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Abstract—In the multimedia communication networks providing quality of service (QoS), an interface between the signal processing systems and 

the communication systems is the call admission control (CAC) mechanism. Owing to the heterogeneous traffic produced by diverse signal 

processing systems in a multimedia communication network, the traditional CAC mechanism that used only one CAC algorithm can no longer 

satisfy the aim of QoS CAC: Utilize the network resource to the most best and still satisfy the QoS requirements of all connections. For satisfying 

the aim of QoS CAC in the multimedia communication networks, this study proposed an innovative CAC mechanism called black and white 

CAC (B&W CAC), which uses two CAC algorithms. One of them is called black CAC controller and is used for the traffic with specifications 

more uncertain, which is called black traffic here. The other is call white CAC controller and is for the traffic with clearer specifications, which is 

call white traffic. Because white traffic is simple, an equivalent bandwidth CAC is taken as the white CAC. On the other hand, a neural network 

CAC (NNCAC) is employed to be the black CAC to overcome the uncertainty of black traffic. Furthermore, owing to more parameters needed in 

a QoS CAC mechanism, a hierarchical NNCAC is proposed instead of the common used NNCAC. Besides to accommodate more parameters, a 

hierarchical NNCAC can keep the complexity low. The simulation results show the B&W CAC can obtain higher utilization and still meet the 

QoS requirements of traffic sources. 

Keywords-Multimedia communication networks, Quality of service, Call admission control (CAC), B&W call admission control (CAC), 

Neural network;  
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I. INTRODUCTION 

Different signal processing systems produce different 

traffic sources for communication networks. For example, the 

traffic output of an MPEG encoder belongs to the traffic of 

variable bit rate (VBR). The traffic characteristic of VBR 

traffic in general cannot be predicted beforehand. On the other 

hand, for some data sources their characteristics are simple and 

may be known beforehand. Owing to the diversity of 

applications in the Internet, the Internet will be a multimedia 

communication networks that transmit regular data, video data 

and audio data, etc. in the future. In the multimedia 

communication networks, the traffic sources are diverse in 

terms of traffic characteristics and requirements of quality of 

service (QoS). 

In order to provide the differentiated QoS, the IETF has 

developed two service architectures for the Internet. The first 

one is the Integrated Services (IntServ) [1] and the other one is 

the Differentiated Services (DiffServ) [2]. The IntServ 

architecture is proposed for differentiated QoS in per flow 

base. However, owing to millions of flows in the Internet, this 

approach will result in much more status information kept in 

the router. In this way, routers become the bottlenecks in the 

Internet. Consequently, when the number of flows increases to 

some degree, the performance of the Internet will degrade 

rapidly. That is why it is said the IntServ is lack of scalability. 

The DiffServ is used to solve this problem. The scope of the 

DiffServ focuses on the class, instead of the flow in the 

IntServ, so it will not be influenced by the scale of the Internet. 

Although the scalability of IntServ is week, it still suitable to 

the enterprise networks. No matter what architecture is used in 

a multimedia communication network, the network resource 

allocation is an important issue to provide the QoS. In a 

multimedia communication network, the network resource may 

be dynamically allocated, which is a property of packet 

switching network. However, a minimum resource is needed 

for each flow/class to meet the QoS requirement for that 

flow/class. This specification is also described explicitly in the 

corresponding RFC. For example, RFC 2597 [3]: Four AF 

classes are defined, where each AF class is in each DS node 

allocated a certain amount of forwarding resources (buffer 

space and bandwidth), and RFC 2598 [4]: The EF PHB is 

defined as a forwarding treatment for a particular diffserv 

aggregate where the departure rate of the aggregate's packets 

from any diffserv node must equal or exceed a configurable 

rate. That is, there is a guaranteed bandwidth needed for no 

matter each AF class or the EF class. 

For bandwidth allocation, call admission control (CAC) 

plays an important role in multimedia communication 

networks. CAC mechanism is the interface between the signal 

processing system and the communication network. It is also 

the first outpost of the QoS architecture. This study focused on 

the CAC mechanism of multimedia communication networks. 

First, we must understand the diversity of the traffic sources in 

the multimedia communication networks. Under this situation, 

the traditional CAC may not do a good job. The aim of this 

paper is to find a new mechanism of CAC, which is more 

suitable for the diverse traffic in the multimedia 

communication networks. 

Conventional CACs are based on mathematical analyses 

of offered traffic characteristics and service qualities [5-9]. In 

the equivalent bandwidth (EB) scheme, it based on the traffic 

characteristics from a new call and network performance 
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statistics to calculate the equivalent bandwidth required by the 

new call. However, it is difficult to acquire complete 

characteristics of traffic, so it is not easy to determine 

accurately the equivalent capacity. Because of modeling, 

approximation and the unpredictable statistical fluctuations of 

the system, decision errors always occur in these control 

schemes and results in performance degradation. 

 The neural-network-based CAC can solve this problem, 

and it is unnecessary for users to specify the values of traffic 

descriptors in detail. Neural networks have been applied 

widely to deal with traffic-control-related problems in 

communication networks [10-13]. The self-learning capability 

of the neural network is used to characterize the relationship 

between input traffic and system performance. In [10], Cheng 

and Chang proposed a neural-network connection-admission-

control (NNCAC) method for traffic control, which uses three 

preprocessed input parameters to simplify the training process 

and to improve the controller performance. In [11], Hiramatsu 

proposed a connection-admission controller, which uses a 

neural network. This admission controller employed the 

offered traffic characteristics, QoS requirement and actual 

network-operation-performance measures to decide whether to 

accept or reject a call-setup request. The results showed that 

the neural network learned a complicated boundary for a call-

acceptance decision. Hah [12] investigated an efficient 

NNCAC mechanism for ATM networks with heterogeneous 

arrivals. NNCAC efficiently and accurately estimates the cell 

delay and cell loss ratio of each class in real time by means of a 

pre-trained neural network. In [13], Fontaine and Smith 

proposed a CAC scheme, which is based on a consideration of 

fuzzy logic and artificial neural networks (ANNs). The ANN is 

used in the learning phase to tune the fuzzy system 

automatically. However, in most of the proposed neural-

network approaches, all parameters were selected as inputs 

dependently. Thus, the neural-network dimensions will 

increase as the number of parameters grows. 

The objective of multimedia communication networks is 

to provide service to every kind of traffic source. Traffic 

sources are heterogeneous in multimedia communication 

networks. We think single kind of CAC algorithm cannot meet 

all the kinds of input traffic, no matter equivalent bandwidth 

(EB) algorithms or neural network algorithms, so this study 

suggest a CAC mechanism that combine both of EB and neural 

network. The motivation of this combination comes from 

individual characteristics of EB CAC and neural network CAC 

(NNCAC). EB CAC is efficient for the traffic source with 

more clear characteristics. On the other hand, NNCAC is good 

at the traffic type with less clear characteristics. This new CAC 

mechanism adopts more than one control algorithm 

simultaneously to admit new calls with different CAC 

algorithm for different type of traffic source. It is named Black 

& White Call Admission Control (B&W CAC), which includes 

two kinds of admission control algorithm. One is a hierarchical 

neural network algorithm for “black” traffic type, of which the 

characteristics are not very clear. Furthermore, the architecture 

of the neural network is with multiple layers. The purpose of 

multiple layers is to reduce the dimension of the neural 

network. With this architecture, more parameters can be 

adopted to make a good admission decision, while the 

dimension of neural network is still kept reasonable. The other 

is the equivalent bandwidth algorithm for the “white” traffic 

type, of which the characteristics are clearer. 
The remaining organization of this paper is as follows. 

Section 2 describes some preliminaries that should operate in 
coordination with CAC. The core of this paper, B&W CAC, is 
specified in section 3, including the hierarchical neural network 
and a summary of equivalent bandwidth CAC. Section 4 takes a 
simple example to illustrate the good performance of B&W 
CAC. Finally, some concluding remarks and future works are 
given in Section 5. 

 

II. THE PRELIMINARIES 

CAC is an important issue in the field of network resource 

allocation and QoS provision. When a connection makes a call 

setup request, CAC controller would decide whether to accept 

or reject the call according to the traffic parameters and the 

QoS requirements of the new call and the system performance 

statistics (e.g. load, queue length). A call is accepted only if the 

network has enough resource to provide the QoS requirements 

of the new connection request without affecting the QoS 

requirements of the connections already established in the 

network.  

CAC cannot finish the admission decision alone without 

assistance of other mechanisms or protocols. For example, the 

network meters and the signaling protocols, e.g. RSVP in 

IntServ, are necessary for a CAC controller to make a decision 

to still keep the QoS provided by the multimedia 

communication network. The achievement of QoS cannot be 

made out of nothing. For providing QoS, not only the network 

statuses but also the traffic statuses, including traffic 

parameters and the parameters corresponding to QoS, should 

be considered in the CAC procedure. Different from traditional 

CAC procedures, a QoS CAC controller should consider the 

QoS requirements of the traffic to make an accurate decision. 

However, how the QoS parameters can be taken into account is 

still an open question. This issue strongly depends on the 

signaling protocol. The signaling protocol should carry the 

relevant information from some other nodes and even from 

some other network domains, if inter-domain connections are 

involved, to the CAC controller to assistant the admission 

decision. The study of signaling protocol is out of the scope of 

this CAC study, so it is not discussed here. 
In this study, we assume all the relevant mechanisms, e.g. 

the network meters and the signaling protocols, operate 
properly. The focus of this B&W CAC is put on the processing 
of the relevant information collected from network and traffic. 

 

III. B&W CAC 

A structure of B&W CAC is shown in Figure 1. According 

to different types of traffic sources, the CAC can be 

implemented with two different admission control algorithms 

for different traffic types. The black control algorithm is 

applied to black traffic source, whose traffic characteristics are 

uncertain and QoS requirements may be strict or diverse, such 

as video source and voice source. The transmission rates of 

traffic sources of this type are more unpredictable. This black 

CAC mechanism is implemented by a hierarchical neural 

network. On other hand, the white control algorithm is applied 

to white traffic source, whose traffic characteristics are clearer 

and QoS requirements may be looser, such as file transmission. 
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This white CAC mechanism is implemented by an EB CAC 

controller. 

When a new call is coming, it is classified into either black 

traffic source or white traffic source by B&W classifier. 

According to black or white traffic type, the CAC controller 

adopts different call admission control algorithm. We adopt a 

hierarchical neural network as black CAC algorithm. The 

neural network can be trained to fit the uncertainty of the black 

traffic source because of self-learning capability. This 

hierarchical neural network will be described in detail below. 

In the white CAC algorithm, we adopt the equivalent 

bandwidth method in [9], which is simple and efficient, and 

has been investigated completely by other researchers. The 

network status measurer periodically collects the network 

performance, such as load and loss ratio, and feeds to the CAC 

controller for the admission decision. In this structure, the 

black and the white CAC algorithms have their respective 

buffers. 
Owing to B&W CAC uses a structure of neural network 

different from the common used, we will introduce this 
hierarchical neural network in detail in the next subsection. 
Furthermore, owing to the EB CAC controller is well-known, 
only some summary of equivalent bandwidth is given in the 
next second subsection. 

A. Hierarchical neural network 

For the purpose of obtaining a more accurate admission 

decision, there are more parameters fed into the CAC 

controller. Those parameters may belong to different “type.” 

That is, some parameters may be uncorrelated to the other 

ones. Under this situation, it is more suitable to use multiple 

hierarchies instead of the common used single hierarchy, while 

a neural network is used to be the CAC controller. In the first 

hierarchy, parameters of different types are fed into different 

neural networks. Their outputs are then fed into the neural 

network of the second hierarchy. In fact, the advantage of the 

usage of a hierarchical neural network is twofold. It gains both 

the accuracy and the efficiency, because it can consider more 

input parameters, and still keep a low complexity. A simple 

comparison between the single-hierarchy neural network and 

the two-hierarchy neural network is given after the description 

of the hierarchical neural network. 

The hierarchical NNCAC has two hierarchies as shown in 
Figure 2. The first hierarchy consists of two neural networks. 
The second hierarchy is constituted by one neural network. The 
whole NNCAC has two types of inputs: one type is 
corresponding to traffic characteristics and QoS requirements. 
The other type is corresponding to network status. The 
parameters of different types are treated individually by the two 
neural networks of the first hierarchy. Then, the two outputs, 
called traffic descriptor, tr, and network parameter (system 
performance parameter), nt, are fed into the neural network of 
the second hierarchy. tr is the output of the neural network with 
four inputs of traffic characteristics and QoS requirements, 

which include peak rate p, mean rate m, delay requirement d, 
and loss ratio constrain l of the new call. nt is the output of the 
neural network also with four inputs of network statuses, which 

include network utilization (load) , queue length of buffer q, 

queue length variationΔq, and statistic of loss ratio s. Here, the 

queue length variation is included into the input of NNCAC in 
order to catch the dynamics of the network status. 

 
In other words, the NNCAC is a hierarchical neural 

network, which has two parts of inputs: traffic descriptors 
(traffic characteristics and QoS requirements declared by the 
new call) and network parameters (statistics gathering from 
network). As shown in Figure 2, traffic descriptors (p, m, d, l) 

and network parameters (, q, Δq, s) are preprocessed, and the 

outputs tr and nt are fed into another neural network. By way of 
considering more parameters, we hope to improve the decision 
accuracy of the CAC, but not to affect the speed of execution. 
That is, the increase of accuracy does not increase the 
complexity of computation. 

Each neural network module of the NNCAC is a multi-
layered feed-forward neural network. In the NNCAC 
mechanism, we employ the back-propagation learning method 
[14] for the off-line training of the neural network. The basic 
idea of this algorithm is a gradient method in which the weight 
vector is updated by gradient of the error function.The objective 
of the back-propagation learning algorithm is to minimize the 
decision error E by recursively adjusting its weight in each 
layer. The general form of decision error E is as follows 
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Figure 2  Hierarchical NNCAC 

 
Figure 1  B&W CAC controller structure 

 

 

…
 

…
 

p 

m 

d 

l 

…
 

…
 

q 

Δq 

s 

tr 

nt 

. 

. 

. 

. 

. 

. 

Hierarchy two Hierarchy one 

Accept/

Reject 

 

Network status 

measurer 

B
&

W
 c

la
ss

if
ie

r Black CAC 

controller 

White CAC 

controller 

User end 
Black traffic buffer 

Network 

Accept / Reject 

White traffic buffer 

 Black Traffic 

 White Traffic 

 Traffic 

description 

 Data 

Signaling Data 



International Journal on Recent and Innovation Trends in Computing and Communication                                 ISSN: 2321-8169 

Volume: 7 Issue: 6                                                                                                                                                      52 - 58 

______________________________________________________________________________________ 

55 
IJRITCC | June 2019, Available @ http://www.ijritcc.org                                                                 

_______________________________________________________________________________________ 

where yi is the desired output when the input (vector) is xi and 
the set of weight is w, and F represents the output function of 
the neural network. 

Considering an M-layer feed-forward neural network, each 
layer has a number of processing elements called neurons, 
which are interconnected via links with adaptive weights. There 
are at least two layers in a neural network, i.e. the input layer 
and the output layer. Between the input and output layers, there 
may be some hidden layers. A simple back-propagation neural 
network has three layers: input layer, hidden layer and output 
layer. The input layer just transmits the input values to the next 
layer. Neurons in the hidden layer and output layer perform two 
operations--weighted summation and transformation. The 

summation of the j-th neuron in the k-th layer, denote by 
k

jS , is 

expressed by 
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where 
1k

io  is the output of the i-th neuron in the layer k-1 and 

k

ijw  is the weight of the link between the i-th neuron in layer k-

1 and the j-th neuron in layer k. Furthermore, 
k

jS  is 

transformedinto an output 
k

jo  via an activation function G() 

[10]. That is, the output 
k

jo can be given by  
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where G(x) is generally given by 
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for the output layer of NNCAC. Finally, if the final output of 
NNCAC is 1, the new call is accepted. On the other hand, the 
new call is rejected, if the output is 0.  

The adjustment of weights is based on a steepest-descent 
algorithm [14]. It can be expressed as 
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where c is the learning constant, which is positive and small. By 
repeating this weight updating for various example pairs, it is 
expected that the total error for all input vectors is minimized.  
 

The training of the neural network is an important step when 
NNCAC is employed. The training procedure is first by off-line 
training and then by on-line training if necessary. In general, the 
on-line training is triggered periodically to make the NNCAC 
controller to capture the dynamics of traffic and network. No 

matter which training procedures, the first step is to collect the 
training data into a training data table. Each entry of the training 
data table includes the input parameters and the desired output 

corresponding to those inputs. The desired output o


 is 1 if the 

QoS of the call is met after the call is accepted and is 0 
otherwise. It can calculated by 

)))((( llddUo


 , (7)   

   

where d


and l


 are the statistics of the delay and loss ratio 

respectively of the call. The statistical duration could be the 
whole period or partial period of the holding time of the call. 

Note that the d


 needs more specification. It could be the mean, 

the mean plus some standard deviations, or the maximum delay, 
depending on what delay performance is required. Equation (7) 
illustrates that the desired output is 1 if both QoS requirement, 
i.e. delay requirement and loss requirement, are matched, and is 
0 if any QoS requirement is not matched. If more QoS 
requirements are specified, the argument of unit step function 
U(x) will be more terms multiplying together. Additionally, in 
order to get the accurate output, or the optimal weights, by 
back-propagation, the training data table should be updated 
from time to time and the entry for each training should be 
randomly selected. In general, the leaky pattern table selection 
method [15] is employed. 

Owing to the vigorousness of multimedia 

communications, the consideration of QoS is the trend of the 

future communication networks. In this way, the QoS 

parameters should be taken into account when a call is setup. 

Consequently, the input of a CAC controller contains the 

traffic description (characteristics and requirements) and the 

network status. The description of the new call is independent 

of the current network status; although they will be correlative 

in the future time if the call is accepted and they will cooperate 

to influence the CAC decision. Utilizing thisproperty, a 

hierarchical NNCAC is proposed to decrease the complexity of the 

neural network and, however, still to be able to contain more 

parameters input to the controller. In the following, a simple 

comparison is done to illustrate the reduction of complexity when a 

hierarchical NNCAC is used instead of a common single-hierarchy 

NNCAC. In a neural network, the training procedure is to find an 

optimal set of weights. The more weights result in more complexity. 

Considering a three-layered neural network with 8 input neurons, 30 

hidden neurons and 1 output neuron, it has 270 connecting weights in 

total. On the other hand, if our proposed hierarchical NNCAC is used, 

we can evenly divide the 30 hidden neurons between the two neural 

networks of the first hierarchy and the second hierarchy still uses 30 

hidden neurons. Finally, there are only 240 connecting weights in 

total. It is obvious that single-hierarchy NNCAC uses one-eighth 

weights more than our hierarchical NNCAC. Note that the 

connections between the output neurons of hierarchy one and the 

input neurons of hierarchy two are virtual, so no connecting weights 

are needed. The output neuron of hierarchy one and the input neuron 

of hierarchy two may be on a same neuron. The expression on figure 2 

is used to illustrate the concept of hierarchy more clearly. Obviously, 

our NNCAC has fewer connecting weights. It confirms our purpose 

that to concern more input parameters and not to be more complex. 
 

B. Equivalent bandwidth call admission control 

The white CAC scheme utilizes an equivalent-bandwidth-
based call admission control, which uses statistical bandwidth 
as the decision criterion. The statistical bandwidth is computed 
by using diffusion approximations [16,17]. The basic approach 
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is abstracted as follows. When a new call request arrives at, the 
aggregated traffic characteristics, including the characteristics 
of the new call and those calls having already existed, are used 
to find a statistical bandwidth by a certain equation derived 
from the diffusion model. If the statistical bandwidth is less 
than or equal to the output link capacity, the new call is 
accepted. Otherwise, the call is rejected. The mathematical 
expression of the diffusion equation used in this approach 
includes the users’ loss requirements and traffic characteristics, 
and the available buffer size of the network. More detailed 
description can be referred to [16,17]. 

An implementation of classifier 
The input of the classifier is the signaling packet, not 

general data packet, so the classifier should cooperate with the 
signaling protocol. This sub-section demonstrates a possible 
implementation, which involves with a possible signaling 
protocol. But our purpose is not to design a signaling protocol 
in detail, because it is out of the scope of this paper. Similar to 
general signaling protocol, e.g. RSVP [18,19], there should be 
some messages carrying some specifications about the traffic 
specifications and the reservation resource specifications. For 
example, in RSVP, PATH message and RESV message are 
used to carry the traffic specifications (TSpec) and the 
reservation specifications (RSpec). RSVP is a destination 
activating reservation protocol. That is, the reservation is 
activated by the destination end. It is not necessary for B&W 
CAC. Hence, a signaling protocol is suitable, if it can carry the 
following specifications: 1) Application identification, which 
may be the combination of the identification of transport layer 
and the port number; 2) Traffic characteristics, e.g. (but not 
limited to) peak rate and mean rate; 3) QoS parameters, e.g. 
delay requirement and loss requirement. The specifications may 
include more than the above. It depends on what kind of CAC 
algorithm is used and what parameters are needed in the 
algorithm. The application identification described above is 
used to identify the type of traffic type. It should contain 
enough information for classifier to judge the traffic type, so it 
may contain some information of application layer, if the 
identification of transport layer and the port number are not 
enough. The classifier should have the ability to identify to 
which kind of the traffic belongs by the application 
identification, and then passes the corresponding traffic 
characteristics and QoS requirements to the appropriate CAC 
controller. 

IV. PERFORMANCE EVALUATION 

In this section, we evaluate the B&W CAC scheme by 

comparing it with equivalent-bandwidth-based CAC scheme in 

[16,17] and neural-networks-based CAC scheme. Each neural 

network in B&W CAC or NNCAC uses a three-layered 

architecture with 30 hidden nodes and a back-propagation 

learning algorithm. Owing to there are two neural networks in 

the first hierarchy of the neural network in B&W CAC 

controllers, each of the two neural networks has 15 hidden 

nodes. Besides, both the neural networks of the second 

hierarchy of the single-hierarchy NNCAC controller have 30 

hidden nodes and the neural network in B&W CAC controller. 

The link capacity of the network is normalized to be 1. 

And for simplicity, the packet length is fixed at 1 length unit, 

or called 1 unit in short. The time unit, called tick, is defined to 

be the time for the network to transmit 1 packet (equivalently 1 

unit). For decreasing the complexity of simulation 

environment, we avoid to consider the scheduling mechanism 

between the black traffic and the white traffic. Instead, the link 

capacity is allocated to the two traffic types evenly, i.e. both of 

them have bandwidth 0.5. There is a separate finite buffer for 

each traffic type and the buffer size is 150 units. 

As regards the traffic models, we use the Bernoulli 

process as the arrival process In this section, we evaluate the 

B&W CAC scheme by comparing it with equivalent-

bandwidth-based CAC scheme in [16,17] and neural-networks-

based CAC scheme. Each neural network in B&W CAC or 

NNCAC uses a three-layered architecture with 30 hidden 

nodes and a back-propagation learning algorithm. Owing to 

there are two neural networks in the first hierarchy of the 

neural network in B&W CAC controllers, each of the two 

neural networks has 15 hidden nodes. Besides, both the neural 

networks of the second hierarchy of the single-hierarchy 

NNCAC controller have 30 hidden nodes and the neural 

network in B&W CAC controller. 

The link capacity of the network is normalized to be 1. 

And for simplicity, the packet length is fixed at 1 length unit, 

or called 1 unit in short. The time unit, called tick, is defined to 

be the time for the network to transmit 1 packet (equivalently 1 

unit). For decreasing the complexity of simulation 

environment, we avoid to consider the scheduling mechanism 

between the black traffic and the white traffic. Instead, the link 

capacity is allocated to the two traffic types evenly, i.e. both of 

them have bandwidth 0.5. There is a separate finite buffer for 

each traffic type and the buffer size is 150 units. 

As regards the traffic models, we use the Bernoulli 

process as the arrival process of the white traffic and the ON-

OFF model as the traffic model of the black traffic. The ON-

OFF model is used to model the black traffic, because it is 

more bursty and more uncertain. The traffic generation process 

of black traffic source follows a discrete-time ON-OFF 

process. During the ON state, packets are generated at rate R 

packets per tick; while during the OFF state, no packets are 

generated. The transition rate from OFF to ON, denoted by α, 

and that from ON to OFF, denoted by β (see figure 3). In 

other words, if a source is in ON (OFF) state, then it will be in 

OFF (ON) state with probabilityβ(α) next tick. In order to 

simplify the number of variables, the transition rate from OFF 

to ON and that from ON to OFF are selected to sum to 1. That 

is, α+β=1, α=1-β. 

The packet generation rate R of each black traffic source 

is a random variable with uniform distribution, among 1/30, 

1/40 and 1/50, i.e. R is equal to 1/30, 1/40, or 1/50 with equal 

probability 1/3. Also, the transition rates and the holding time 

of a call are uniform distribution. The transition rate from ON 

to OFF (β) is randomly selected among 0.2, 0.4, 0.6 and 0.8. 

The holding time of a call of black traffic source is randomly 

 
Figure 3  ON-OFF model for black traffic source 

 α 

β 

OFF ON 



International Journal on Recent and Innovation Trends in Computing and Communication                                 ISSN: 2321-8169 

Volume: 7 Issue: 6                                                                                                                                                      52 - 58 

______________________________________________________________________________________ 

57 
IJRITCC | June 2019, Available @ http://www.ijritcc.org                                                                 

_______________________________________________________________________________________ 

selected among 600, 1200, 1800, 2400 and 3000 ticks. 

Furthermore, the packet generation rate of white traffic source 

is a random variable with equal probability among 1/60, 1/80, 

1/100. The holding time of a call of white traffic source is 

randomly and uniformly selected among 500, 1000, 1500, 

2000 and 2500 ticks. The QoS requirements of a call are loss 

ratio and delay requirement. Loss ratio is set to 0.01 and delay 

requirement is set to 50 ticks. The simulation is terminated 

when the system time is 5,000,000 ticks. 
Figure 4 shows the utilization of a network employing the 

B&W CAC scheme and figure 5 shows the utilizations of a 
network employing the single-hierarchy NNCAC and the EB 
CAC. To protect the readability of the figures, the results of 
NNCAC and the results of B&W CAC are plotted on different 
figures. It is obvious that the utilizations of NNCAC and B&W 
CAC are much higher than that of EB CAC. This shows the 
conservative property of equivalent bandwidth such that the 
utilization is low. Furthermore, in average, the utilization of 
B&W CAC is higher than that of NNCAC. Beside the higher 
utilization, B&W CAC can make the network utilization more 
stable than NNCAC does. This phenomenon can be illustrated 

by the violent fluctuation of the curve of NNCAC on figure 5. 
 
Figures 6 and 7 show the comparisons of delay times and 

loss ratios, respectively, among B&W CAC, NNCAC and EB 

CAC. They are used to specify the influence of CAC on QoS. 
From figure 6, it is seen that the delay times for NNCAC is 
worse than the other two CAC schemes, and even not to satisfy 

the delay requirement. Similarly, from figure 7, the loss 
performance of NNCAC is the worst, while the loss ratios of 
the other two schemes are both close to 0. That is because the 
NNCAC cannot response the network status rapidly and results 
in the utilization sometimes up and sometimes down (see figure 
5). This also results in that there are sometimes too many 
connections in the network and sometimes too few connections 
in the networks. This instability finally causes the performance 
low. When there are too many connections, the packets are 
dropped seriously and the packets buffered wait a longer time. 
Even when the number of connections cools down, the mean 
waiting times and the loss ratios cannot be descended from the 
very high values effectively. Note that the data on the figures 
are statistics during every 10000 ticks. We think the cause of 
the inability of NNCAC partially comes from the heterogeneity 

of the traffic. That is why this paper separates the traffic into 
black traffic and white traffic, and treats them individually. 
With regarding to the performance comparison between the 
results of EB CAC and B&W CAC, it can be seen that the 
variation and the mean of the delay time of B&W CAC is 
higher than those of EB CAC. Although the performance of EB 

 
Figure 4  Network utilizations of B&W CAC 

 
Figure 5  Network utilizations of EB CAC and NNCAC 

 
Figure 6  Comparison of delay performance 

 
Figure 7  Comparison of loss performance 
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CAC seems a little better than that of B&W CAC, however, the 
results of B&W CAC still satisfy the QoS requirements. Recall 
that B&W CAC gets much higher utilization than EB CAC 
does. Evaluating wholly, B&W CAC perform much better than 
the other two CACs do. It tightly conforms to the objective of 
QoS CAC: Utilize the network bandwidth to the most best 
under the condition of matching the QoS requirements. 

 

V. CONCLUSION AND FURTHER STUDY 

In this paper, we proposed a B&W CAC scheme, which 
employs two CAC algorithms. Previously, all the studies just 
implement one CAC algorithm to judge whether to accept or 
reject a new call for all kinds of traffic sources. However, in the 
trend of multimedia communication, there are heterogeneous 
traffic sources. Furthermore, providing differentiated treatment 
is an important goal in future multimedia communication 
networks. Therefore, to treat different type of traffic source with 
different CAC algorithm is a reasonable and innovative 
approach. Owing to the parameters of traffic may include the 
characteristic parameters and the QoS parameters, the number 
of parameters input to the QoS CAC controller will get more in 
the future. According to different type of traffic sources and 
different QoS requirements, B&W CAC scheme applies two 
CAC algorithms, equivalent bandwidth and hierarchical neural 
network. The simulation results show the B&W CAC can keep 
the network to meet the QoS requirements of traffic sources and 
also gets higher utilization. In a word, B&W CAC can fully 
utilize the system bandwidth and still satisfy the QoS 
requirements. Although the single-hierarchy NNCAC scheme 
gets not bad utilization, the delay and the loss requirement may 
be not satisfied. This also specifies the demand of B&W CAC, 
because for heterogeneous traffic sources the NNCAC may not 
do a good job.  

This paper has not yet finished the study of all kinds of 
B&W CAC mechanisms. It just reveals a new direction of CAC 
in the future communication networks, in which the traffic 
sources will be very diverse. Which CAC algorithm should be 
taken as black CAC and which as white CAC can be further 
studied. Another important issue in B&W CAC is the 
classification of traffic. This involves the signaling protocol. 
This paper also demonstrates a possible implementation. Here 
does not design a complete signaling protocol. The design of 
signaling protocol is also worthy to investigate. 
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