the 

following formulae. 

PPV= Number of true positives/ (number of true 

positives + number of false positives)  

Based on the datasets used for the analysis and the ten-fold 

data set modeling used for testing the values, the positive 

predictive values across the ten-folds are higher in the case of 

the QAAES, in comparison to the other two models 

RUSBOOST and SLND.  

Precision (Positive Predictive Value) 

  1 2 3 4 5 6 7 8 9 10 

QAAES 0.9513 0.9444 0.9395 0.9318 0.9407 0.9454 0.9495 0.9449 0.9451 0.9386 

RUSBOOST 0.9273 0.9175 0.9149 0.9107 0.9298 0.9268 0.9395 0.9444 0.9447 0.9395 

SLND 0.8719 0.8709 0.8662 0.8684 0.8517 0.8483 0.8922 0.8883 0.8832 0.8775 

 

Figure 1: Precision (positive predict value) has noticed for 

QAAES, SLND [42] & RUSBOOST [43]. 

The figurative representation of the values in the 

figure-1 for PPV-related performance metrics indicates that 

the QAAES ranks higher in the performance, followed by 

RUSBOOST. The PPV value in the case of the SLND is 

lower in comparison to the other two models.  

4.2 Ture Negative Rate (TNR) 

TNR, also referred to as specificity of a test, is the proportion 

of samples that test negative among the data in question that 

are genuinely negative. For instance, in the dataset 

constituting 100 records, if genuinely 80 are negative for an 

implication test, if the prediction from the model refers to 78 

as negative, then the TNR rates are evident in the model as 

more significant. For the other two records that were missed 

by the prediction values, it can be seen as False Positive Rate.  

The formulae mentioned below are adapted to detail 

the specificity or the TNR values for the datasets.  

( )
| |TN

specificity TNR
TN FP

=
+

 
// TN denotes 

total true 

negatives 

// FP denotes 

total false 

positives 

 

Ture Negative Rate 

  1 2 3 4 5 6 7 8 9 10 

QAAES 0.9513 0.9433 0.9398 0.9323 0.9402 0.9432 0.9502 0.9442 0.9439 0.9359 

RUSBOOST 0.9293 0.9198 0.9161 0.9101 0.9296 0.926 0.94 0.945 0.944 0.9393 

SLND 0.8693 0.8708 0.8654 0.8674 0.8415 0.8388 0.8921 0.8874 0.8828 0.8768 
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Figure 2 based on the analysis of the datasets for ten-

fold analysis, the true negative rate of QAAES has 

outperformed the other two models. More in specific, 

QAAES has performed better than SLND across all the ten-

fold analyses. Whereas in comparison to RUSBOOST, in six-

folds, QAAES has shown more difference in the 

performance, and in the other four folds (7-10 in the above 

table), the margin of performance difference is narrow. 

However, focusing on the averaging of the performance 

factors, it is evident that the QAAES has depicted significant 

performance.  

 

Figure 2: Specificity (True Negative Rate) has noticed for 

QAAES, SLND & RUSBOOST 

4.3 True Positive Rate (TPR)  

TPR is alternatively called sensitivity rate, refers to the 

conditions wherein the proportion of people with the disease 

being shown as positive. In simple terms, if the dataset has 

100 records constituting 80 positive records and if the system 

can predict all the 80 positive records, the sensitivity of the 

model is much significant. However, considering the scope 

of processing errors in the medical interpretation, the higher 

the sensitivity rate, the higher the efficacy of the model can 

be.  

The sensitivity factors in the model are assessed based on the 

following formulae.  

TPR = Number of True Positives / (Number of True Positives 

+ Number of False Negatives) 

The Figure 3 TPR test carried out on the dataset for 

the ten-folds, using the formulae mentioned above stands the 

computation of the below-mentioned table. In the probability 

of all the ten-folds, the performance of the QAAES has been 

outstanding compared to the other two models used for 

analysis. For instance, the average TPR rate of the SLND 

stands at 0.89, 0.93, and 0.97 in the respective cases of SLND, 

RUSBOOST, and QAAES. The performance indicates that 

the proposed model has the upper edge in defining the true 

positives more effectively.  

True Positive Rate 

  1 2 3 4 5 6 7 8 9 10 

QAAES 0.95 0.9562 0.9531 0.9436 0.9733 0.9736 0.9616 0.9635 0.9698 0.9776 

RUSBOOST 0.9132 0.9116 0.9083 0.9118 0.9476 0.9376 0.9552 0.9559 0.9626 0.9548 

SLND 0.8877 0.8804 0.8785 0.8765 0.9107 0.9144 0.9101 0.8962 0.8896 0.8972 

 

Figure 3: Sensitivity (True Positive Rate) has noticed for 

QAAES, SLND & RUSBOOST 

4.4 Imbalanced Prediction Accuracy 

Imbalanced prediction accuracy is profoundly about focusing 

rate classification errors wherein the minority classes are 

given more weightage than the majority class. Unlike the 

standard evaluation metrics, wherein the classes are 

considered equally important. In the imbalanced prediction 

model, the emphasis is on the minority class, wherein there 

could be preliminary observations to train the model. 

Applying the following formulae for estimating the 

imbalanced prediction accuracy, the following tabulation is 

computed for the ten-fold analysis across all three models.  

Accuracy = Correct Predictions / Total Predictions 

From the data interpretation, it is evident that the 

QAAES has an upper hand performance than the other two 

models. However, in a few of the folds like (8-10) in the 

below table, the performance of RUSBOOST and QAAES is 
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seen as highly competitive. But the performance of SLND has 

remained below par with the performance of QAAES. The 

simple visual interpretation of the table in the form of a graph 

indicates that QAAES ranks high in the model, followed by 

RUSBOOST, while SLND stands last in Figure 4.   

 

Imbalanced Prediction Accuracy 

  1 2 3 4 5 6 7 8 9 10 

QAAES 0.9503 0.9503 0.9465 0.9376 0.9567 0.9592 0.9554 0.9541 0.9567 0.9567 

RUSBOOST 0.921 0.9146 0.9121 0.9121 0.9389 0.9325 0.9465 0.9503 0.9529 0.9465 

SLND 0.879 0.8752 0.8713 0.8726 0.8764 0.8764 0.9006 0.8917 0.8866 0.8866 

 

 

Figure 4: Imbalanced Prediction Accuracy has noticed for 

QAAES, SLND & RUSBOOST 

4.5 Harmonic Mean 

Harmonic mean refers to a kind of numerical average, 

wherein the number of observations is divided by the 

reciprocal of each of the numbers over the series. In simple 

terms, the Harmonic mean can be termed as the reciprocal 

arithmetic mean of the reciprocals. Focusing on the harmonic 

mean is to understand the mean performance value across 

various folds used in the analysis.  

 

The harmonic mean formulae as depicted above is 

on the consideration of weights being equal to 1, and the 

weighted harmonic mean of if seen as X1, X2, X3, then the 

corresponding weights as W1, W2, and W3.  

 

Harmonic Mean 

  1 2 3 4 5 6 7 8 9 10 

QAAES 0.9513 0.9438 0.9396 0.932 0.9404 0.9443 0.9498 0.9445 0.9445 0.9372 

RUSBOOST 0.9283 0.9186 0.9155 0.9104 0.9297 0.9264 0.9397 0.9447 0.9443 0.9394 

SLND 0.8706 0.8708 0.8658 0.8679 0.8466 0.8435 0.8921 0.8878 0.883 0.8771 

 

In line with the computation interpretation, like the 

earlier metrics, even in the case of the harmonic mean values, 

the impact performance of QAAES is imperative compared 

to the other models assessed in the study. While the 

RUSBOOST still stands as a strong contender, the 

performance of QAAES has the marginal edge in some folds, 

and in many folds, the performance of the QAAES is superior 

Figure 5.  
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Figure 5: The F-Measure (Harmonic Mean) has noticed for 

QAAES, SLND & RUSBOOST 

4.6 PHI Coefficient 

Phi Coefficient refers to the measure of association among 

two binary values and is alternatively termed as Mean Square 

Contingency Coefficient. The association of the positive and 

negative results diagnosis-related coherence is assessed in 

this model using the Phi Coefficient.  

Profoundly, the Phi Coefficient values are 

symmetrical statistics, wherein the independent variable and 

dependent variables are significantly interchangeable. 

Interpretation of the Phi Coefficient is the assessment of 

correlation coefficients ranging from -1 to 1, wherein 0 refers 

to hardly any relationship, 1 depicting perfect positive 

relationship, and -1 depicting perfect negative relationship 

Figure 6.  

The Phi Coefficient values of all the three models 

across its ten-fold analysis refer to a condition wherein there 

is a perfect positive correlation. However, the degree of 

positive correlation is superior in QAAES when compared to 

RUSBOOST and SLND.  

 

PHI Coefficient 

  1 2 3 4 5 6 7 8 9 10 

QAAES 0.9006 0.9007 0.8931 0.8752 0.914 0.9189 0.9109 0.9085 0.9137 0.9141 

RUSBOOST 0.8421 0.8293 0.8242 0.8242 0.8779 0.865 0.8931 0.9007 0.9059 0.8931 

SLND 0.7581 0.7504 0.7427 0.7453 0.7547 0.7553 0.8015 0.7835 0.7733 0.7735 

 

 

Figure 6: The PHI Coefficient has noticed for QAAES, 

SLND & RUSBOOST 

Based on the overall metrics assessed in the 

experimental study, it is evident that the model proposed as 

QAAES in this manuscript stands superior in attaining the 

desired objectives in comparison to the other models 

reviewed in this study. Thus, considering the emerging 

requirements of the medical domain to have more accurate 

analysis, the proposed machine learning solution can be 

pragmatic for the futuristic diagnosis.  

5 Conclusion 

Predictive models applied for the ECG analysis are in high 

demand, and with the emerging technological advancements, 

more contemporary solutions are evident in the domain. This 

research manuscript discusses a contemporary solution in 

QAAES, in line with the model narrative discussed in the 

above sections. Based on the experimental analysis of the 

model over the ten-fold training sets from the datasets used, 

it is evident that the success of QAAES is comparatively 

higher than that of the other two relative models RUSBOOST 

and SLND. Despite that in some metrics performance, 

RUSBOOST has significant performance too in relative 

terms, and absolute results indicate QAAES having cutting 

edge performance than the other two. Thus, it is advocated 

that the recommended model QAAES applied as a machine 

learning solution for the pragmatic medical assessment can 

be a sustainable and futuristic solution.  
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