
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 7 Issue: 6 59 - 64

__

59
IJRITCC | June 2019, Available @ http://www.ijritcc.org

Feasibility Analysis of the Algorithms: Secured and Efficient Routing Path

Update in Software Defined Networking (SDN)

Mohammad Ashraful Hoque MD Shibli Mollah MD. Razu

Southeast University Southeast University Southeast University

Dhaka, Bangladesh Dhaka, Bangladesh Dhaka, Bangladesh

ashraful@seu.edu.bd md.ta.shibli@gmail.com razu@gmail.com

Abstract—Software-defined networking is the talk of the town in today’s networking industry. Because of the limitations of traditional

networking, SDN is getting more popular every year. Lots of researches are taking place to improve the efficiency and overcome the challenges

of SDN though it has many advantages. Hence one key problem of SDN is the network update. If the route update does not perform well, it

causes congestion and inconsistencies in the network system whereas bandwidth utilization and security is our main concern. We have compared

two pre-built algorithms especially for routing path update and proposed a new algorithm with maximum security and loop-free network.

Index Terms—SDN, Network Update, Algorithm, Proactive-routing, controller, Mininet, Python, OpenFlow, Network relia-bility,

Programmable networks, TCAMs

__*****___

I. INTRODUCTION

The Internet is an inevitable part of our daily life and the

network has always been very traditional. We have specific

network devices like routers, switches, and firewalls that are

used for specific tasks. These devices are only operated by

vendor specific commands and there is least or no

programma-bility. Moreover, the major technologies, such as

distributed control and transport network protocols which are

run inside the routers and switches, helps these devices to

transmit digital packets throughout the world. Though these

technologies are adopted worldwide, traditional IP networks

are complicated and difficult to manage [1]. Current IP

networks are unable to manage automatic reconfiguration and

response mechanisms that don’t exist virtually. So, it’s a great

challenge to enforce the required policies to solve dynamic

problems in the tradi-tional environment. Datacenter

networks, enterprise networks, carrier networks etc. have

become critical infrastructures in today’s network industry.

Today’s network system is so old fashioned that the

technologies and network functions used to manage, develop,

debug or troubleshoot different computer networks are similar

which were used in the ’90s [2]. So, it fails to perform with

strict requirements in terms of correctness and availability.

Tech giants like Amazon, GitHub, GoDaddy etc. sporadically

report issues like slow responses and intermit-tent errors with

their network, due to limitations of traditional devices,

misconfigurations, e.g., resulting in forwarding loops. The

integration of current IP networks is vertical. Here, the control

plane (that decides how to handle network traffic) and data

plane (that forwards traffic according to the decisions made by

the control plane are not separated and bundles inside the

networking devices. It lessens flexibility and puts a barrier in

innovation and evolution of the networking infrastructure [2].

Software-Defined Networking (SDN) is an emerging net-

working paradigm that helps us to overcome the limitational

of the existing traditional network. It is changing the whole

concept of the networking infrastructure and introduce a more

reliable and significant network system with less dependency

on the devices. Here, the control plane and the data plane are

separated which breaks the vertical integration and enable us

to have a programmable and more efficient network. The SDN

switches act as forwarding devices in the data plane whereas

the decisions are made through the centralized controller.

Moreover, the SDN architecture is comprised of three

different layers, such as the Application Layer, Control Layer,

and Infrastructure or Data Plane. The separation of the control

and data forwarding functions is denoted as ―disaggregation‖.

This revolutionary architecture provides us with more

information about the entire network system, which is

software-driven and totally opposite to the traditional network

system. The control plane takes the responsibility of the

routing protocols, middlebox configuration, and decision

making whereas the forwarding is done in the data plane, such

as SDN switches. The application layer communicates with

the SDN controller through northbound interfaces (NBI). So, a

central controller can take control of all the devices connected

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 7 Issue: 6 59 - 64

__

60
IJRITCC | June 2019, Available @ http://www.ijritcc.org

with it. Restful API’S (Application Programming Interface)

such as the post or get messages and python programs are

used to communicate between the planes to disseminate

information. On the other hand, the SDN controller

communicates with the data plane through southbound

interfaces (SBI). Overall SDN plays a significant role to

ensure flexibility, programmability, smooth and agile

networking experience that is cost effective and easily manage

complex network systems.

In this paper, we have focused on the network update in

SDN. Apart from the advantages, it is still a challenge to

provide consistency with zero packet loss guarantee and flow

control.

II. ROUTING ALGORITHMS

SDN centralizes most of the distributed routing algorithms

used in routers. SDN, however, is also a system for a single

domain or collection of domains under a single network

operator. Within this, the need for routers is eliminated. So,

there is no such thing as routers in SDN. The Network is

generally made of switches and controllers. But the routing

algorithms are used in controllers and the routing table is in

the control plane because it is where routing protocols such as

OSPF, IBGP, BGP, EIGRP control how the protocols (ipv4

and ipv6) will be routed. The controller typically holds in

memory a graph of all the switch nodes in the domain.

Consequently, it does not typically need route tables. It is

forwarded a packet from a switch which contains the

destination, the controller searches the graph for the fastest (or

cheapest, or ...) route to the destination and immediately

creates and installs new switch rules in every switch en-route.

Routers implement decentralized routing algorithms, that is,

they talk to each other and over time converge towards the

best routing path. In the event of a router failing or being

added to the network, the network self-heals and again over

time converges towards the best routing path. SDN

implements centralized routing, that is it assumes a central

controller that knows where all the switches and end hosts are

and can map the shortest path across the network. It will then

install rules on the switches involved that allow flows to

traverse that path without further contact with the controller

(the controller typically sees the first packet). Several

algorithms have already been developed to reduce latency and

balancing the traffic load of the networks [5]. The first

algorithm, named shortest path first (SPF) algorithm, will

focus on finding the shortest path from source to destination.

In order to utilize the network bandwidth, if more than one

shortest path exists, we will select the path, which has the

maximum bottleneck bandwidth (MBB). SPF algorithm is

used to route the latency sensitive applications. The second

algorithm, named bandwidth-aware routing (BAR) algorithm

focuses on finding a path with MBB from source to

destination. If more than one path with the same MBB exists,

we will select the one which has the shortest path. BAR

algorithm is used to balance the workload of the switch links.

The third algorithm is the k-SPF, which can find a path with

MBB among the first k shortest paths. The fourth algorithm is

K-bar which finds the shortest path among the first k MBB

paths on a network. One significant challenge faced by SDN is

the communication channel between the logically centralized

control platform and the SDN switches in the data plane.

When an update occurs, network update commands (e.g.,

OpenFlow FlowMod messages) may lead to transient

inconsistencies such as loops or bypassed waypoints (e.g.,

firewalls) [6]. One approach to ensure transient consis-tency

even in asynchronous environments is to employ smart

scheduling algorithms. WAYUP [7] and PEACOCK [8] are

two update scheduling algorithms to ensure reliable network

updates. WAYUP [7] is based on security purpose whereas

PEACOCK [8] is implemented to ensure loop-free networks

in SDN.

III. RELATED WORK

SDN was coined in 2005 by Martin Casado who developed

and implemented his idea at Stanford University. So, several

types of research have already been done to create more

functionality, efficient algorithms to make a viable network

within thirteen years of journey. We have found many great

ideas about routing path updates and this section gives a brief

description to them.

The first anticipation of SDN update is represented by Reit-

blatt et al. in [13], [14] and it is the first analysis of security is-

sue in any perspective of SDN updates and ensure consistency

in forwarding policy. It mostly focuses on a change in network

configuration. They identify two distinct consistency levels,

per-packet and per-flow, and present general mechanisms for

implementing them in SDN. When there is a change in the

configuration the controller attaches packet with the version of

configuration, they forward at the ingress switches. While

updating the switches with new rules, it also keeps the old

rules. It also added more information in the and modified

header packets of the new rules. It only deletes the old rules

when it gets a confirmation that the new rule is updated.

Moreover, the new and old rules already occupy space in

the memory locations which consumes Tertiary Content

Addressable Memory (TCAM) used as a memory resource

and it is very expensive. Though it ensures per-packet and per-

flow consistency, here memory resource is not utilized, and

more works are needed to be done.

Several applications like load-balancing and failure

recovery are developed for SDN so that the controller can take

decisions by updating flow tables in data plane to avoid

network conges-tion and failure. In [19], their concentration

area is preserving throughputs of flows. A heuristic

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 7 Issue: 6 59 - 64

__

61
IJRITCC | June 2019, Available @ http://www.ijritcc.org

dependency algorithm is implemented to reduce the flow table

space overhead when an update may occur. Finally, Cupid

[19] can update faster with fewer throughput losses in fat-tree

and mesh topologies but security issues are not discussed here.

The fundamental problem in SDN route update is under the

dynamic condition when routes change, it becomes indetermi-

nate. Rick McGeer [16] proposes a safe and efficient update

protocol for OpenFlow networks. When there is a change in

the ruleset the controller computes which packets are affected

by the update. Then the switch sends the affected packets to

the controller before and after the update takes place. When

the update concludes, the controller sends the packets to the

network. This technique puts both rulesets on a switch, as a

result, the controller consumes more bandwidth and it’s not

utilized.

As SDN is a distributed network system, flow table update

consistency is a significant issue. Likewise, it may experience

different transmission delays from controller to different net-

work devices and the processing time of the control message

from the device to device is not the same as well. So, switch

update sequence is proposed in [17] as a key factor. Switches

affected by the update procedure are divided into different

categories depending on their forwarding behavior. The

overall update procedure is comprised of three phases as the

preparation phase, path reconfiguration phase, and feedback

phase. Low-complexity, low-cost mechanism and potential

conflict are avoided in update process. Finally, it avoids

looping problem, less updating duration and packet loss is

achieved.

A new approach to the problem of consistent multi-switch

updates for SDN is proposed in [18]. When an update occurs,

the controller computes both the old and new routes. After

that, a packet is sent through both routes and ensures when the

packet successfully reaches the destination. This means that

both routes are working fine, and the controller replaces the

old routes with the new routes in the flow table. This

multicast-based algorithm ensures the connection operational

throughout the change, without packet-loss. But the limitation

of it is that the packets are sent through both old and new

routes which consume more bandwidth and per-packet

consistency is not maintained.

Consistent migration of flows is another area to work with

SDN. One key problem studied in [19], is providing increased

bandwidth to an application while keeping all other flows in

the network and migrating them consistently to the other

paths. They decided that consistent migration is possible in

polynomial time and it also remains consistent if a new flow is

inserted into the network. But there is no step taken for

security issues.

IV. PLANNED ROUTE UPDATE IN SDN

A. WayUp Planed Route Update

WayUP is a security-based planed route update algorithm

and a schedule-based routing algorithm which ensures the

security whereas the main focus is the waypoint. Here, the

waypoint is a firewall which acts as a filter point wherever

every packet is forced to go through it. If the routing path

needs to update, it updates the switches which are present on

the new route but not on the old route. Then it updates the

switches which are on the old route from waypoint node to the

destination. It also updates the existing switches in reverse

flows while new route arrives from source to the waypoint

node. This algorithm was proposed by Ludwig [7].

B. Peacock Planed Route Update

Our work is based on planned route update in SDN. Over

the years, plenty of works are done in SDN and the most

focused area is network update related issues such as security,

congestion, black hole, forwarding loop, loop-freedom etc. In

[8] authors propose an algorithm named Peacock which can

prevent looping problem during update in the network. Pea-

cock algorithm is the most likely scheduled-based algorithm

which works in two phases. One phase is called Shortcut and

another one is Prune phase which is as follows:

Fig. 1. Flow Chart of WayUp

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 7 Issue: 6 59 - 64

__

62
IJRITCC | June 2019, Available @ http://www.ijritcc.org

1) Shortcut: From starting node to ending node peacock

makes a short distance by updating the disjoint set of distant

reachable forwarding edges in the new route. It defines the

distant reachable forwarding edges, distance skips the nodes in

old route from source to destination. By updating distant

forwarding edge, it obtains many branches of the tree, where

one of them contain source to destination path and this update

occurs in odd rounds (i.e. 1st, 3rd, 5th etc.).

2) Prune: In this phase peacock updates all nodes, those are

in new route from source to destination. Since in Shortcut

Peacock updates distant forwarding edges in Prune phase,

merging those nodes and reduce the distance, and re-establish

the line again so that, based on that line it can define next

disjoint set of distant updatable edge. This update occurs in

even round (i.e. 2nd, 4th, 6th etc.). This two-phase continued

until all nodes are updated in the new route.

RESULTS

C. Update Duration of WayUp

We have found that the wayup update duration increases

with the number of modified flows but not exponentially

which is a positive approach to this update method. The result

of wayup update duration is shown in Fig. 3

Fig. 2. Flow Chart of Peacock

Fig. 3. Update duration of WayUp

Fig. 4. Update duration of Peacock

the modified rules. The result shows us that the duration of

update increases according to the number of modified flows.

But update duration does not increase exponentially which is

the main advantage of peacock update technique.

V. BANDWIDTH UTILIZATION A. TCP

Throughput of WayUp

We have successfully performed TCP operation in WayUp.

We have used mininet and iperf command to perform the

operation to generate this TCP throughput. In this scenario we

have used twelve switches and two hosts: one host acts as a

TCP client and another one acts as a server. In Fig.5 X-axis

displays the operation time and Y-axis displays the bandwidth.

We set the bandwidth limit to 10 Mbps for this test. Finally,

we have found the average TCP throughput but after a few

times, it has lost its routing. So, there is a communication gap

between the host server and client during this time.

D. Update Duration of Peacock

We have demonstrated the result of peacock modified flows

update duration in X-axis. Here, we have shown ten modified

flow entries and time in seconds in Y-axis. Fig. 4. displays the

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 7 Issue: 6 59 - 64

__

63
IJRITCC | June 2019, Available @ http://www.ijritcc.org

number of flows against update duration. We have observed

that update duration of Peacock that increases additively with

Fig. 5. WayUp tcp Throughput

B. TCP Throughput of Peacock

We have performed the same TCP operation in Peacock and

the same configuration is used to perform the TCP operation.

In Fig.6 X-axis displays the operation time and Y-axis

displays the bandwidth. The bandwidth limit remains the same

as 10Mbps. Our observation for Peacock: It’s throughput is

dropped a few seconds later than WayUp.

Fig. 6. Peacock tcp Throughput

VI. UDP THROUGHPUT

A. WayUp UDP Throughput

We have performed the same operation for UDP in WayUp

and the result is shown in Fig.7. where X-axis displays the

operation time and Y-axis displays the bandwidth. Bandwidth

is also limited to 10 Mbps. We have observed that the

throughput is dropped a few minutes later like we had in TCP.

So, there are some similarities between UDP and TCP in

WayUp.

Fig. 7. WayUp UDP Throughput

B. Peacock UDP Throughput

The same operation is performed with the existing config-

uration for UDP in Peacock and the result is shown in Fig.8.

Here we have seen a significant change, that is: the throughput

isn’t dropped unlikely the previous results we have found so

far.

Fig. 8. Peacock UDP Throughput

VII. CONCLUSION

We have successfully implemented the algorithms to

achieve less update duration, ensured security and created a

loop-free network. But those are done in different algorithms

in different schemes. Our target is to combine these algorithms

to create a more efficient algorithm where bandwidth

utilization and security will be emphasized simultaneously.

We have studied loop-free update by using peacock and

ensured security by using WayUp algorithm and waypoint

enforcement with minimum rounds in SDN route update. We

believe that the results we have found will show a new

direction in future research works. Whereas, some of the key

challenges faced by SDN have already been solved and new

challenges are coming.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 7 Issue: 6 59 - 64

__

64
IJRITCC | June 2019, Available @ http://www.ijritcc.org

REFERENCES

[1] T. Benson, A. Akella, and D. Maltz, ―Unraveling the

complexity of network management,‖ in Proceedings of the 6th

USENIX Symposium on Networked Systems Design and

Implementation, ser. NSDI’09, Berkeley, CA, USA, 2009, pp.

335–348.

[2] Kreutz, Diego, et al. Software-defined networking: A

comprehensive survey, Proceedings of the IEEE 103.1 (2015):

14-76.

[3] N. Mckeown, ―How SDN will Shape Networking,‖ October

2011. [Online]. Available:

https://www.youtube.com/watch?v=c9-K5O qYgA

[4] Ahmed, J. Blech, M. Gregory, and H. Schmidt, ―Software

Defined Networks in Industrial Automation,‖ JSAN, vol. 7, no.

3, p. 33, 2018.

[5] J.-P. Sheu, Q.-X. Zeng, R. B. Jagadeesha, and Y.-C. Chang,

―Efficient unicast routing algorithms in Software-Defined

Networking,‖ in The dawn of 5G: EuCNC : European

Conference on Networks and Commu-nications, Athens,

Greece, June 27-30, 2016, Athens, Greece, 2016, pp. 377–381.

[6] Shukla et al., ―Towards Transiently Secure Updates in

Asynchronous SDNs,‖ in Proceedings of the 2016 conference

on ACM SIGCOMM 2016 Conference - SIGCOMM ’16,

Florianopolis, Brazil, 2016, pp. 597–598.

[7] Ludwig, M. Rost, D. Foucard, and S. Schmid, ―Good Network

Updates for Bad Packets,‖ in Proceedings of the 13th ACM

Workshop on Hot Topics in Networks - HotNets-XIII, Los

Angeles, CA, USA, 2014, pp. 1–7.

[8] Ludwig, J. Marcinkowski, and S. Schmid, ―Scheduling Loop-

free Network Updates,‖ in Proceedings of the 2015 ACM

Symposium on Principles of Distributed Computing - PODC

’15, Donostia-San Sebastian, Spain, 2015, pp. 13–22.

[9] K.-T. Foerster, S. Schmid, and S. Vissicchio, ―Survey of

Consistent Software-Defined Network Updates,‖ 08-Sep-16.

[Online] Available: http://arxiv.org/pdf/1609.02305v2.

[10] Markopoulou, Athina, et al. Characterization of failures in an

IP back-bone. INFOCOM 2004. Twenty-third Annual Joint

Conference of the IEEE Computer and Communications

Societies. Vol. 4. IEEE, 2004.

[11] Mr. Songtao Wang, Prof. Dan Li, Prof. Shutao Xia,―The

Problems and Solutions of Network Update in SDN: A

Survey‖ IEEE Conference on Computer Communications

workshops (INFOCOM WKSHPS), 2015: April 26, 2015 -

May 1, 2015, Hong Kong. Piscataway, NJ: IEEE, 2015.

[12] Labovitz, A. Ahuja, A. Bose, and F. Jahanian, ―Delayed

internet routing convergence,‖ IEEE/ACM Trans. Netw., vol.

9, pp. 293–306, June 2001.

[13] Mark Reitblatt et al., Abstractions for Network Update:

Proceedings of the ACM SIGCOMM 2012 conference on

Applications, technologies, architectures, and protocols for

computer communication. New York, NY: ACM, 2012.

[14] M. Reitblatt, N. Foster, J. Rexford, and D. Walker. Consistent

updates for software-defined networks: Change you can

believe in! In Proc. ACM HotNets, 2011.

[15] Dr. Wen Wang, Ms. Wenbo He, Prof. Jinshu Su, Mr. YiXin

Chen, Cupid: Congestion-free Consistent Data Plane Update in

Software Defined Networks: IEEE INFOCOM 2016 - The 35th

Annual IEEE International Conference on Computer

Communications took place 10-14 April 2016 in San

Francisco, CA, USA. Piscataway, NJ: IEEE, 2016.

[16] Wang, Q. Qi, J. Gong, and J. Liao, ―Mitigating the Oscillations

Between Service Routing and SDN Traffic Engineering,‖ IEEE

Systems Journal, vol. 12, no. 4, pp. 3426–3437, 2018.

[17] McGeer, Rick. ―A safe, efficient update protocol for OpenFlow

net-works‖, Proceedings of the first workshop on Hot topics in

software defined networks. ACM, 2012.

[18] Delaet, Sylvie, et al. Seamless SDN Route Updates. Network

Computing and Applications (NCA), 2015 IEEE 14th

International Symposium on. IEEE, 2015.

[19] S. Brandt, K.-T. Forster, and R. Wattenhofer, ―On consistent

migration of flows in SDNs,‖ in IEEE INFOCOM 2016 - The

35th Annual IEEE International Conference on Computer

Communications: IEEE INFOCOM 2016 - The 35th Annual

IEEE International Conference on Computer Communications

took place 10-14 April 2016 in San Francisco, CA, USA, San

Francisco, CA, 2016, pp. 1–9.

