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Abstract— Due to its ability to drastically cut the time and money required to develop new medicines, artificial intelligence (AI) based 

drug discovery has recently attracted a lot of attention. The fields of drug research and development have made use of machine learning (ML) 

and deep learning (DL) technologies to develop new medication prospects. Machine learning and deep learning-based techniques are emerging 

at every level of the drug development process as a result of the proliferation of drug-related data. Preclinical testing of a target of interest has 

proven to be particularly tough for pharmaceutical chemists, who face significant challenges in selecting and developing effective drugs. 

Machine learning and deep learning algorithms are now extensively used in approaches for generating therapeutic targets and innovative 

medication development in order to increase the accuracy, efficiency, and quality of created outputs. This review focuses on the application of 

machine learning and deep learning algorithms in drug development, as well as related approaches. We'll look at the approaches and methods 

that seem most promising in terms of their potential impact. 
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I. INTRODUCTION 

The purpose of drug discovery is to find safe and effective 

therapies for human illnesses. Drug development takes a long 

time and costs a lot of money, from target identification to step-

by-step clinical trials. At each checkpoint, it is crucial to select 

the best possible pharmaceutical choices for the next phase of 

treatment. Finding lead compounds from hits and confirming 

their medical potential requires the "hit-to-lead" method. 

Clinical trials are plagued by side effects and lack of in vivo 

efficacy in part because of the polypharmacology theory’s 

[1] assertion that single or multiple medicines frequently 

interact with several targets. For each sickness model, in-vivo 

studies would be ideal, but this technique would require a large 

amount of time and effort, which is not possible. Throughout 

the 1980s, the hit-to-lead process in modern pharmaceutical R 

& D has been heavily reliant on computer-aided drug discovery 

or design tools [2–4]. The pharmaceutical industry's R&D 

output has been dropping since the mid-1990s, despite the use 

of this in silico approach. 

Recent developments in drug discovery have made it possible 

for academics and the pharmaceutical industry to apply AI in 

important and cost-effective ways. Artificial Intelligence (AI) 

in drug discovery was made possible by the advent of high-

performance processors like graphics processing unit 

computing and the huge volumes of chemical and biological 

data accumulated over decades [4-6]. Various AI-driven drug 

development pipelines and frameworks are being created in 

addition to the implementation of cutting-edge AI technologies 

in the drug development process [7–9]. 

 

AI is widely employed in both the corporate and academic 

worlds. Machine learning (ML), AI's fundamental component, 

has been used in a variety of domains, including data collecting 

and analysis. Applied mathematics and computational theory 

are essential to algorithm-based techniques like machine 

learning. DL-aided self-driving cars, improved speech 

recognition, and smarter search engines are just a few of the 

possible applications of ML models [10-13]. 

II. MACHINE LEARNING ALGORITHMS USED IN DRUG 

DISCOVERY 

Machine learning approaches have had a significant impact on 

drug discovery. Pharmaceutical companies have reaped major 

benefits from the application of machine learning algorithms in 

the process of drug discovery. Multiple models for predicting 

the chemical, biological, and physical properties of molecules 

have been constructed using machine learning methods [14–

22]. It is possible to use machine learning techniques at any 

stage of the drug discovery process. When it comes to 

discovering new drug uses, for example, machine learning 

algorithms have been used to predict drug-protein interactions, 

identify medicine efficacy, ensure safety biomarkers, and 
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optimize molecular bioactivity [23-27]. Examples of machine 

learning algorithms used in drug development include support 

vector machine (SVM), Naive Bayesian (NB), Random Forest 

(RF), etc. [28-30]. 

A subset of artificial intelligence known as machine learning is 

not a homogenous category (AI). Supervised algorithms and 

unsupervised algorithms are the two main categories of 

machine learning algorithms. In supervised learning, previously 

labeled samples are used to predict fresh samples' labels. 

Unsupervised learning may be used to detect patterns in a 

collection of unlabeled examples. The reduction of a high-

dimensional input to a lower-dimensional input is a common 

goal of unsupervised learning techniques. Even if unsupervised 

learning is more successful in a low-dimensional space, the 

pattern that emerges is also more understandable. With semi- 

and reinforcement-learning approaches, a wide range of data 

sets may be utilized [31]. The development and expansion of 

successful machine learning algorithms during the drug 

discovery process are dependent on the availability of large 

amounts of data. In precision medicine and drug development, 

the necessity for high-quality data and well-defined training sets 

is substantially larger. For the creation of really effective 

tailored medications, it is necessary to describe all related pan-

omic data, such as genomes, transcriptomics, and proteomics. 

There has been a boom in data development, gathering, and 

maintenance for drug research as online multi-omic databases 

and machine learning methods have become more commonly 

employed over the last two decades. To some extent, attempts 

at deciphering freshly created data have been effective thanks 

to analytical advancements. Drug research is currently helped 

by machine learning methodologies and networked databases 

via different software/web tools, such as Software. For 

example, the capacity of new data analytics to mix with known 

methodologies and current hypotheses to produce new 

hypotheses has helped with re-positioning, target identification, 

small molecule discovery, synthesis, and other applications 

[32–34]. It's possible to get a wide range of information from 

medical and multi-omics domains. Having data that is 

inconsistent and derived from a variety of sources is not 

unusual. Generalized linear models with non-negative reverse 

inference may be useful when dealing with multidimensional 

data (NB). There are several different ML techniques and 

models that are extensively utilized in various fields of research 

[34-35]. These include regression, clustering, regularization, 

neural networks, decision trees, and dimensionality reduction. 

III. LIMITATIONS OF MACHINE LEARNING ALGORITHMS 

Machine learning is a critical part of the drug discovery process. 

Through the use of these methods, it is possible to test hundreds 

of different combinations, which would otherwise be 

impossible without the aid of modern technology. As previously 

mentioned, algorithms can be taught through the use of inputted 

data, but this approach has some drawbacks. There are still no 

known biological routes or objectives for machine learning 

despite its extensive history. There may be a lack of 

extrapolated data for the protein of interest due to a lack of 

available data. Computational screening of proteins can be done 

using the Free Energy Perturbation technique [36]. It is used to 

train algorithms; computer-generated forecasts are utilized 

instead of actual data collection in some cases. Inaccuracy in 

the training data may be more than intended. There are still 

category mistakes in training sets, even if the methods in this 

paper have a higher error-minimization threshold [36]. 

IV. DEEP LEARNING METHODS USED IN DRUG DISCOVERY 

If you're interested in cutting-edge research and development, 

deep learning algorithms are an excellent place to start. Deep 

learning relies on the translation of artificial neural networks 

(ANNs) from theoretical and predicted applications to workable 

algorithms, which were first developed in the 1950s, as a 

fundamental pillar. A multidimensional data representation can 

be learned through abstraction using DL methods [37]. For 

example, picture identification and speech recognition have 

been addressed thanks to deep learning, which is a more 

advanced kind of machine learning (ML). Drug activity 

prediction, target discovery, and lead compound discovery have 

all benefited from the use of DL approaches [38–40]. In NN 

systems, the DL foundations are widely used to construct 

systems that can recognize, understand, and produce 

complicated data. 

Three main types of artificial neural networks used in drug 

discovery are convolutional neural networks (CNNs), deep 

neural networks (DNNs), and recurrent neural networks 

(RNNs). The parameters that influence the selection of NNs 

from the subset's variations are numerous. Data flows from the 

input layer to the hidden layer(s) and then to the output layer (in 

DNNs) in a single path. To identify the outputs, trained 

supervised learning algorithms are typically used. Other 

machine learning techniques can be utilized to train neural 

networks in deep learning algorithms. Supervised and 

reinforcement learning approaches can be used to teach DNNs 

difficult tasks. Based on existing libraries and training sets, it is 

possible for a predictive neural network (DNN) like this one to 

forecast the chemical properties of novel compounds [41,42]. 

QSAR models are currently being employed in the field to find 

the link between the chemistry and the activity of these 

medications. DL-based AI in drug discovery and development 

is now using QSAR analysis, one of the most advanced versions 

of DL. Researchers have used 2D chemical structures to 

discover the physicochemical parameters relevant to the action 

of the molecule. 3D-QSAR has helped researchers better 

understand how ligand-target interactions are influenced by the 
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structure of the environment [43,44]. Predicting whether newly 

synthesized lead compounds will act on or miss specified 

targets has been done using QSAR in the pharmaceutical sector. 

Algorithmic methods for discovering and developing new 

products are not without flaws. 

Research using these AI algorithms have yielded numerous 

errors and inaccuracies over time. In QSAR studies, it was 

discovered that NNs have a few drawbacks when compared to 

other ML techniques. NN redundancy and output blockage 

result from the existence of unnecessary descriptors. There is a 

risk that this redundancy will decrease the NN's efficiency and 

produce results that aren't ideal. The usage of unidentified 

descriptors is also a problem because they could affect the 

outcome. In order to acquire a smaller number of higher quality 

descriptors, these concerns have been addressed by using more 

specialized feature selection methods; however, NN-based 

QSAR will continue to face this difficulty These NN-based 

assays face another challenge in implementing optimal network 

parameters without sacrificing accuracy [44]. These issues are 

not going away, despite the fact that workable remedies have 

been proposed and put in place [45]. Chemical synthesis and 

identification are prioritized only when significant research into 

target-molecule interactions has been completed. 

As part of the de novo drug design process, descriptive 

simplified molecular-input line-entry system nomenclature 

(SMILES) nomenclature is employed widely. RNNs are self-

learning neural networks that use generational input processing 

and the formation of hidden layers. For the creation of new 

chemical structures, an RNN-type long short-term memory has 

become the norm. RNNs differ from feed-forward neural 

networks and DNNs in that they use neurons connected in the 

same hidden layer to establish a working cycle of processing 

inputs and outputs, rather than connecting across layers. 

However, the initial SMILE training sets did not include these 

RNNs, which have shown promising results in producing 

unique SMILE structures that are logical, structurally accurate, 

and viable [46–49]. With the help of generative RNN models, 

Segler et al. were able to identify possible chemical structures 

that could be effective against S. aureus and P. falciparum (P. 

falciparum). Chemical structures with known efficacy against 

these target organisms were supplied to their models, and they 

were able to generate a total of 14 percent of the 6051 potential 

S. aureus molecules. In addition, 28% of the present P. 

falciparum compounds were produced by the model [50]. 

Chemical synthesis routes have typically been developed and 

implemented by chemists alone. However, as artificial 

intelligence (AI) advances, this position will increasingly entail 

computer-aided synthesis planning (CASP). Researchers have 

used Monte Carlo tree search (MCTS) methods to build CASP 

processes in recent studies. A good method for finding the best 

conditions and solutions is the MCTS methodology [52,53], 

which uses a random step search without branching. Three 

neural networks (NNs) and 12.4 million transformation rules 

were utilized by researchers Segler and Waller [54] to develop 

the first real CASP process, which was built using this 

technology. One of the first NNs, an expansion node, searches 

the past and predicts if the 12.4 million transformation rules 

may be used to make the chemical. A better selection of 

transformations, such as those that are feasible and high-

yielding, can be made by the expansion node as a result. With 

the rollout node, inputs are filtered so that only the most often 

reported transformation rules are included. This increases 

transformation success rates. In order to incorporate the new 

path into the search tree, the update node must be triggered. It 

was able to solve 80% of retrosy thesis questions in 5 seconds 

and more than 90% in 60 seconds using this technique. 

Chemical synthesis and reaction pathways based on artificial 

intelligence (AI) have been improved in several studies [55–

57]. AI-based chemical synthesis and characterization will be 

able to transfer drug discovery from the bench into in silico by 

increasing its use across the entire drug discovery process. 

Discovery and management will be more efficient as a result. 

V. COPYRIGHT FORMS AND REPRINT ORDERS 

DL models may be divided into categories based on their aim, 

loss function, learning technique, and structural characteristics. 

In the early days of DL, there was a research that used only one 

model; however, these days, there are fewer studies in which 

only one model is used. It's common to see a combination of 

two or more of the following models. As far as this area is 

concerned, we've only discussed the most basic models. In this 

section, we'll go over the models' benefits and drawbacks from 

the standpoint of drug discovery. 

 

5.1. Multi-Layer Perceptron 

Perceptrons with numerous layers are known as Multi-Layer 

Perceptrons (MLPs). With its many names like "full-connected 

layer," "linear layer," and so on, the multi-layer perceptron 

(MLP) is the most common type of neural network. Among 

MLP's many impressive features are its classification and 

regression skills. For the most part, it's trained by figuring out 

which parameters are optimal for minimizing any discrepancies 

between projected and actual values. Due to the fact that it is a 

widely used standard model, it is simple to apply and has a 

proven track record of reliable performance. Because of this, a 

variety of methods have been developed, and almost all DL 

frameworks typically include it. Its adaptability allows it to be 

employed in connection with a wide range of data, including the 

FP, transcriptome [59], bioassay [60], and molecular properties. 

DTI prediction was performed using the MLP with four hidden 

layers, FP for compound, and various information such as 
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PseAAC, PsePSSM, NMBroto, and structure features were 

fused with the target protein information [58]. 

 

5.2. Convolutional Neural Network 

In order to retrieve local information, convolutional neural 

networks (CNN) use the same computational filter to calculate 

several neighboring properties. Stacking CNNs in many layers 

can be used to recover both global and local information. 

Single-modal picture recognition often necessitates the use of 

CNN. The convolution filter is the same no matter how much 

data is being fed into it. There is a direct correlation between 

how many calculations are performed and how many 

parameters are in the DL model. To put it another way, it is a 

great training tool. It's also not overly sensitive to noise in the 

data being fed into it. For its ability to handle atomistic 

geometry, CNN is widely used in conjunction with voxel or 

image data [65]. Invoking voxel-based techniques, the protein 

and its receptor can be visualized as, RoseNet [61], AK-score 

[66], and Deep-Drug3D [64] predict the DTI. RoseNet [61], 

AK-score [66], and Deep-Drug3D [64] used the protein and 

ligand as a voxel to predict the DTI, while DEEPScreen [62] 

employed a 2D image of the molecule. Even though CNN isn't 

optimized for sequential expression methods like SMILES or 

amino acids, they are sometimes utilized instead of RNNs [67]. 

DeepConv-DTI [63] and transformer-CNN [68] used CNNs to 

create QSAR models based on sequential data. 

 

5.3. Graph Neural Network 

As a rule of thumb, the vast majority of data in machine learning 

is represented as a Euclidean vector. When dealing with data 

encoded in relational graphs, models like MLP, RNN, and 

transformer are better suited for use with single-vector or 

sequential data. A graph neural network (GNN) is a model for 

learning graph-type data in deep learning [69]. DTI, PPI, and 

other graph types of data are employed in the identification of 

new drugs and treatments. The graph convolution network 

(GCN) and the graph attention network (GAT) are two 

examples of graph neural networks that use the CNN approach 

(GNN) [70,71]. There are a number of uses for GNNs, but three 

stand out the most. Method 1 entails anticipating molecular 

characteristics with the use of representation learning 

techniques. The GNN strategy utilized by Yang et al. 

outperformed current methods in property prediction, according 

to their findings. The GNN has lately become popular for 

property prediction [72] due to this trend. The second approach 

is to gather information about relationships across different 

domains, such as heterogeneous and bipartite [73,74]. This 

approach is more general. Patients and diseases, as well as genes 

and treatments, may be linked using comprehensive metadata 

[74], making this type of research possible. When it comes to 

de novo design, the GNN develops or improves molecules [75]. 

5.4. Recurrent Neural Network 

Using a recurrent neural network (RNN), the previous input 

value affects the next output value when it is supplied 

sequentially. Natural language processing (NLP) performance 

improved considerably when RNNs were first invented, and it 

became one of the most widely used DL models. Additionally, 

it is feasible to extract the weight of the hidden layer and utilize 

it as a feature with sequence information for representation 

learning. There are certain limitations to the naive RNN's 

structure and performance, though. As the input sequence 

grows longer, things further away from the currently inserted 

item have less impact on the vanishing gradient problem [76]. 

This is especially true for big data sets like proteins and 

compounds. In addition, as the length of the input sequence 

grows, so does the training time required because the same 

technique is repeated. Even though sequential data chunks have 

complex underlying linkages, their properties are poorly 

understood. 

 

5.5. Attention-Based Model 

Self-attention is a mechanism for incorporating machine 

translation into natural language processing that was first 

proposed by the transformer model. The relationship between 

the elements in a sequence can be calculated, and the results can 

be used to extract features for each one. One would call it "self-

attention." Focusing on past data allows you to fully utilize the 

correlation with distant tokens rather than using a single hidden 

state in which all time step values are assumed. Bidirectional 

encoder representations from trans-formers (BERT) were 

developed in 2018 by Devlin et al. [83] and have been 

extensively employed in medication development since. 

DTI's classic RNN-based QSAR modeling seamlessly 

incorporated the transformer model. CNN was applied to a 

transformer with SMILES as input by Karpov and colleagues 

[68] to predict the pharmacological effects of drugs for the 

prediction of drug-target binding affinity by embedding protein 

sequences in CNN and molecule structures in BERT, Shin and 

colleagues [66] suggested a molecular transformer DTI model 

(MT-DTI). GCN and BERT were used in the model by Lennox 

and colleagues [84] to represent both protein and chemical 

structures. According to Lennox et al., their model 

outperformed the MT DTI in terms of the prediction of binding 

affinity. 

 

5.6. Generative Adversarial Network 

DL's most widely used generative model is the generative 

adversarial network (GAN), which was initially published in 

2014 [85]. De novo drug design is the only use for the GAN, 

not DTI. Discriminators and generators work in tandem to 

produce bogus results that the generator can't tell apart from real 

ones, and the two modules are taught against each other. A 
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powerful tool for making visuals, the GAN has a difficult time 

constructing big molecules. Additionally, the training difficulty 

is higher than for other models, and it incorporates issues such 

as mode collapse. It is widely accepted that the GAN, when 

coupled with reinforcement learning (RL), is an excellent model 

for creating novel compounds. Drug discovery has a range of 

GAN architectural applications [86], but we'll focus on only two 

extremely simple ones here. Objective reinforced generative 

adversarial networks (ORGAN) [81] and molecular GAN 

(MolGAN) [81] have been successful models. In order to make 

use of SMILES data, ORGAN leverages the sequenceGAN 

(seqGAN) framework [87] and incorporates RL. Drug-likeness 

and synthesizability were both better than the RNN naïve, but 

solubility was lacking. The ORGAN and its RNN are 

outperformed by the MolGAN, which employs the GCN based 

on molecular graph representation. 

 

5.7. Autoencoder 

AE is an unsupervised learning framework that compresses and 

decompresses data. In this system, data is compressed and then 

decoded back into its original form. This symmetric approach 

automatically identifies the most distinctive feature that 

separates the data. Compression of abstract points into a latent 

space can be used as additional features in other models by 

using the encoder. A decoder is used to generate new data, while 

the encoder is discarded after training and used for data 

encoding, dimension reduction, or visualization. In conjunction 

with other DL models, dimension reduction can be performed 

without the need for data labels [88]. 

The AE creates a patchwork pattern in the latent space, but the 

pattern itself is meaningless. A variational autoencoder uses a 

Gaussian-shaped stochastic fence to restrict the latent space 

(VAE). By raising the latent space density, the data become 

more continuous and smoother. Gómez-Bombarelli et al. used 

the SMILES [89] to build a chemical latent space that allowed 

them to explore continuously from one compound to the next. 

DTI uses AE because of its great data compression, while de 

novo drug design uses VAE because of its lower compression 

performance and the latent space properties noted above. 

DL model combines GAN and VAE structures to compress and 

produce features in Adversarial AE (AAE) [90]. Despite its 

ability to condense compound properties, the VAE is unable to 

generate accurate findings. However, the GAN is biassed by a 

single mode and has weak diversity ratings, despite the fact that 

it may produce real compounds and credible discoveries for the 

detection and development of novel co pounds, Insilico 

Medicine published the AAE [91,92] in 2016 [92] and the 

druGAN [93] in 2017. By condensing the data to the latent 

space, the AAE approach can produce novel molecules with 

good outcomes. Modifying the input compound's lipophilicity 

(logP) and synthetic accessibility by providing a condition 

control feature to AAE resulted in unique compounds [94]. 

 

VI. CONCLUSION 

Computer power and chemical & biological data have made a 

huge influence on drug discovery efforts due to artificial 

intelligence. Deep learning and machine learning research have 

surged in recent years.  For individuals who are new to machine 

learning and deep learning-based drug discovery, this paper 

serves as a useful starting point. Machine learning and deep 

learning methods for drug discovery are examined in this 

research. 
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