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Abstract 

Because the health care field generates a large amount of data, we must employ modern ways to handle this data in order to give 

effective outcomes and make successful decisions based on data. Heart diseases are the major cause of mortality worldwide, accounting for 1/3th 

of all fatalities. Cardiovascular disease detection can be accomplished by the detection of disturbance in cardiac signals, one of which is known 

as phonocardiography. The aim of this project is for using machine learning to categorize cardiac illness based on electrocardiogram (ECG) and 

phonocardiogram (PCG) readings. The investigation began with signal preprocessing, which included cutting and normalizing the signal, and 

was accompanied by a continuous wavelet transformation utilizing a mother wavelet analytic morlet. The results of the decomposition are shown 

using a scalogram, and the outcomes are predicted using the Hidden semi morkov model (HSMM). In the first phase, we submit the dataset file 

and choose an algorithm to run on the chosen dataset. The accuracy of each selected method is then predicted, along with a graph, and a modal is 

built for the one with the max frequency by training the dataset to it. In the following step, input for each cardiac parameter is provided, and the 

sick stage of the heart is predicted based on the modal created. We then take measures based on the patient's condition. When compared to 

current approaches, the suggested HSMM has 0.952 sensitivity, 0.92 specificity, 0.94 F-score, 0.91 ACC, and 0.96 AUC. 
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Introduction 

Cardiovascular diseases (CVDs) represent the most 

prevalent chronic illnesses worldwide, accounting for the 

leading cause of morbidity and mortality during the previous 

10 years [1]. Based on WHO, almost 18 M patients die from 

CVDs every year, which accounts for 32percent of total of 

deaths globally. As a result, CVD cases are increasing at an 

alarming rate, and by 2k30, annual mortality rate will have 

risen to 22.2 million individuals [2]. Centers for Disease 

Control and Prevention analysis shows that the death rate 

will rise. It was stated that one person died every 

forty seconds as a result of CVDs. [3]. CVDs have also been 

identified as primary reason of death in Egypt during past 

thirty yrs., accounting for 46.2percent of all mortality cases 

as of 2k17 [4]. CVDs cover a variety of heart and blood 

vessel problems [5]. 4 of 5 CVD deaths were caused by 

strokes or heart attacks. As a result, heart disease is the most 

lethal chronic disease, and its danger stems from the 

disease's invisibility. It is not identified until signs of heart 

problems (or an attack) are observed [6]. Heart disease 

occurs when the heart fails to perform its regular role of 

giving blood towards other body parts due to a blockage of 

the coronary arteries, which are responsible for sending 

blood to the heart [7]. Regular heart disease signs are (1) 

shortness of breath, (2) weakness of the body, (3) 

disorientation, and (4) fainting. This illness risk is enhanced 

in those who have risk factors such as (1) an unhealthy 

lifestyle, (2) tobacco, (3) unfitness, (4) elevated BP, (5) a 

lack of exercises, and (6) an excessive bad cholesterols [8]. 

Early and precise prognosis of cardiac disease is critical for 

increasing survival and decreasing death. This will assist 

healthcare providers in making decisions by offering 

patients with a precise and effective diagnosis and treatment 

in order to save their lives. Machine intelligence is one 

strategy for early and reliable prediction of heart disease. 

This may be accomplished through the use of machine 

learning (ML) techniques and deep learning (DL) techniques 

[9].  
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The 2 most popular and successful methods in the 

first diagnosis of heart disorders are heart sound auscultation 

as well as electrocardiogram (ECG). The mechanical and 

electrical activity of the heart can be reflected by their signal 

waveforms, phonocardiogram (PCG) and ECG. PCG signals 

shows physiological/pathological states of cardiac vessels, 

allowing structural heart disease (SHD) is to be diagnosed. 

The ECG can aid in the detection of disorders related to 

impulse conduction, like arrhythmias, coronary heart 

disease, heart attacks, and so on [10The regular cardiac 

cycle is reliant on the interaction of nerve currents with 

electromechanical contraction of the atria and ventricles of 

the heart. A random nerve impulse in the sinoatrial (SA) 

node (shown as a P wave on an ECG) initiates the process, 

that subsequently propagates towards the atrioventricular 

(AV) nodes, allowing cardiac atria to relax enabling plasma 

to be transported through into blood vessels, and ventricular 

depolarization (represented as a QRS complex on an ECG) 

to begin [11]. When the ventricular pressure exceeds the 

atrial pressures, the atrioventricular valves collapse. The 

heart valves are repolarized (shown as a T wave on a PCG) 

and relaxed when the blood is pumped out. S2 on PCG is 

caused by the closing of semilunar valves. As a result, the 

PCG and ECG are tightly connected in time. It is critical to 

separate S1 from S2 in order to properly utilize the PCG's 

diagnostic power. All of the proposed segmentation 

techniques may be broadly classified as follows: 1) ECG 

reference techniques rely on the R-peak with T wave to 

pinpoint the location [12]. It necessitates simultaneously 

monitoring of both ECG as well as PCG, yet its performance 

is robust and computationally efficient. 2) Envelope-based 

approaches are more widely utilized in non-ECG-based 

segmentation. They utilize signal energy to conduct 

morphological transformations, However, with in existence 

of noisy environment and whispers, their performance 

diminishes. 3) Space - time predictor variables methods use 

time and frequency domains features of heartbeat sounds, 

whispers, and noise to divide heart rhythm; 4) Adaptive 

filtering Classification methods based are also an evolution 

of space - time parameter settings methodologies. They will 

dissect the signals such that cardiac sounds are highlighted 

while disturbances and noises are suppressed[13]. The 

fundamental problem of curve let segmentation is 

determining the best filtration, breakdown level, and sub-

bands to recognize recordings and disturbances. 5) In recent 

times, Hidden Markov algorithms were also employed for 

segmentation, yielding outstanding results with low signal-

to-noise ratios. There is currently no commonly accepted 

optimum PCG segmentation method, although with 

continuous ECG recordings, because of resilience. 

References show that multi-modal characteristics are useful 

in predicting CVDs. While facing high features in a multi-

modal situation, however, feature selection stages are 

unavoidable. As a result, we require an efficient solution to 

tackle the dimension reduction problem. The aim of this 

research is to create a novel model that can reliably predict 

CVDs by integrating ECG and PCG. It is extremely useful 

for diagnosis and management of CVDs. The following are 

the primary contributions of this paper: 

• To predict CVDs, a new model depending both on 

ECG and PCG data is developed. 

• We generate 2 systems to encode ECG as well as 

PCG signals. Deep-coding characteristics of ECG 

and PCG are then computed and shown using 

boxplots and correlations. 

• To acquire a greater representation of data, multi-

modal feature extraction using matching is used 

throughout the feature dimension reduction 

procedure. 

• Reporting cutting-edge performance indicators in 

comparison to other relevant research and 

methodologies. 

The remaining study is organized as follows: Segment 2 

addresses various current research investigations, Section 3 

offers technique and techniques, Segment 4 displays the 

experiment results and discussion, Segment 5 concludes 

with the conclusions including prospective studies. 

Related works 

The upcoming section provides an overview of existing 

research and study papers on cardiovascular disease 

detection as well as forecasting approaches based on various 

types of medical data. The relevant research are divided into 

two categories: multimodal feature extraction studies and 

machine learning-based prediction studies. 

Survey on multimodal feature extraction 

[14] created the Synchronized ECG and PCG 

Database for People with Left Ventricular Dysfunction 

(SEP-LVDb), that includes 1046 synchronized ECG or PCG 

records involving patients who had low (n = 107) and 

healthy (n = 699) LVEF. There have been 173 and 873 

records from the decreased and typical LVEF groups, 

correspondingly. Then, by combining PCG with ECG 

information, we created a concurrent multifunctional 

strategy for LVD assessment. 

[15] describe a non-invasive approach for 

monitoring FHR which uses electro-cardio graphic (ECG) as 

well as phono-cardio graphic (PCG) monitors to capture 

fetal heart activity. The PCG signal contains some noise, 
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which is unavoidable during the acquisition procedure. ECG 

signal, may eliminate part of the PCG noise. Because the 

PCG information in the data set has a frequency of 0-2 kHz, 

many single-sample PCG waveforms are also larger in 

duration, hence down-sampling is performed first to lower 

the frequencies to below 1khz.. The peak signal appears less 

in the data set utilized in this experiment, but because the 

running time of this approach for eliminating spikes is 

minor, the practical test does not require much time and is 

also reserved. 

For the 1st time, an unique tailored framework was 

suggested in [16] to address specific specificity within PCG 

signals. A clustering algorithm using age statistics with 

characteristics was devised to separate patients in order to 

remove individual differences at the source. Then, to create 

an individually customized diagnostic strategy, we 

constructed various classification models for distinct 

subgroups, thus attenuating the impact of individual 

specificity. 

In [17], an innovative fusion design for heart beats 

categorization is suggested. Instead employing only one 

domain's data, general frequency and Mel domain 

characteristics are retrieved out from heartbeat. Multi-modal 

CNN fused structure separately using map generated by 

multiple feature extraction methods. Such feature maps are 

therefore blended in order to optimize the various retrieved 

features. 

In [18], an empirical mode decomposition (EMD)-

based signals refinement strategy is described to 

retrieve appropriate fetal heart rate style of communication 

(FHR). Following that, The PCG signal contains some 

noise, which is unavoidable during the acquisition 

procedure. The Schmidt's approach for eliminating signal 

spikes is mostly for PCG signals. The peak signal appears 

less in the data set utilized in this experiment, but because 

the running time of this approach for eliminating spikes is 

minor, the practical test does not require much time and is 

also reserved. 

To aid clinicians in making correct judgements on 

suspected CAD patients, [19] provides optimum detection 

algorithms for suspected CAD detection based on variations 

in medical conditions. The electrocardiogram (ECG) as well 

as phonocardiogram (PCG) information involving Thirty 

CAD patients and thirty individuals There is currently no 

commonly accepted optimum PCG segmentation method, 

although with continuous ECG recordings, because of 

resilience. References show that multi-modal characteristics 

are useful in predicting CVDs. While facing high features in 

a multi-modal situation, however, feature selection stages 

are unavoidable. As a result, we require an efficient solution 

to tackle the dimension reduction problem. The optimum 

feature subset was then obtained using a heterogeneous 

feature selection (HFS) strategy that includes similarity 

matrix, sequential backward removal. 

[20] present a low-cost real-time approach for diagnosing 

cardiac problems. Using Phonocardiogram (PCG) signal, we 

propose an integrated automated multimodal heart disease 

categorization (AMHDC) system. To do this, we first 

created an advanced fusion approach that makes use of pre-

processing methods like Data Normalization as well as Data 

Augmentation. Second, we retrieved heart sound 

spectrograms and utilized them as feature and picture.  

 

Survey on machine learning based prediction 

The goal of this study, according to [21], aims to 

recognize cardiac arrhythmias using PCG signal, CNN or 

VGG16 algorithms, as well as classification techniques and 

visual pixel synthesis. For improved efficiency, 

phonocardiography (PCG) is additionally being explored. 

The bulk of arrhythmia categorization and detection 

approaches rely on surface Information extraction. To 

improve the effectiveness of cardiac diagnostics, a wavelet 

analysis approach at various resolutions is devised, 

incorporating temporal and wavelet. 

In this study, information from 2319 patients were 

collected first based on the SOFA score. 4  commonly used 

machine learning (ML) methods were chosen and used to 

develop a real-time simulation tool for MODS based on full 

parameters (laboratory, drug, and non-invasive parameters, 

totaling 57 parameters) and non-invasive specifications only 

(17 parameters), and compared to four traditional scoring 

systems. 

For the first time, a novel CAD identification 

method based on CMR pictures was developed, utilizing 

deep neural network feature extraction capabilities and 

merging the features with the assistance of a random forest. 

Image data must be converted to numeric qualities before 

they can be utilized in decision tree nodes. To do this, the 

predictions of many hold neural network convolutions 

(CNNs) are used as input qualities for selection trees. 

Because CNNs can represent picture data, our technique 

provides a universal classification strategy that can be used 

to any image data-base. 

In [24] Data fusion, which combines data from 

several sources using ML and DL techniques, is gathering 

steam in medical applications. In this paper, we examine 

present study on how the most modern data fusing 

technologies are bringing clinical and scientific 

advancements in the field of cardiology. Doctors and 

scientists will be able to deliver more rapid, efficient, as 

well as accurate clinical services in the diagnosis and 
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treatment of cardiovascular disorders (CVD) using all of 

these modern information fusion capabilities. 

Researchers developed Multi-Layer Acoustic 

Neural (MLAN) Systems to identify RHD symptoms 

utilizing heartbeat sounds and electrocardiogram (ECG) data 

in [25]. To improve accuracy in this proposed MLAN 

technology, novel methodologies such as multi-attribute 

acoustic appropriate sampling methods, cardiac sound 

sampling techniques, ECG information sampling procedure, 

and Acoustic Support Vector Machine (ASVM) are used.  

[26] present a novel multi-modal method for 

forecasting CVDs depending on ECG as well as PCG 

features. We reconstruct ECG as well as PCG  properties 

using traditional neural networks. To identify the best subset 

of features, the aggregated traits are evaluated to use an 

evolutionary algorithm. The support vector machine is then 

used to implement classifications. 

The main goal of researchers utilizing ML 

Framework-A is on feature-selection and feature-

classification, whereas feature extraction is an important 

stage in Framework-B and C. Raw ECG or PCG is useless 

unless the appropriate characteristics and parameters are 

calculated. Finding hidden characteristics in bio-signals is a 

difficult undertaking since they occur in a variety of 

complicated forms. Because signal analysis is a similar 

topic, With slight variations in feature extraction, ECG and 

PCG are incorporated in the same ML Framework. 

Segments, QRS period, average of Intervals, and mean 

difference of consecutive RR intervals are some common 

characteristics in ECG, where PCG impulses are assessed 

for either wavelet transform, spectral analysis, or time and 

frequency domains. Recent studies employ envelopes and 

length features to separate heart sounds, which improves 

heart disease prognosis. SVM and ANN important duties 

ECG interpretation. Deep neural networks, as per latest 

trend, excel in PCG classification. Deep neural networks 

also have outperformed cardiovascular tomography in terms 

of detecting heart disease. Deep neural networks excel in 

PCG as well as cardiovascular ultrasound classification. 

Although there are several data repositories and machine 

learning approaches accessible for heart disease detection, 

there is always room for advancement in levels of accuracy 

and other performance indicators. 

 

System model 

The following modules are included in the overall 

diagnostic system: noise reduction and spikes reduction, 

extraction of features, and model classification. Power 

frequency interfering, electromyography interruption, and 

baseline drift are all characteristics of noise. A multimodal 

feature extraction approach with matching contains thirty 

six time domain characteristics like variance and mean of 

the ECG and PCG intervals and magnitude, thirty 

six frequency domain samples are considered on Hamming 

window and discrete time Fourier transform, and fifty 

two MFCC coefficient elements. The semi hidden morkov 

model classification models are utilized here for these 

characteristics. Figure 1 gives overall structure of 

categorization system. 
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The PCG signal contains some noise, which is 

unavoidable during the acquisition procedure. The kalman 

filter, such as the ECG signal, may eliminate part of the 

PCG noise. Because the PCG information in the data set has 

a frequency of 0-2 kHz, many single-sample PCG 

waveforms are also larger in duration, hence down-sampling 

is performed first to lower the frequencies to below 1khz. 

The Kalman filter is then employed to eliminate the signal's 

low frequencies, i.e., impulses below 25 Hz and signals over 

400 Hz, ensuring that critical information is kept while 

efficiently eliminating most of the noise. Some signal spikes 

in the PCG signal may interfere with model categorization. 

Schmidt's approach for eliminating signal spikes is mostly 

for PCG signals. The peak signal appears less in the data set 

utilized in this experiment, but because the running time of 

this approach for eliminating spikes is minor, the practical 

test does not require much time and is also reserved. 

Linear Quadratic Estimation (LQE), commonly 

called Kalman filtering in control theory and analytics, is a 

method that use a series of observations, which includes 

errors and gives estimation of undefined factors that correct 

than those observed just for a 1st time slot by estimating a 

joint distribution of probabilities across the variable. Closer 

look into filter reveals that the speech-signals are treated as 

a pth degree Auto-Regressive models. The present state 

sampling x(k) is determined by:  

1
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where 𝑋(𝑘) is the (𝑝𝑋1) vector matrix, Φ is matrix(𝑝𝑋𝑝) 

represent state transition using LPC co-efficient calculating 

noisy-speeches based on equation (3.3), 𝑢(𝑘) gives 

incoming noise in 𝑘thinstant, and G gives (𝑝𝑋1) input 

matrix. 

When ECG and PCG is noise corrupted, the output 𝑦(𝑘) is: 

𝑦(𝑘)  =  𝑥(𝑘)  +  𝑤(𝑘)   (4) 

here 𝑤(𝑘) gives noise with “0” variance / mean. 

In vector form, 𝑦(𝑘)  =  𝐻𝑋(𝑘)  +  𝑤(𝑘), here 

𝐻 gives (1𝑋𝑝) observation matrix denotedas H= [0 0…... 0 

1]. Kalman filter gives 𝑋̂(𝑘|𝑘) This reflects the estimated 

state vector X(k), assuming distorted audio is captured up to 

k instants using the formulae presented below: 

𝑋̂(𝑘|𝑘 − 1) = 𝜙𝑋̂(𝐾 − 1|𝐾 − 1)  (5) 

𝑃(𝑘|𝑘 − 1) = 𝜙𝑃̂(𝐾 − 1|𝐾 − 1)𝜙𝑇 + 𝐺𝑄𝐺𝑇               

(6)  

𝐾(𝑘) = 𝑃(𝐾|𝐾 − 1)𝐻𝑇(𝐻𝑃(𝐾|𝐾 − 1))𝐻𝑇 + 𝑅)−1 

 (7) 

𝑋̂(𝑘|𝑘) = 𝑋̂(𝑘|𝑘 − 1) + 𝐾(𝑘)(𝑦(𝑘) − 𝐻𝑋̂(𝐾|𝐾 −

1))  (8) 

𝑃(𝑘|𝑘) = (𝐼 − 𝐾(𝑘)𝐻)𝑃(𝑘|𝑘 − 1)  (9) 

Here, 

• 𝑋̂(𝑘|𝑘 − 1) is an a priori estimation of the current 

condition vector 𝑋(𝑘). 

• 𝑃(𝑘/𝑘 − 1) yields the error covariance matrix of 

the priori estimation, which is provided by 

𝐸[𝑒𝑘𝑒𝑘𝑇 ] here 𝑒𝑘 = 𝑋(𝑘) − 𝑋̂(𝑘|𝑘 − 1) 

• 𝑄  represents the noise covariance acquired for the 

procedure as a matrix. Likewise, R is the noise 

covariance measurement matrix, that is 2𝑤. 

• The probability estimation of the vector field is 

given by 𝑋̂(𝑘|𝑘). The last element of 𝑋̂(𝑘|𝑘) in 

this situation is x̂(𝑘), which yields the evaluation 

results of both the packaged speech signal. 

• 𝑃 (𝑘|𝑘) returns the matrix expressing the errors 

correlation of an a posteriori estimate, gives 

𝐸[𝑒𝑘𝑒𝑘𝑇 ] here 𝑒𝑘 = 𝑋(𝑘) − 𝑋̂(𝑘|𝑘). 

• Let 𝑋̂(0|0) = [𝑦(1)  ··· 𝑦(𝑝)] and 𝑃 (0|0)  =

 𝜎 2 𝑤𝐼, where 𝐼 denotes (𝑝 × 𝑝) identity matrix.  

• 𝑁(𝑘) is the strength of the Proposed method at the 

kth instant. 

• Expression 𝑦(𝑘) =  𝐻𝑋̂(𝑘|𝑘 − 1). 

As a result, the equations of the Kalman filter are as follows: 

The Kalman gain 𝐾(𝑘) is chosen to minimize overall 

posterior error covariance, 𝑃 (𝑘|𝑘). K(k) falls as 𝑃 (𝑘|𝑘 −

1) lowers. Inspection reveals that when 𝐾(𝑘) drops, the 

faith in the posterior estimation process is greater than the 

trust in the noisy measurement. 

Multimodal feature extraction process 

The cardiac cycle is crucial in the categorization of 

heart sounds. For ECG and PCG data, one frequent estimate 

approach is envelope extraction. We do not directly recover 
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the envelope out from original ECG and PCG signal; rather, 

we recover the envelope of the selected IMF after applying 

EMD to the PCG signal. The EMD iterative filtering 

procedure separates the IMFs of every ECG and PCG 

signal, which is ordered by frequency between high to low. 

The essential characteristics of the heart sound have a 

frequency range of 50-200 Hz, located at the center of the 

overall signal frequency range. As a result, in most 

circumstances, the 2nd or 3rd IMF component is chosen as 

the best IMF component to reflect the matching PCG signal. 

The 2nd  IMF of every ECG and PCG signals is selected for 

further investigation in this research. The tested ones 

representations will be utilized to facilitate more information 

in the suggested technique and modes of expression. Given 

𝑥1 to 𝑥𝑛 are a set of vectors, so: 

(𝑥1; 𝑥2; … 𝑥𝑛) =

𝑥11 𝑥12 … 𝑥1𝑛

𝑥21 𝑥22 𝑥2𝑛

𝑥𝑛1 𝑥𝑛2 𝑥𝑛3

  (10) 

(𝑥1; 𝑥2; … 𝑥𝑛) =

𝑥11 𝑥21 … 𝑥𝑛1

𝑥21 𝑥22 𝑥𝑛2

𝑥1𝑛 𝑥𝑛2 𝑥𝑛𝑛

  (11) 

Given 𝑥 is a vector, 𝑎 is a scalar then: 

𝑋. 𝑎 =

𝑎𝑥11 𝑎𝑥21 … 𝑥𝑛1

𝑎𝑥21 𝑎𝑥22 … 𝑥𝑛2

𝑎𝑥1𝑛 𝑎𝑥𝑛2 … 𝑥𝑛𝑛

   (12) 

A Fast Fourier transform for vector x is represented 

by 𝐹𝐹𝑇(𝑥). As previously stated, we applied FMFE in three 

dimensions. As a result, three matching templates are 

required. The source of template is the ECG and PCG. As 

full ECG and PCG in our dataset is made up of three cycles. 

The template signal (m) in dimensions is easily calculated 

by averaging all three cycles (ℎ1, ℎ2, ℎ3) of 1 signal. 

𝑚 =
ℎ1,ℎ2,ℎ3

3
   (13) 

The template signal (m) is computed inside the 

dimensions for self-matching and frequency response as 

well as mutual matching in frequency domain by average of 

FFT) in all three cycles ℎ1, ℎ2, ℎ3 of one signal: 

𝑚 =
‖𝐹𝐹𝑇(ℎ1)+𝐹𝐹𝑇(ℎ2)+𝐹𝐹𝑇(ℎ3)‖

3
  (14) 

It is worth noting that in frequency domain mutual 

matching, ℎ1, ℎ2, ℎ3 are the three portions of one specific 

regular ECG as well as PCG. The cardiac cycle is crucial in 

the categorization of heart sounds. For ECG and PCG data, 

one frequent estimate approach is envelope extraction. We 

do not directly recover the envelope out from original ECG 

and PCG signal; rather, we recover the envelope of the 

selected IMF after applying EMD to the PCG signal. The 

EMD iterative filtering procedure separates the IMFs of 

every ECG and PCG signal, which is ordered by frequency 

between high to low as (𝑤1; 𝑤2; … 𝑤𝑁). Gaussian wavelets 

were employed in this investigation. These represent 

gaussian 1st – 8th high derivative filter wavelets with N 

wavelet hyper-parameters. By convolution the pattern signal 

only with initial flter matrix, the template features may be 

retrieved.  

𝑋 = 𝑚 ⊗ W = (m ⊗ 𝑤1; 𝑚 ⊗ 𝑤2; … . . ; 𝑚 ⊗ 𝑤𝑁)  (15) 

However, not all of the template characteristics are 

normally need to be taken into account. Since the same kind, 

in most circumstances, the 2nd or 3rd IMF component is 

chosen as the best IMF component to reflect the matching 

PCG signal. The 2nd  IMF of every ECG and PCG signals is 

selected for further investigation in this research. The tested 

ones representations will be utilized to facilitate more 

information in the suggested technique and modes of 

expression. Given 𝑥1 to 𝑥𝑛 are a set of vectors. A fuzzy 

matching concept is suggested here to reduce overfitting. 

We believe that the maximum correlation energy is found in 

the same sort of heart sound signal. To identify correlation 

energy characteristics, matched filter matrix depending on 

greatest correlation is created. For improving first filter W, 

we utilize a mask U: 

𝑈 = (𝛽1, 𝛽2, . . 𝛽0)   (16) 

The maximum confidence 𝑐ω is used to assess 

signal quality. To establish an overall categorization for a 

particular patient on several individual recordings, we use a 

basic criteria similar to what a doctor would employ when 

hearing to multiple places on the chest. The transmitting 

matrix A and the original state distributions were both 

invariant, as shown below. 

𝑊′ = 𝑈𝑇𝑊 = (𝑤1
′ , 𝑤2

′ , … 𝑤0
′ ) 

where 𝑤1
′ ; 𝑤2

′ ;...; 𝑤0
′  provides improved O filter (O 

improves filters, quantity is 1 of the proposed technique's O 

hyper - parameters.) Fuzzy characteristic of template signals 

(𝑋𝑚) and of target signal (𝑋𝑠) may be derived in the same 

way 

𝑋𝑚 = 𝑚 ⊗ 𝑊′ = (𝑚 ⊗ 𝑤1
′ ; 𝑚 ⊗ 𝑤2

′ … … ; 𝑚 ⊗

𝑤0
′ ) = (𝑥𝑚1; 𝑥𝑚2; … . 𝑥𝑚0)  (17) 

𝑋𝑠 = 𝑠 ⊗ 𝑊′ = (s ⊗ 𝑤1
′ ; 𝑠 ⊗ 𝑤2

′ … … ; 𝑠 ⊗ 𝑤0
′ ) =

(𝑥𝑠1; 𝑥𝑠2; … . 𝑥𝑠0)  (18) 
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In this study, we employ PCG information in the 

data set has a frequency of 0-2 kHz, many single-sample 

PCG waveforms are also larger in duration, hence down-

sampling is performed first to lower the frequencies to 

below 1khz.. Schmidt's approach for eliminating signal 

spikes is mostly for PCG signals. The peak signal appears 

less in the data set utilized in this experiment, but because 

the running time of this approach for eliminating spikes is 

minor, the practical test does not require much time and is 

also discovered.𝑚𝑚𝑑. These values are referred as 

𝑒𝑠1, 𝑒𝑠2, … . . 𝑒𝑠0  in a vector 𝑀𝐸 

𝑀𝐸 = (𝑒𝑠1, 𝑒𝑠2, … . . 𝑒𝑠0) 

Every optimized wavelet provides a correlation 

energy content, resulting in a total of O energy 

characteristics in a single cardiac cycle. Since signal 

provides data from 1 cycle of every ECG and PCG signals, 

three PCG cycles in our investigation should have three 

layers of matching characteristics. The approach described 

above is used to extract matching degree and matching 

energy characteristics for each cycle. This indicates that 

each cardiac sound wave retrieved three (O + 1) matching 

characteristics in 1D of matching calculation. 1 full ECG 

and PCG signal may be described in the time domain as 

follows: 

𝑇𝐷. 𝑆. 𝑀𝐷 = (𝑚𝑚𝑑1
𝑇𝐷𝑆, 𝑚𝑚𝑑2

𝑇𝐷𝑆, 𝑚𝑚𝑑3
𝑇𝐷𝑆) 

   (19) 

𝑇𝐷. 𝑆. 𝑀𝐷 = (𝑀𝐸1
𝑇𝐷𝑆, 𝑀𝐸2

𝑇𝐷𝑆 , 𝑀𝐸3
𝑇𝐷𝑆) 

   (20) 

The approach for extracting self-matching energy 

characteristics with freq., response identical to 1 described 

before. Distinction would be that the vibration signals 

utilizing FFT, and template signal is provided in Eq (21). 

We could create the result of having expression using the 

same way. 

𝐹𝐷. 𝑆. 𝑀𝐷 = (𝑚𝑚𝑑1
𝐹𝐷𝑆, 𝑚𝑚𝑑2

𝐹𝐷𝑆, 𝑚𝑚𝑑3
𝐹𝐷𝑆)

   (21) 

𝐹𝐷. 𝑀. 𝑀𝐷 = (𝑚𝑚𝑑1
𝐹𝐷𝑀, 𝑚𝑚𝑑2

𝐹𝐷𝑀, 𝑚𝑚𝑑3
𝐹𝐷𝑀)

   (22) 

𝐹𝐷. 𝑆. 𝑀𝐸 = (𝑀𝐸1
𝐹𝐷𝑆, 𝑀𝐸2

𝐹𝐷𝑆 , 𝑀𝐸3
𝐹𝐷𝑆) 

   (23) 

𝐹𝐷. 𝑀. 𝑀𝐸 = (𝑀𝐸1
𝐹𝐷𝑀 , 𝑀𝐸2

𝐹𝐷𝑀 , 𝑀𝐸3
𝐹𝐷𝑀) 

   (24) 

The frequency domain self-matching degree 

characteristic of 1 full cardiac sound signal is denoted by 

FD.S.MD, while the frequency domain self-matching energy 

characteristics are denoted by FD.S.ME. Mutual matching 

degree as well as mutual matching energy characteristics are 

denoted by FD.M.MD and FD.M.ME, respectively. 

Prediction using Hidden semi morkov model 

Figure 2 depicts a schematic of the mathematical 

model employed in this work. The system is represented as a 

set of variables 𝑆𝑖 which represent the various actions in this 

context. For the time 𝐷𝑖 , which would be a random variable, 

the system will remain in a certain state. The process then 

moves to another state, forming a Markov chain. The 

transition matrix is formed by the transition parameters 

𝜋𝑖,𝑗 , 𝑖, 𝑗 = 1,2, … 𝑛, here 𝜋𝑖,𝑗  denotes the probability of 

transformation from state 𝑖 to the state 𝑗. Each state 𝑆 𝑖 is 

made up of 𝐷𝑖  observations 𝑦. The transition probabilities 

𝜋𝑖,𝑗 are used to represent state transitions. The entire 

observation time is denoted by T.  

 

Figure 2. The hidden semi-Markov model 

The HSMM is a hidden Markov model extension 

that explicitly represents the period of every state. Our 

method employs four simultaneous HSMMs with distinct 

signal classifications (ω1,..., ω4): 

(ω1): Healthy normal signal- A 4-state 

segmentation model that excludes the RNN murmur 

posterior. 

(ω2) Holosystolic murmur-The murmuring 

posterior substitutes the systole posterior in this four-state 

segmentation scheme. 

(ω3) Early-systolic murmur- A 5-stage 

segmentation model in which the transition matrix 

necessitates a transition from the S1 state to the murmuring 

state and subsequently to the systolic state. 

(ω4) systolic murmur-As previously stated, the 

model initially changes from S1 to systole. 
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The projected classification is determined by 

computing a segmented confidence c_ for each model and 

following its Viterbi state path., 𝑞′1,𝑇
(ω)

 through the posteriors: 

𝑐ω =
1

𝑇
∑ 𝑃(𝑞𝑡=𝑞′

𝑡
(ω)𝑇

𝑡=1

𝑥1
: 𝑇, 𝑅   (25) 

ω′ = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑐ω)  (26) 

The maximum confidence 𝑐ω is used to assess 

signal quality. To establish an overall categorization for a 

particular patient on several individual recordings, we use a 

basic criteria similar to what a doctor would employ when 

hearing to multiple places on the chest. The transmitting 

matrix A and the original state distributions were both 

invariant, as shown below.  

𝜋 = {
1

4
,

1

4
,

1

4
,

1

4
}   (27) 

Generating the hidden layer sequences for a fresh 

heartbeat with the existing parameter for HSMM was the 

HSS task. As a result, we may utilize a dynamic 

programming approach, notably the Viterbi algorithm, to 

tackle this type of issue. We denoted the overall series 

length as N, the quantity of hidden stages as H, the real state 

at period t as q t, the total true state sequential as Q, as well 

as the observing sequence as 𝑂(𝑡)  =  [𝑂1, 𝑂2,· · · , 𝑂𝑁], 

here 𝑂(𝑡) denotes features at time point 𝑡. Formula for 𝛿𝑡(𝑗) 

is, 

𝛿𝑡(𝑗) = max(𝑑) [max(𝑖 ≠

𝑗)[𝛿𝑡−𝑑 (𝑖). 𝑎𝑖𝑗]. 𝑝𝑗(𝑑). ∏ 𝑏𝑗
𝑑−1
𝑠=0 (𝑂𝑡−𝑠)]  (28) 

where 𝛿𝑡(𝑗) is likelihood for 1st  𝑡 observations and 

ends in state 𝑗 at time 𝑡, having 1 ≤ 𝑖, 𝑗 ≤ 𝐻, 1 ≤ 𝑡 ≤ 𝑁, 1 ≤

𝑑 ≤ 𝑑𝑚𝑎𝑥 and 𝑑𝑚𝑎𝑥 is set as the duration of a complete 

heartbeat time and 𝛿𝑡(𝑗) = 𝜋𝑗𝑏𝑗(𝑂1) To determine the best 

path for the complete heart sound, calculate the maximum of  

𝛿𝑡(𝑗) ) in the range 𝑁 ≤ 𝑡 ≤ 𝑁 + 𝑑𝑚𝑎𝑥 − 1. When defining 

q t* as the hidden layer determined by the method again for 

final position sequence at time point t,1 t N, this highest 

value was used to determine the internal state q N*. 

'Murmur Present' is predicted if one of the impulses are 

identified as a murmur. If this is not the case, and Cw for 

any message falls below a certain threshold (0.65), the value 

'Unknown' is anticipated. 'Murmur Absent' is predicted 

otherwise

Performance analysis 

Dataset description- PhysioNet/CinC Challenge 

2016 ECG and PCG data were utilized in this investigation 

[27]. Several foreign institutes have supplied datasets. 

Several institutions claim that the dataset is divided into six 

subgroups labelled 'training-a' through 'training-f.' The PCG 

signal contains some noise, which is unavoidable during the 

acquisition procedure. The kalman filter, such as the ECG 

signal, may eliminate part of the PCG noise. Because the 

PCG information in the data set has a frequency of 0-2 kHz, 

many single-sample PCG waveforms are also larger in 

duration, hence down-sampling is performed first to lower 

the frequencies to below 1khz. The Kalman filter is then 

employed to eliminate the signal's low frequencies, i.e., 

impulses below 25 Hz and signals over 400 Hz, ensuring 

that critical information is kept while efficiently eliminating 

most of the noise. Some signal spikes in the PCG signal may 

interfere with model categorization. Schmidt's approach for 

eliminating signal spikes is mostly for PCG signals.  

Evaluation criteria-:For quantifying classification 

findings, we use 5 assessment measures, namely accuracy 

(ACC), sensitivity (SN), , F-score, specificity (SP) with 

receiver operating characteristic (ROC), to compare 

performance across instances, defined as: 

𝑺𝑵 =  
𝑻𝑷

𝑻𝑷 + 𝑭𝑵
 

𝑺𝑷 =
𝑻𝑵

𝑻𝑵 + 𝑭𝑷
 

𝑭 − 𝒔𝒄𝒐𝒓𝒆 =
𝟐 × 𝑷 × 𝑺𝑵

𝑷 + 𝑺𝑵
 

𝑨𝑪𝑪 =
𝑻𝑷 + 𝑻𝑵

𝑻𝑷 + 𝑭𝑷𝑻𝑵 + 𝑭𝑵
 

True negative, false positive, false negative, true 

positive, and precision values are denoted by TP, FN, FP, 

TN, and P. The ROC curve may be used to assess screening 

procedures and prediction systems. The area below the ROC 

curve represents the tradeoff among SN and SP (AUC). 

Table-1 analysis of sensitivity 

Number 

of 

epochs 

CL-

ECG-

Net 

CL-

PCG-

Net 

LSTMs 

+ PCA 

LSTMs 

+ GA 

HSMM 

10 0.88 0.71 0.89 0.89 0.94 

20 0.87 0.69 0.90 0.90 0.95 

30 0.881 0.68 0.91 0.91 0.93 

40 0.872 0.70 0.88 0.88 0.94 

50 0.88 0.72 0.89 0.89 0.95 
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Figure-3 comparison of sensitivity 

Figure 3 compares the sensitivity of current CL-

ECG-Net, CL-PCG-Net, LSTMs + PCA, LSTMs + GA, and 

the novel HSMM technique. The X-axis illustrates the 

no., of epochs utilised for analysis, where Y-axis shows the 

% sensitivity values acquired. The CL-ECG-Net, CL-PCG-

Net, LSTMs + PCA, and LSTMs + GA techniques had 

sensitivity values of 0.898, 0.711, 0.903, 0.903, and 0.952, 

respectively. In comparison, the suggested HSMM 

technique attained sensitivity of 0.952. 

Table-2 analysis of specificity 

Number 

of epochs 

CL-

ECG-

Net 

CL-

PCG-

Net 

LSTMs 

+ PCA 

LSTMs 

+ GA 

HSMM 

10 0.83 0.69 0.831 0.80 0.92 

20 0.84 0.70 0.82 0.85 0.91 

30 0.841 0.71 0.83 0.83 0.93 

40 0.842 0.701 0.831 0.84 0.91 

50 0.838 0.702 0.82 0.85 0.92 

 

 
Figure-4 comparison of specificity 
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Figure 4 compares the specificity of current CL-

ECG-Net, CL-PCG-Net, LSTMs + PCA, LSTMs + GA, and 

the proposed HSMM technique. The X-axis shows the no., 

of epochs utilized for analysis, where Y-axis shows the % 

specificity values acquired. The CL-ECG-Net, CL-PCG-

Net, LSTMs + PCA, and LSTMs + GA techniques had 

specificities of 0.847, 0.70, 0.83, 0.85, and 0.92, 

respectively. In comparison, the suggested HSMM 

technique attained a specificity of 0.92. 

 

Table-3 analysis of F-score 

Number 

of 

epochs 

CL-

ECG-

Net 

CL-

PCG-

Net 

LSTMs 

+ PCA 

LSTMs 

+ GA 

HSMM 

10 0.87 0.70 0.87 0.87 0.91 

20 0.86 0.71 0.86 0.86 0.90 

30 0.85 0.69 0.85 0.85 0.92 

40 0.871 0.691 0.86 0.86 0.91 

50 0.862 0.67 0.87 0.87 0.91 

 

 
Figure-5 comparison of F-score 

 

Figure 5 depicts the F-score comparison between 

the existing CL-ECG-Net, CL-PCG-Net, LSTMs + PCA, 

LSTMs + GA, and the new HSMM technique. The no., of 

epochs utilised for analysis is shown on the X-axis, and the 

F-score values produced in % are shown on the Y-axis. The 

F-scores for the CL-ECG-Net, CL-PCG-Net, LSTMs + 

PCA, and LSTMs + GA techniques were 0.873, 0.705, 

0.871, and 0.874, respectively. In comparison, the suggested 

HSMM approach obtained an F-score of 0.94. 

Table-4 analysis of ACC 

Number 

of 

epochs 

CL-

ECG-

Net 

CL-

PCG-

Net 

LSTMs 

+ PCA 

LSTMs 

+ GA 

HSMM 

10 0.861 0.70 0.87 0.871 0.91 

20 0.87 0.69 0.86 0.861 0.92 

30 0.90 0.71 0.86 0.862 0.91 

40 0.88 0.69 0.87 0.87 0.90 

50 0.87 0.67 0.872 0.872 0.91 
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Figure-6 comparison of ACC 

 

Figure 6 depicts an ACC comparison of current 

CL-ECG-Net, CL-PCG-Net, LSTMs + PCA, LSTMs + GA, 

and the novel HSMM technique. The X-axis shows the 

no., of epochs utilized for analysis, where Y-axis shows the 

% ACC values achieved. CL-ECG-Net, CL-PCG-Net, 

LSTMs + PCA, and LSTMs + GA approaches produced 

ACCs of 0.872, 0.709, 0.871, and 0.873, respectively. In 

comparison, the suggested HSMM technique obtained 0.91 

of ACC. 

 

Table-5 analysis of AUC 

Number 

of 

epochs 

CL-

ECG-

Net 

CL-

PCG-

Net 

LSTMs 

+ PCA 

LSTMs 

+ GA 

HSMM 

10 0.91 0.74 0.91 0.92 0.94 

20 0.92 0.73 0.92 0.91 0.95 

30 0.89 0.72 0.89 0.93 0.96 

40 0.90 0.74 0.90 0.92 0.95 

50 0.91 0.73 0.91 0.91 0.96 

 

 
Figure-7 comparison of AUC 
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Figure 7 compares the AUC of existing CL-ECG-

Net, CL-PCG-Net, LSTMs + PCA, LSTMs + GA, and the 

new HSMM methods. The X-axis shows the no.,r of epochs 

utilised for analysis, where Y-axis shows the % AUC values 

acquired. CL-ECG-Net, CL-PCG-Net, LSTMs + PCA, and 

LSTMs + GA approaches produced AUCs of 0.916, 0.748, 

0.918, and 0.936, respectively. In comparison, the suggested 

HSMM technique achieved an AUC of 0.96. 

 

Table- 6 Overall comparative analysis 

Method SN SP F-

score 

ACC AUC 

CL-

ECG-Net 

0.898 0.847 0.873 0.872 0.916 

CL-PCG-

Net 

0.711 0.70 0.705 0.709 0.748 

LSTMs + 

PCA 

0.903 0.83 0.871 0.871 0.918 

LSTMs + 

GA 

0.903 0.85 0.874 0.873 0.936 

HSMM 0.952 0.92 0.94 0.91 0.96 

 

Conclusion 

Here, in our work we suggested a multi-modal 

machine learning technique that integrates ECG and PCG to 

predict CVDs. From preprocessed pictures, we recovered 

ECG deep-coding characteristics. The genetic algorithm is 

used to iteratively screen the fused features to get the best 

feature subset for categorization. To produce the prediction, 

we used a hidden semi-morkov model classifier that was 

trained using the best feature subset. Our proposed strategy's 

categorization performance proves its efficacy. The findings 

also show that a multi-modal categorization beats competing 

single-modal techniques in predicting CVDs. Nonetheless, 

the networks used in this article have been optimized for the 

restricted datasets. There is a wealth of CAD data available 

in clinics. The suggested technique HSMM obtains 

sensitivity of 0.952, specificity of 0.92, F-score of 0.94, 

ACC of 0.91, and AUC of 0.96. The strategy we suggest can 

give a broad foundation for addressing the multi-modal 

challenge. In the future, we will collaborate with physicians 

to acquire more relevant data and improve our model. 
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