
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 11 6200 - 6203

__

6200
IJRITCC | November 2015, Available @ http://www.ijritcc.org

Binary Search Tree and Its Applications: A Survey

Mr. Chandrashekhar S. Khese
Department of Computer Engineering,

DGOI,FOE, Daund

Savitribai Phule Pune University,

Pune. India

chandrashekhar.khese@gmail.com

Prof. Amrit Priyadarshi
Department of Computer Engineering

DGOI, FOE, Daund

Savitribai Phule Pune University,

Pune, India

amritpriyadarshi@gmail.com

Abstract:- Binary search trees used as a data structure for rapid access to stored data. Arrays, vectors and linked lists data structures are limited

by the trade-off between ability to perform fast search and resize easily. Complete and nearly complete binary search trees are of particularly

significance. New version of insert-delete pair maintains random binary tree in a manner where all grandparents in tree always have both sub-

trees full. In worst case binary search tree reduce to a linear link list, so reducing such search to sequential. In particular, we obtain a BST data

structure that is O(log log n) competitive, satisfies the working set bound, dynamic ?nger bound and unified bound with an additive O(log log n)

factor, and performs each access in worst-case O(log n) time.

__*****___

I. Introduction

The widespread adoption of multi-core processors places an

in- creased focus on data structures that provide efficient

and scalable multi-threaded access. These data structures are

a fundamental building block of many parallel programs;

even small improvements in these underlying algorithms can

provide a large performance impact. One widely used data

structure is an ordered map, which adds ordered iteration

and range queries to the key-value association of a map. In-

memory ordered maps are usually implemented as either

skip lists or self-balancing binary search trees [1].

Binary search trees are used in computer science for rapid

data storage and retrieval. With an ideally arranged BST

with n nodes, most of the tree related operations require time

that is not more than log(n). That means effort required to

perform an operation on a BST grows logarithmically as

size of the input grows. Despite of its wide popularity binary

search tree has few serious problems. One of the major

problems with binary search tree is its topology. The BST

topology depends upon the order with which data is added

or deleted. That means if input is not in random order the

tree becomes lengthier on one side, reducing the search to be

sequential. For optimal results the tree has to be wider and

flatter in shape. In other words, tree height has to be

minimal so that resulting tree could become bushy. To

maintain the tree in better shape many algorithms have been

proposed over the years. Some of them are [1], [2], [3], [5],

and [6]. Since many versions of the insert-delete algorithms

exist, we would like to touch upon the conventional insert-

delete algorithms [2].

Binary search tree is most basic, nonlinear data structure in

computer science that can be defined as “a finite set of

nodes that is either empty or consists of a root and two

disjoint subsets called left and right sub-trees. Binary trees

are most widely used to implement binary search algorithm

for the faster data access. When memory allocation is static

and data size is reasonably small, an array may be used

instead to accomplish the same task. However, for large data

set array is not a good option since it requires contiguous

memory that system may not provide sometimes. In ideal

situation, we would expect the tree to be of minimal height

that is possible only when the tree is height balanced [3].

One of the pillars of theoretical computer science is worst-

case analysis: “assume the worst possible data.” By this

account, binary search trees (BSTs) need O(log n) time for a

search; in particular, information theory shows that

searching1 for a uniformly random element requires O(log

n) comparisons on average[4].

Electronic voting is a rising social application of

cryptographic protocols. It promises the possibility of a

convenient, efficient and secure facility for recording and

tallying votes. Lot of literature on electronic voting has been

developed over the last two decades. The uses of insecure

Internet, incorrect implementations, and the resulting

security breaches have caused substantial rework in this

area. Several of these schemes were meant for secure

electronic voting [5].

II. Related Work

An AVL tree [1] is a self-balancing binary search tree in

which theheights of the left and right child branches of a

node differ by nomore than one. If an insertion to or deletion

from the tree causesthis balance condition to be violated

then one or more rotations areperformed to restore the AVL

invariant. In the classic presentation, nodes store only the

difference between the left and right heights, which reduces

storage and update costs. Balancing can also beperformed if

each node stores its own height [1].

When analyzing the performance of a binary search tree. We

require few parameters like its height or internal path length.

Though, these parameters are interrelated but sometimes

give better performance evaluation when analyzed

independently. The height of the tree is the longest path

from the root to a leaf node. The internal path length (IPL)

of a tree is the sum of the depths of all nodes in the tree.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 11 6200 - 6203

__

6201
IJRITCC | November 2015, Available @ http://www.ijritcc.org

Root of the tree has depth zero, and every son in the tree has

a depth that is one more than its parent. This means that IPL

of the tree would be minimal when every node in the tree

has minimal depth. This is possible only when the tree is

height balanced. For an average case analysis of a binary

search tree, the internal path length is an important

parameter [2].

Soviet Mathematicians G. M.Adel’son-Vel’skii& E. M.

Landis [1] proposed an algorithm to create a balanced binary

search tree dynamically. Every node in the tree has to

maintain additional information (apart from data and

pointers) called “balance factor” that stores the effective

balance of the tree rooted at that node. Tree is said to be

balanced if the difference between the heights of two sub-

trees of any node (balance factor) is between –1 and 1.

Mathematically, –1 <= balance factor <=1. After each

operation tree has to be examined to ensure that it is

balanced. If the tree has become unbalanced appropriate

rotation is performed in the appropriate direction [3].

As is standard in work on BST optimality, we consider only

(successful) searches, not insertion and deletion. The letters

n and m always refer to the size of a BST, and the total

number of search operations performed on it, respectively.

These are fixed global constants, and much of the notation

depends on these values, either explicitly or implicitly. For

simplicity, we denote the ordered values in the BST by the

integers 1, 2,……,n[4].

The early investigations of e-voting used a simple voting

approach. Boardroom voting protocol isan example [12].

Failure of a single voter can cause an election failure in this

case. Simple votingschemes like Voter Verified Paper Audit

Trial (VVPAT) and vote by mail are inherently insecureand

provide no guarantee for the security or privacy [5].

III. Data Sources

 a. Non-Medical Data:

Figure1. Tax Credit Certificate

 Tax Credit certificate: If there is a change in your personal

circumstances that affects the tax you pay, you need to tell

Revenue. This could happen, for example, if you started

work in a job where you can claim work-related expenses

for a uniform. Revenue will then send you a new tax credit

certificate that includes the changes. Revenue will give your

employer the details needed to deduct the correct tax from

your pay.

b. Medical Data:

Figure2. Medical Document

 Medical data source are most important part in life

insurance domain. As before applying for policy, individual

needs to present medical health report along with all test

details. Patient name, test date, addresses must include in

report. Mainly bloods, ECG, kidney, bladder tests are

common.

c. Policy Proposal:

Figure3. Policy Proposal Document

Genworth’s life insurance forms will assist you with making

changes to your index universal life, guarantee universal

life, term life insurance and whole life insurance accounts.

These forms will help you conduct life insurance

http://www.ijritcc.org/
http://www.wikihow.com/Read-and-Understand-Medical-Laboratory-Results

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 11 6200 - 6203

__

6202
IJRITCC | November 2015, Available @ http://www.ijritcc.org

authorizations, requests, name/address change, naming a

beneficiary and other updates [16].

d. Underwriter Data sources :

Figure4. Underwriter Document

Underwriting has been designed as an independent IT

solution with a range of interfaces ensuring seamless

integration with other systems operating in the insurance

company, in particular, with the systems supporting the

application processing, policy administration, claim

management, as well as with a central register of insured

and a document management system (DMS)[17].

IV. Applications

Binary Search Tree - Used in many search applications

where data is constantly entering/leaving, such as the map

and set objects in many languages' libraries.

Binary Space Partition - Used in almost every 3D video

game to determine what objects need to be rendered. Binary

space partitioning (BSP) is a method for recursively

subdividing a space into convex sets by hyper planes. This

subdivision gives rise to a representation of objects within

the space by means of a tree data structure known as a BSP

tree.

Figure5. BSP tree

 Hash Trees - used in p2p programs and specialized image-

signatures in which a hash needs to be verified, but the

whole file is not available.

Figure6. Hash Tree

Huffman Coding Tree (Chip Uni) - Used in compression

algorithms, such as those used by the .jpeg and .mp3 file-

formats.

Figure7. Huffman Coding Tree

The branches of the tree represent the binary values 0 and 1

according to the rules for common prefix-free code trees.

The path from the root tree to the corresponding leaf node

defines the particular code word.

Syntax Tree - Parse trees are distinct from abstract syntax

trees (also known simply as syntax trees), in that their

structure and elements more concretely reflect the syntax of

the input language.

Figure8. Syntax Tree

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 11 6200 - 6203

__

6203
IJRITCC | November 2015, Available @ http://www.ijritcc.org

V. Conclusion

Basically here we used different design variation which give

support to fast clone operation. In case of random input

balanced tree is always preferable. But still we need to focus

on balancing techniques so that tree get prevent from

becoming higher on one side. Main goal for tree operations

is to perform task in O(log(n)) time. For this we maintain

tree height always O(log(n)). Most algorithms are static and

taking time linear to the input size and sometimes significant

space amount is required. Static algorithms runtime

overhead is less compared to dynamic algorithms. For

balancing a tree in lesser time, algorithm is not yet

developed. So there is huge improvement scope in existing

methods.

Acknowledgement

I express great many thanks to Prof. AmritPriyadarshi and

Prof. Sachin S. Bere for their great effort of supervising and

leading me, to accomplish this fine work. To college and

department staff, they were a great source of support and

encouragement. To my friends and family, for their warm,

kind encourages and loves. To every person who gave me

something too light along my pathway. I thanks for

believing in me.

References

[1] Nathan G. Bronson, Jared Casper, “A Practical

Concurrent Binary Search Tree”, Computer Systems

LaboratoryStanford University, 2009.

[2] Jilani Abdul Khader, “Insertion and Deletion on Binary

Search Tree using ModifiedInsert Delete Pair: An

Empirical Study”,Dept. of Computer Science,

NizwaUniversity,Sultanate of Oman,2007.

[3] Suri Pushpa, Prasad Vinod, “Binary Search Tree

Balancing Methods: A Critical Study”, Dept. of

Computer Science and Applications, Kurukshetra

University, Haryana, India, 2007.

[4] Erik D. Demaine, Dion Harmon, “The Geometry of

Binary Search Trees”.

[5] Vinodu George, M P Sebastian, “An Adaptive Indexed

Binary Search Tree For Efficient Homomorphic

Coercion Resistant Voting Scheme”, LBS College of

Engineering, Kasaragod, Kerala, India ,2010.

[6] R. Sundar“the deque conjecture for the splay

algorithm”,Combinatorica, 1992.

[7] R. E. Tarjan “Sequential access in play trees takes

lineartime”. Combinatorica, 1985.

[8] C. C. Wang, J. Derryberry, and D. D.

Sleator,”competitive dynamic binary search trees”.

SODA, 2006.

[9] L. Ballard, Conflict avoidance, “Data structures in

transactional memory”, Brown University

Undergraduate Thesis, 2006.

[10] R. Bayer, M. Schkolnick, “ Concurrency of operations

on B–Trees”, San Francisco, CA, USA, 1994.

[11] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer,

“Softwaretransactional memory for dynamic-sized data

structures”, New York, NY, USA,2003.

[12] K. S. Larsen, “ AVL trees with relaxed balance”,

Washington, DC, USA, 1994.

[13] K. Fraser, “Practical Lock Freedom”, University of

Cambridge,2003.

[14] Vinod, P. Suri P, “Maintaining aBinary Search Tree

Dynamically. Proceedingsof the 10th International

Conference onInformation Visualization”,

London,UK,2006.

[15] J. Derryberry, D. D. Sleator, and C. C. Wang, “A

lowerbound framework for binary search trees with

rotations”, Carnegie Mellon University, 2005.

[16] https://www.genworth.com/tools-and-forms/forms/life-

insurance-forms.html

[17] http://insurance.comarch.com/articles/handling-a-life-

insurance-underwriting-process

Authors

Mr. Chandrashekhar S. Khese. received his

B.E. degree in Electronics Engineering from University of

Mumbai in 2004. He has 10 years of experience of working

with MNCs in Pune and Mumbai. He is currently working

toward the M.E. Degree in Computer Engineering from

University of Pune. His research interests lies in Data

Mining, Software Engineering and Business Process

Management.

Mr. AmritPriyadarshi received his B.E. degree

in Electronics Engineering and MTech in Computer Science

and Engineering. He has 10 years of experience as Assistant

professor and he is currently perusing his Phd Degree.

http://www.ijritcc.org/
https://www.genworth.com/tools-and-forms/forms/life-insurance-forms.html
https://www.genworth.com/tools-and-forms/forms/life-insurance-forms.html
http://insurance.comarch.com/articles/handling-a-life-insurance-underwriting-process/
http://insurance.comarch.com/articles/handling-a-life-insurance-underwriting-process/

