
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 9 5678 - 5686

__

5678

IJRITCC | September 2015, Available @ http://www.ijritcc.org

A Review on Software Performance Analysis for Early Detection of Latent

Faults in Design Models

1
G.Kasi Reddy,

Research Scholar,

CSE, JNTU Hyderabad,

India

gkasireddy@rediffmail.com

2
Dr. D Sravan Kumar,

Professor and Head Dept. of CSE,

SR International Institute of

Technology,

Hyderabad, India.

dasojusravan@gmail.com

3
Dr. D Vasumathi,

Professor, CSE,

 JNTUH College of

Engineering,

Hyderabad, India.

vasukumar_devera@yahoo.co.in

Abstract-Organizations and society could face major breakdown if IT strategies do not comply with performance requirements. This is more so

in the era of globalization and emergence of technologies caused more issues. Software design models might have latent and potential issues that

affect performance of software. Often performance is the neglected area in the industry. Identifying performance issues in the design phase can

save time, money and effort. Software engineers need to know the performance requirements so as to ensure quality software to be developed.

Software performance engineering a quantitative approach for building software systems that can meet performance requirements. There are

many design models based on UML, Petri Nets and Product-Forms. These models can be used to derive performance models that make use of

LQN, MSC, QNM and so on. The design models are to be mapped to performance models in order to predict performance of system early and

render valuable feedback for improving quality of the system. Due to emerging distributed technologies such as EJB, CORBA, DCOM and SOA

applications became very complex with collaboration with other software. The component based software systems, software systems that are

embedded, distributed likely need more systematic performance models that can leverage the quality of such systems. Towards this end many

techniques came into existence. This paper throws light into software performance analysis and its present state-of-the-art. It reviews different

design models and performance models that provide valuable insights to make well informed decisions.

Keywords – Software performance engineering, UML, design models, performance models

__*****___

I. INTRODUCTION

Software performance engineering a quantitative approach

for building software systems that can meet performance

requirements [54]. It is not just another functional test as

conceived by any people. Instead it strives to fill gaps in the

software development process [55]. Queuing models can

help in software performance engineering [59]. According to

Woodside et al. [60] performance measurements are

pertaining to comparing, load testing, testing,

instrumentation, profiling, and tracing while the

performance modelling is pertaining to scenario analysis,

exploration of options, sensitivity, model generation and

high-level models. Poor performance costs millions of

dollars to the software industry. The make-or-break quality

of software is based on responsiveness, performance, and

scalability [8]. Performance testing plays a vital role in

improving software quality and usability by unearthing

potential faults and rectifying them [2].

UML models can be used to derive performance models [4],

[11], [12]. Petriu & Wang [5] explored architectural patterns

to derive software performance models. Similarly Williams

& Smith [10] used architectural approach to solve

performance issues of software. Menascee and Gomaa [6]

advocated the usefulness of combining both design and

performance models for leveraging quality in C/S systems.

Layered performance modelling can have profound impact

on software development and delivery [9]. Queuing

Network Models (QNM) are widely used for predicting

performance of software. Balsamo et al. [21] made a very

good review on this. To address delay and capacity

estimation a scenario based performance engineering model

was explored in [22] by employing Use Case Map (UCM)

and the need for concurrency. Simulation models were

explored in [17] and [23] for software performance

modelling. To enhance software quality software refactoring

was explored in [24], [89] and [93]. It is the extension to

[104] and [102] towards improving accuracy in

determination of components that are to be refactored.

Moreover refactoring could be part of a quality cycle in

software engineering [101]. A good review of refactoring

models can be found in [94]. Performance models can also

be used to design self managing computer systems with

Quality of Service (QoS) controllers [25].

Simulation and algebraic models are used for performance

analysis of software architectures and concluded that

integration of different techniques is more advantageous

[27]. A good survey on model based performance

engineering can be found in [29]. According to a survey in

software industry 20% of modules cause 80% of faults. This

notion was positively proved in Module-Order Model

explored by Khoshgoftaar et al. [30] for performance

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 9 5678 - 5686

__

5679

IJRITCC | September 2015, Available @ http://www.ijritcc.org

prediction. Software performance estimations were made by

Johansson & Wartenberg [31] with respect to embedded

platform where data is represented in the form of scenarios.

Middleware performance attributes can also be incorporated

into UML models [33]. A good review of UML based

software process modelling languages can be found in [66].

Omari et al. [36] explored performance models for layered

server systems in the environment containing replicated

server equipped with parallel processing. Software

performance analysis is made on UML models in [42] using

component-based LQN.

TABLE 1

ABBREVIATIONS

LQN Layered Queuing Network

MSC Message Sequence Chart

QNM Queuing Network Model

C/S Client/Server

VPN Virtual Private Network

OMG Object Management Group

MDA Model Driven Approach

MDSPE Model Driven Software Performance

Engineering

UCM Use Case Map

SPT Schedulability Performance and Time

SE Software Engineering

UML Unified Modelling Language

OCL Object Constrained Language

PMIF Performance Model Interchange

Format

XML Extensible Markup Language

UML-SPT Unified Modelling Language-

Schedulability Performance and Time

EJB Enterprise Java Beans

CORBA Common Object Request Broker

Architecture

WCF Windows Communication Foundation

DCOM Distributed Component Object Model

OLE Object Linking and Embedding

TDPM Template Driven Performance

Modelling

SysML Systems Modelling Language

DSE Design Space Exploration

PETTS Performance Engineering Tool for

Tiered Systems

MVC Model View Controller

UI User Interface

SPEDP Software Performance Engineering

Development Process

MOM Message Oriented Middleware

SPL Software Product Line

SOA Service Oriented Architecture

Ganesan & Prevostini [45] proposed a method that fills gap

between Systems Modelling Language (SysML) and Design

Space Exploration (DSE). The latter is used to gain optimal

performance in terms of size, cost, performance and power

consumption. The combined model when applied to

embedded systems for efficient modelling. Geo & Sair [48]

focused on long term bottlenecks that have bearing on

performance. They tool for analyzing such bottlenecks

improved average performance by 7%. According to

Woodside et al. [52], the future of performance engineering

depends on the comprehensive models that are result of

robust combination of many models with convergence

between modelling approaches and measurements. Software

models and platform models could be integrated for better

performance analysis.

Unknown service demand parameters are one of the

problems in software performance models. Menasce [56]

focused on this issue and provided a method using closed

form solution with accuracy in predicted response times.

There are some Java Modelling Tools for performance

evaluation [103]. Software performance models can also be

used to derive performance metrics that can be used to

evaluate performance [68]. The rest of the paper throws

more details into the software performance modelling.

Our main contribution in this paper is the study and review

of the present state-of-the-art on software performance

analysis. The design models and performance models which

are found in the literature are reviewed to provide insights.

The remainder of the paper is structured as follows. Section

2 provides software performance models. Section 3 throws

light into performance prediction of component based

applications. Section 4 focuses on object constrained

language and its impact on SE activities. Section 5 provides

performance engineering tools for tiered software systems.

Section 6 provides more details on software performance

engineering. Section 7 throws light into important discussion

and findings while session 8 concludes the paper besides

providing directions for future work.

II. SOFTWARE PERFORMNACE MODELS

Software quality characteristics like as performance,

reusability, reliability and maintainability are influenced by

software architecture. Towards this end Petriu et al. [1]

proposed Layered Queuing Network (LQN) models based

on the UML descriptions. The performance model and

system architecture are related. This model was applied to

telecommunication system where the model identified the

bottleneck movements among components based on the

load. Similar case study was explored in [13] and [26] for

qualitative analysis of different protocols performance

validation respectively. Omari et al. [40] also explored

LQNs as part of an analytical model for C/S systems.

Aquilani et al. [3] used Message Sequence Charts (MSC) to

derive performance models pertaining to software

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 9 5678 - 5686

__

5680

IJRITCC | September 2015, Available @ http://www.ijritcc.org

architectures automatically. In the process Queuing Network

Models (QNMs) are automatically derived and evaluated.

Modelling of software contention was explored in [7], [14]

and [98] using queuing networks and two-level iterative

queuing model respectively.

Virtual Private Networks (VPNs) are widely used in the real

world for secure communications and they have their

influence on performance of networks due to measures like

compression and encryption. Pena & Evans [15] evaluated

performance of such networks and found that CPU usage

and transference speed was degraded due to VPN. Xu et al.

[16] explored UML profile for performance analysis of

software design in terms of time, performance and

schedulability. Profile is the language extension for UML

given by OMG. Performance targets considered are

throughput, response time and utilization of resources. The

performance improvement strategy described in [16] makes

use of LQN, cloning bottlenecks and other possible

solutions. It is an iterative process where bottlenecks are

identified and resolved until a satisfactory solution is

converged. Normalized utilization is the technique used to

determine bottlenecks. The system also distinguishes

between real bottlenecks from others. UML Profiles are also

explored in [20] and [32] in terms of roles Schedulability

Performance and Time (SPT). UML-SPT is a software

performance tool explored in [41].

Balsamo & Marzolla [17] proposed a simulation based

model for performance evaluation that makes use of

architectures available in the form of UML. The simulation

model is derived from the UML model that includes

workloads, resources, steps, and parameters. The simulation

model provides sufficient feedback to the UML model. Thus

this approach can iteratively improve the performance of the

system. UML Profile is used for annotations as also done in

[16]. There are some issues such as statistical uncertainty

with UML performance annotations [99]. However, unlike

[16], a simulation model is used for performance modelling.

A web based video streaming application is used for

experiments that revealed that the system satisfies

performance requirements.

Traore et al. [18] proposed a Model Driven Approach

(MDA) to analyze performance of distributed systems.

Model Driven Software Performance Engineering (MDSPE)

is the main focus of the work of Traore et al. The model

make use of performance related activities at every phase of

life cycle, performance requirements in analysis phase,

performance annotation and performance analysis at design

level, and performance testing at coding level. Queuing

model is employed to for better performance. Different

performance models can be integration in software

development process. The performance models include

Queuing Networks (QN), Stochastic Process Algebras

(SPA) and Stochastic Timed Petri nets (STPN). These

models do have their own expressiveness in order to realize

performance analysis of software systems. Integration of the

models can yield synergetic effect in improving quality [28].

III. PERFORMANCE PREDICTION OF

COMPONENT-BASED APPLICATIONS

Distributed computing technologies such as Enterprise Java

Beans (EJB), DCOM (Distributed Component Object

Model), WCF (Windows Communication Foundation), and

Common Object Request Broker Architecture (CORBA)

help in building component based applications. Wojtek

Kozaczynski and Grady Booch (1998) [106] explored

component based software engineering. Their article throws

light into the need for component based engineering

practices in software development. Component can be

understood as a reusable software program or piece of code

that can be accessed from remote place as well. Moreover

the component can be accessed from other platforms as well.

A component developed in one language can be invoked

from other language program as well. This encourages

interoperable software development. The component

technology is predominant in case of hardware. In a

computer system mouse, keyboard, monitor and all parts are

from different companies but still they are working together.

This is actually known as componentization of development.

This makes people easy to switch to different components

based on the requirements. Software development also

started using this component technology. It is realized in the

form of Enterprise Java Beans originally released by Sun

Microsystems, SAP’s component technology, Microsoft’s

DNA project and IBM’s San Francisco Project to mention

few among the component technologies or projects (Wojtek-

1998-1). Microsoft’s Component Object Model (COM) and

Distributed Component Object Model (DCOM) are best

examples in which software is built in the form of

component based software development. The Enterprise

Java Beans (EJB) and Web services technologies support

component development. Irrespective of the platform in

which a component is built, it can be involved from program

in any other platform. All distributed component

technologies support component development and

invocation from a remote place.

Java platform and Microsoft.NET platform provide

distributed component technologies. From Java platform

EJB, Remote Method Invocation (RMI), Web Services and

Java Messaging Service (JMS) are examples of the

technologies that support component development. The

components that are run in distributed environment can help

integrate businesses in the real world irrespective of their

technology platforms (Wojtek-1998-1). Object oriented

programming and its flexible development with code

reusability and resembling real world solutions made it

possible to have component based software development

(CBSE). CBSE goes a long way in developing useful

applications in the real world. The e-commerce applications

such as Amazon are leveraging the component technologies

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 9 5678 - 5686

__

5681

IJRITCC | September 2015, Available @ http://www.ijritcc.org

in order to have communication among the servers of

different vendors seamlessly. Therefore it is essential to

promote CBSE kind of programming so as to get benefits

from business integration and reusability of software so that

time and money can be saved in the software industry and in

the real world.

Common Object Request Broker Architecture (CORBA) is

another distributed component development platform that

helps developing reusable software components (Wojtek-

1998-1). Object Linking and Embedding (OLE) is one of the

best examples to know how component technology can be

leveraged to reuse software. An application might have

certain features. Other applications need not to rebuild such

features. They can use OLE technology in order to reuse

those features without rebuilding it. Therefore the theme

behind CBSE is that do not reinvent the wheel. Based on

this theme component software development goes on in

future also. Towards this end many companies including

Object Management Group (OMG) contributed. The

concept of reusable software component development will

go on in future also. The way hardware components can be

replaced with new components, the software components

also can be replaced with new ones. Therefore the

component development technology is based on the standard

interfaces and that will work fine as far as interface

standards are followed (Wojtek-1998-2).

Hon Hopkins (2000) [105] focused on the component

technology and the need for software component

development in order to leverage reusability and gain

economic advantages in the real world. Component is

defined as unit of composition with standard interfaces in

such a way that other components can interact with it. There

have been attempts to build reusable software components

that can be used quickly to build complex business systems.

Reusability ad Ease of Maintenance is the two advantages of

the software component development. The object oriented

model and component based model go hand in hand. Both

complement each other. Thus there is promotion of

component based software development. Distributed

Component Object Model (DCOM) is the best example

from Microsoft that is based on the component technology.

However, these components are platform independent and

largely limited to Windows Operating System. From OMG

Common Object Request Broker Architecture (CORBA)

came into existence. This is also a distributed technology

that enables components developed in any platform to

invoke CORBA components with standard interfaces (Hon-

2000-2). The main difference between DCOM and CORBA

is that CORBA is platform independent while the DCOM is

not. Extensible Mark-up Language (XML) plays a vital role

in achieving communication between heterogeneous

components.

Unified Modelling Language (UML) also incorporated

provision for component based development. A component

is a piece of software that can be reused. Moreover, it is

interoperable with other components. The components

developed in different languages can interact with each other

so as to avoid reinventing wheel in future endeavours. The

reusability and ease of maintenance are the two major

advantages of the component development model.

Components are mainly used in distributed applications.

This is because the distributed applications run on different

machines with different platforms. In this complex scenario,

it is essential to have software component that can be used

or invoked by other components irrespective of their

location with standard interfaces. DLL hell was the problem

with component technology using COM and DCOM. This

problem is limited to Windows platform. However,

Microsoft improved DCOM in order to improve the

situation to leverage the component development

technologies and their usage in the software industry.

However, there are many other issues that are to be

overcome in order to speed up the software developing

based on component technologies. The issues include

availability of different platforms, different architectures,

specificity, versioning, quality, and the features that form

hurdles for component development (Hon-2000-4).

The performance predication methodology presented in [34]

considers two aspects such as modelling container

components and application components that work in

tandem with container components. The methodology

includes performance predication model at design-level. It

contains a quantitative performance model that use of inputs

from application-independent performance profiles. EJB

application was considered to have predictions based on the

said methodology.

Web services can also be used to participate in performance

modelling. Since web services are the components that can

be involved in inter-operable fashion, performance model

web service was built in [38]. Performance models might

have different format for model information. Smith & Llado

[39] explored an interchange format namely Performance

Model Interchange Format (PMIF) that facilitates

transforming model information from one performance

model to another performance model. Thus it is possible to

have multiple models in place based on the requirements.

The PMIF is based on XML standards. In [44], [65] and [51]

similar kind of interchange format was presented. Template

Driven Performance Modelling (TDPM) was made in [43]

on EJB components.

IV. OBJECT CONSTRAINED LANGUAGE AND

ITS IMPACT ON SE ACTIVITIES

Software Engineering (SE) is the branch of computer

science which deals with developing good software. Unified

Modelling Language (UML) has associated Object

Constrained Language (OCL) which is used to make the

design models more precise and accurate. Therefore it can

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 9 5678 - 5686

__

5682

IJRITCC | September 2015, Available @ http://www.ijritcc.org

be assumed that OCL has its impact on the SE activities.

The hypothesis that OCL can improve the precision of

software design models was investigated in [35] on three

software engineering activities such as impact analysis of

changes, functionality of software and the robustness of

system logic. The experiments on hypothesis proved that the

OCL has significant impact on SE activities and it also

leverages the abilities of software engineers. The OCL usage

also costs but it depends on the tool being used. The

experiments covered defect detection, comprehension and

maintenance. Performance evaluation is influenced by

certain factors as explored in [37]. For instance the metrics

used in performance evaluation are sensitive to different job

classes. The measures are not working impartially with

different workloads. Therefore it is essential to consider

these facts and some workload attributes do not need

modelling.

V. PERFORMANCE ENGINEERING TOOLS

FOR TIERED SOFTWARE SYSTEMS

Tired architecture is commonly used in software systems.

Generally web based applications are built using 3-tier

model. That way there are n-tier applications that need to be

considered for performance engineering. To evaluate

performance of such systems Sharma et al. [46] presented a

tool. Different tiers might run on different machines in

distributed environment. The performance model needs to

consider such environment and needs to consider

performance issues such as think time of client, range of

clients and so on. They used performance analysis tool

named Performance Engineering Tool for Tiered Systems

(PETTS) developed by them for performance analysis of

tiered systems. Enterprise applications with multiple tiers

built in either JAVA or .NET platforms can have different

factors to be considered for performance evaluation. The

factors include security, cost, web services, vendor and

dependency. The complexity of tiers brings about

performance issues in enterprise applications. There are

architectural patterns that could reduce the complexity of

enterprise applications. They include Model View

Controller (MVC), PCMEF and XWA [49]. Modelling of

such systems can be improved or enhanced using LQNs

[61].

Web based software systems need certain resources based

on the tiers they have. Mean Value Analysis (MVA)

algorithm proposed by Boga´rdi-Me´szo¨ly et al. can help in

building improved performance models as they can reduce

computational cost and complexity besides producing

measures or metrics with high accuracy [62]. Rule based

navigations are included in web applications. Xu [63]

proposed a framework that supports performance diagnosis

and improvement of role based software systems. The model

contains many phases like extract model, solve, generate

rules, make decisions and design software. The design level

consideration helps in early modification of models for

improving quality of software.

VI. FRAMEWORKSFOREFFICIENT

SOFTWARE PERFORMANCE EVALUATION AND

OPTIMIZATION

Response Surface Methodology (RSM) was proposed in

[50] as part of automatic framework for performance

evaluation and optimization. The framework was named as

Response Surface and Importance Framework (RS-IF).

Capacity planning and total cost problems were explored

with this tool. There were three servers included for

performance model namely UI server, event server and

database server. Markov model was used to demonstrate the

proof concept. RSM is a mathematical technique used to

evaluate performance of software systems. Importance

based process can help reduce unnecessary computations.

Thakkar et al. [57] proposed a framework for automatically

building performance models based on measurements.

Pelliccione et al. [64] proposed a framework known as

CHARMY. This framework is used to design and verify

architectural specifications. They also had transformation to

generate Java code from verified design specifications. Thus

the tool is supporting iterative modelling and evaluation of

architectures involved in software development.

VII. MORE ON SOFTWARE PERFORMANCE

ENGINEERING

Software development process involves a plethora of

performance issues. It is essential to evaluate software

performance. Mapping the UML model at design phase into

a performance model is one of the widely used approaches

[91]. Distefano et al. [67] came up with guidelines that can

be used to have performance models that are

ArgoPerformance compliant. The design process is

considered as software performance engineering

development process (SPEDP) which must use certain

notations, rules and guidelines in order to have pre-defined

syntax and semantics that can help in evaluation. Since

performance is one of the overlooked aspects in software

development, it is imperative to have such thing in the

design phase itself. From the software architecture model,

performance model is built. Then the model is applied to

web-based video application. The performance model is thus

able to provide required feedback so as to improve the

quality of the system.

Performance prediction is the ability to estimate the

performance of an application in the design phase. This kind

of research was found in [68] where an algorithm was

proposed. The algorithm was tested with a web based

application in terms of computational complexity, response

time, and computation time. Regression techniques are

widely used in performance prediction of software.

Especially parameter estimation pertaining to software

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 9 5678 - 5686

__

5683

IJRITCC | September 2015, Available @ http://www.ijritcc.org

performance can be achieved using these techniques [70].

Performance modelling or performance predication became

more important due to the invent of distributed technologies

like Web Services. In [71] and [79] performance

engineering was applied a video application that depends on

web services. The performance of video provider web

service was predicted. It could fix bugs in the design phase.

Traore et al. [73] explored UML-based performance

modelling for applications that are made up of distributed

components. Performance annotations are given to every

operation in the enterprise application. The annotations are

used to model performance evaluation. The model-driven

SPE process thus used UML profile for SPT. Similarly

networking and OLTP applications can be subjected to

performance modelling [74], [75].

Software Product Line (SPL) is nothing but a set of products

that are related and formed from a shared set of assets.

Tawhid & Petriu [76] derived performance models

automatically from SPL. UML Profile MARTE from OMG

was used to achieve this. The standard annotations provided

by MARTE can help in deriving performance model that

can be represented as a LQN. This is applied to a distributed

e-commerce application based on variability model of SPL.

Consistency rules play a vital role in software performance

models. In [77] they are used to present an automated

approach that detects inconsistencies in the design of a

software system. Palladio architectural models are also used

in software engineering. Performance antipatterns might be

associated with such models. Trubiani & Koziolek [78]

presented a model that could automatically detect software

performance antipatterns thus improving performance of the

system by 50%. Song et al. [80] proposed a learning based

mechanism that predicts defect-proneness in given software

system. Another important form which is used along with

QN models is product-form which was used to represent

different systems in communication and production. Service

Oriented Architecture (SOA) UML profile was explored in

[90] for real time embedded systems in distributed

environment. Stereotypes and metamodels were used for

achieving performance evaluation. The solution was also

applicable to multiple devices that run in a distributed

environment. In [97] software performance evaluation is

made for an embedded system pertaining to polar satellite

antenna control.

VIII. DISCUSSION & FINDINGS

Requirements gathering should also include performance

requirements of the system [82] while performance targets

are to be identified in the process clearly [83]. The

performance requirements can be evaluated using UML-

JMT proposed in [85]. Capacity management can also be

covered at the time of design [84]. High Performance

Computing (HPC) is the area where performance

engineering is lacking [69]. Message Oriented Middleware

(MOM) is found another area where further research is

required. The middleware and its clients work in loosely

coupled environment. The dependency among the

components can be analyzed besides predicting performance

[72]. Product – forms [81] is one of the models used in

performance engineering which were used to analyze

resource sharing systems. UML to Petri Nets concept was

explored for performance modelling in [86]. The model was

based on Performance Context Model (PCM). It maps PCM

to performance domain. Queuing Petri Nets is an extension

to Petri Nets that are very powerful in modelling hardware

contention and strategies for scheduling [92]. Incorporating

SLAs at design level and achieving a performance model is

very challenging problem that needs further research [87].

Software architects can explore performance and cost model

besides using design space exploration tool and modern

performance models for effectively predicting performance

[88]. Performance models can help organizations to choose

best hardware and software with expert decision making

strategies as explored in [95].

Software performance models can provide automated

feedback that can be used to improve systems [95]. This is

the motivation for all modern model-driven techniques.

Filters such as Kalman Filter are also used with performance

models. To estimate parameter and tracking then can be

done using filters [100]. Annotated UML model is explored

in [91] for software performance modelling. Software

product line is the less explored area with respect to

software performance modelling [76]. Consistency rules

play a vital role in software performance models [77]. From

the review of different kinds of performance models it is

understood that there are many case studies which were less

explored. For instance distributed component models that

make use of distributed computing technologies like EJB,

DCOM, CORBA and so on can be explored further for

performance modelling. There is scope for more research

into embedded systems. The emerging technologies like

cloud computing and mobile computing technologies are

good candidates for further research.

IX. CONCLUSIONS AND FUTURE WORK

In this paper we focused on software performance

engineering. We reviewed considerable literature to have

insights into the performance aspects of software industry.

Interestingly it is understood that performance modelling

was the neglected area. Identifying and addressing

performance issues play vital role in improving quality of

software. Since software performance is one of the most

critical factors in the modern software development, this

paper throws light into different design models and

performance models and the need for performance

modelling. The essence of performance modelling in the

design phase is to unearth potential bugs in the early stages

of SDLC. This will save time, money and effort besides

increasing success rate in software development and

delivery of time-to-market products. The design models

available are UML, Petri Nets and Product-Forms that could

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 9 5678 - 5686

__

5684

IJRITCC | September 2015, Available @ http://www.ijritcc.org

be mapped to performance models. Stated differently, the

design models can be effectively used to derive performance

models. Performance models provide essential feedback for

improving quality of software. Model-Driven software

process engineering has been around and that needs to be

improved keeping performance requirements in mind. In

fact, the performance aspects are to be considered in the

design itself to ensure that the outcome of the development

will meet performance requirements. This research is

extended further to have case-studies that were less explored

besides proposing new performance models.

REFERENCES

[1] Petriu,Dorina.(2000).Architecture-Based performance
Analysis applied to a Telecommunication System. IEEE,.
26 (11), p1-17.

[2] Weyuker, J, Elaine. (2000). Experience with Performance
Testing of Software Systems: Issues, an Approach, and
Case Study. IEEE. 26 (12), p1-10.

[3] Andolfi, F,. Aquilani, F,. Balsamo, S,. Inverardi, P.
(2000). Deriving Performance Models of Software
Architectures from Message Sequence Charts. ACM, p1-
11.

[4] Dr Petriu, Dorina,. (2000). Deriving Performance Models
from UML Models by Graph Transformations. WOSP. p1-
52.

[5] Dorina, C. Petriu and Xin Wang. (2000). Deriving
Software Performance Models from Architectural Patterns
by Graph Transformations. Carleton University,Ottawa,
ON, Canada. p1-14.

[6] MenasceÂ , D.A,.. (2000). A Method for Design and
Performance Modelling of Client/Server Systems. IEEE.
26 (11), p1-20.

[7] MenasceÂ , D.A,. (2001). Simple Analytic Modelling of
Software Contention. George Mason University. p1-7.

[8] Ph.D Williams, L.G and Ph.D Smith, C.U. (2002). Five
Steps to Solving Software Performance
Problems. Software Engineering Research and
Performance Engineering Services. p1-10.

[9] Woodside, M. (2002). An Overview of Layered
Performance Modelling.Carleton University, Ottawa,
Canada. p1-42.

[10] Williams, L.G and Smith, C.U. (2002). PASASM: An
Architectural Approach to Fixing Software Performance
Problems. Software Engineering Research and
Performance Engineering Services. p1-15.

[11] Amer, H and Petriu, D.C. (2002). Software Performance
Evaluation: Graph Grammar-based Transformation of
UML Design Models into Performance Models. Carleton
University. p1-33.

[12] Petriu, D.C and Woodside, M. (2002). Software
Performance Models from System Scenarios in Use Case
Maps. Springer. p1-18.

[13] Castaldi, M,. Inverardi, P,. and Afsharian, S . (2002). A
Case Study in Performance, Modifiability and
Extensibility Analysis of a Telecommunication System
Software Architectur IEEE. p1-10.

[14] Menasc´e, D.A. (2002). Two-Level Iterative Queuing
Modelling of Software Contention. IEEE. p1-10.

[15] Peiia, J.C.C and Evans J. (2000). Performance Evaluation
of Software Virtual Private Networks (VPN). IEEE. p1-
522.

[16] Jing Xu,. Woodside, M,. and Petriu, D. (2003).
Performance Analysis of a Software Design using the
UML Profile for Schedulability, Performance and
Time. Carleton University. p1-8.

[17] Balsamo, S,. and Marzolla, M. (2003). A Simulation-
Based Approach to Software Performance
Modelling. ACM. p1-4.

[18] Traore, I,. and Woungang, I,. (2003). Performance
Analysis of Distributed Software Systems: A Model-
Driven Approach. IEEE. p1-8.

[19] Pavlo Bazilinskyy and Markus Brunner. (n.d).
Performance Engineering and Testing. IEEE. P1-4.

[20] Merseguer, J,. and Campos, J. (2003). Exploring roles for
the UML diagrams in software performan Dpto. de
Informatica e Ingeniera de Sistemas Universidad de
Zaragoza, Zaragoza, Spain. p1-5.

[21] Balsamo, S,. Personè, V.D.N and Inverardi, P. (2003). A
review on queueing network models with finite capacity
queues for software architectures performance
prediction. Elsevier Science. p1-22.

[22] Petriu, D.B,. Amyot, D,. and Woodside, M. (2003).
Scenario-Based Performance Engineering with
UCMNAV. Carleton University. p1-16.

[23] Balsamo, S,. and Marzolla, M. (2003). Simulation
Modelling of UML Software Architectures. Università Ca'
Foscari di Venezia. p1-12.

[24] Yijun, Y,. Mylopoulos, J and Eric Y. (2003). Software
refactoring guided by multiple soft-goals. IEEE. p1-6.

[25] Menascé, D.A,. and Bennani, M.N. (2003). ON THE USE
OF PERFORMANCE MODELS TO DESIGN SELF-
MANAGING COMPUTER SYSTEMS. Menascé and
Bennani. p1-9.

[26] Compare, D,. D’Onofrio, A,. Marco, A.D and Inverardi, P.
(2004). Automated Performance Validation of Software
Design: An Industrial Experience. IEEE. p1-4.

[27] Balsamo, S,. Marzolla, M,. Marco, A.D and Inverardi, P .
(2004). Experimenting different software architectures
performance techniques: a case study. Dipartimento di
Informatica. p1-5.

[28] Balsamo, S,. and Simeoni, M. (2004). Integrating
Performance Modelling in the Software Development
Process. Springer. p1-5.

[29] Balsamo, S,. Marco, A.D,. and Inverardi, P. (2004).
Model-Based Performance Prediction in Software
Development: A Survey. IEEE. 30 (5), p1-16.

[30] Khoshgoftaar, T.M . (2004). A Multiobjective Module-
Order Model for Software Quality Enhancement. IEEE. 8
(6), p1-16.

[31] Johansson, E,. and Wartenberg, F. (2004). Proposal and
Evaluation for Organising and Using Available Data for
Software Performance Estimations in Embedded Platform
Development. IEEE. p1-8.

[32] Woodside, M and Petriu, D. (2004). Capabilities of the
UML Profile for Schedulability Performance and Time
(SPT). Dept of Systems and Computer Engineering,
Carleton University, Ottawa Canada. p1-4.

[33] Verdickt, T,. Dhoedt, B,. Gielen, F,. and Demeester, P.
(2005). Automatic Inclusion of Middleware Performance
Attributes into Architectural UML Software
Models. IEEE. 31 (8), p1-17.

[34] Brad Clark and Dave Zubrow. (2001). How Good is the
Software: A Review of Defect Predection Techniques
. Carnegie Mellon University. 1 (2), p1-35.

[35] Liu, Y. (2005). Design-Level Performance Prediction of
Component-Based Applications. IEEE. 31 (11), p1-14.

[36] Briand, L.C. (2005). An Experimental Investigation of
Formality in UML-Based Development. IEEE. 31 (10),
p1-17.

[37] Omari, T,. Franks, G,. Woodside, M,. and Pan, A. (2005).
Efficient Performance Models for Layered Server Systems
with Replicated Servers and Parallel Behaviour. Elsevier
Science. p-1-33.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 9 5678 - 5686

__

5685

IJRITCC | September 2015, Available @ http://www.ijritcc.org

[38] Feitelson, D.G. (2005). Experimental Analysis of the Root
Causes of Performance Evaluation Results: A Backfilling
Case Study. IEEE. 16 (2), p1-5.

[39] Smith, C.U,. and Lladó, C.M. (2005). Performance Model
Interchange Format (PMIF 2.0): XML Definition and
Implementation. Smith and Lladó. p1-10.

[40] Omari, T,. Franks, G,. Woodside, M,. and Pan, A. (2005).
Solving Layered Queueing Networks of Large Client-
Server Systems with Symmetric Replication. ACM. p1-8.

[41] Mart´ınez, E.G and Merseguer, J. (2005). A Software
Performance Engineering Tool based on the UML-
SPT. Dpto. de Inform´atica e Ingenier ı́a de Sistemas.
Universidad de Zaragoza, Spain.. p1-2.

[42] Distefano, S,. Scarpa, M,. and Puliafito, A. (2005).
Software Performance Analysis in UML Models. IEEE.
p1-11.

[43] Xu, J and Woodside, M. (2005). Template Driven
Performance Modelling of Enterprise Java
Beans. Carleton University. p1-8.

[44] Smith, C.U,. and Lladó, C.M. (2005). From UML models
to software performance results: An SPE process based on
XML interchange formats. Workshop on Software and
Performance. p1-12.

[45] Ganesan, S and Prevostini, M. (2006). Bridging the Gap
between SysML and Design Space Exploration. University
of Lugano. p1-6.

[46] Sharma, V.S,. Jalote, P and Trivedi, K.S. (2006). A
Performance Engineering Tool for Tiered Software
Systems. IEEE. p1-8.

[47] Sharma, V.S,. Jalote, P and Trivedi, K.S. (2006). A
Performance Engineering Tool for Tiered Software
Systems. IEEE. p1-8.

[48] Gao, F,. and Sair, S. (2006). Long-term Performance
Bottleneck Analysis and Prediction. IEEE. p1-7.

[49] Oktay, M,. Gülbağcı,A.B,. and Sarıöz, M. (2007).
Architectural, Technological and Performance Issues in
Enterprise Applications. World Academy of Science,
Engineering and Technology. p1-6.

[50] Hsu, C.C,. and Devetsikiotis, M. (2007). An Automatic
Framework for Efficient Software Performance Evaluation
and Optimization. IEEE. p1-7.

[51] Smith, C.U,. Lladó, C.M,. Puigjaner, R and Williams,
L.G. (2007). Interchange Formats for Performance
Models: Experimentation and Ouput¤. Smith, C.U,. Lladó,
C.M and Puigjaner,(1Copyright 2007 by the Authors. All
rights reserved) R. p1-10.

[52] Woodside, M,. Franks, G and Petriu, D.C. (2007). The
Future of Software Performance Engineering. IEEE. P1-
17.

[53] Cortellessa, V,. Pierini, P and Rossi, D. (2007). Integrating
Software Models and Platform Models for Performance
Analysis. IEEE. 33 (6), p1-17.

[54] Smith, C.U. (2007). Introduction to Software Performance
Engineering: Origins and Outstanding Problems. Springer.
p1-34.

[55] Sankarasetty, J,. Mobley, K,. Foster, L,. Foster, T and
Calderone, T. (2007). Software Performance in the Real
World: Personal Lessons from the Performance Trauma
Team. ACM. p1-8.

[56] Menasc´e, D.A. (2008). Computing Missing Service
Demand Parameters for Performance Models. George
Mason University. p1-7.

[57] Thakkar, D,. Hassan, A.E,. Hamann,G and Flora P.
(2008). A Framework for Measurement Based
Performance Modelling. ACM. p1-11.

[58] Bertoli, M,. Casale, G,. and Serazzi, G. (2007). The JMT
Simulator for Performance Evaluation of Non-Product-
Form Queueing Networks.IEEE. p1-8.

[59] FILIPOWICZ, B,. and KWIECIEN, J. (2008). Queueing
systems and networks. Models and applications. OF
SCIENCES TECHNICAL SCIENCES. 56 (4), p1-12.

[60] Woodside, M. (2008). Performance Data and Performance
Models.Carleton University Ottawa, Canada. P1-70.

[61] Franks, G. (2009). Enhanced Modelling and Solution of
Layered Queueing Networks. IEEE. 35 (2), p1-14.

[62] Me´szo¨ly, A.B,. Levendovszky, T,. and Szeghegyi, A.
(2009). Improved Performance Models of Web-Based
Software Systems. IEEE. p1-6.

[63] Xu, J. (2009). Rule-based automatic software performance
diagnosis and improvement. Elsevier. p1-26.

[64] Pelliccione, P,. Inverardi, P and Muccini, H. (2009).
CHARMY: A Framework for Designing and Verifying
Architectural Specifications.IEEE. 35 (3), p1-35.

[65] Giachetti, G,. Marín, B,. and Pastor, O. (2009). Using
UML Profiles to Interchange DSML and UML
Models. IEEE. p1-10.

[66] Bendraou, R,. and Je´ze ́ quel, J. M. (2010). A
Comparison of Six UML-Based Languages for Software
Process Modelling. IEEE. 36 (5), p1-14.

[67] Distefano, S,. Puliafito, A and Scarpa, M . (2010).
Implementation of the Software Performance Engineering
Development Process. ACADEMY PUBLISHER . 5 (8),
p1-11.

[68] Mészöly, A.B and Levendovszky, T. (2010). A novel
algorithm for performance prediction of web-based
software systems. Elsevier. p45-57.

[69] Mansharamani, R and Nambiar, M. (2010). Performance
Engineering of a Trading Exchange’s Risk Management
System. CMG. p1-9.

[70] DISTEFANO, S,. PULIAFITO, A,. and SCARPA, M.
(2010). DESIGN AND MODELING IN THE
SOFTWARE PERFORMANCE ENGINEERING
DEVELOPMENT PROCESS. World Scienti¯c Publishing
Company. 19 (1), p307-323.

[71] Happe, J,. Westermann, D,. Sachs, K and Kapov´a, L.
(2010). Statistical Inference of Software Performance
Models for Parametric Performance
Completions. Springer. p20-35.

[72] Traore, I,. Woungang, I,. Ahmed, A.A.E.S,. and Obaidat,
M.S. (2010). UML-Based Performance Modelling of
Distributed Software Systems.ACADEMY PUBLISHER .
p1-10.

[73] Balsamo, S,. Harrison, P.G and Marin, A. (2010). A
Unifying Approach to Product-forms in Networks with
Finite Capacity Constraints. ACM. p1-11.

[74] Mansharamani, R. (2011). Auto Analysis for IT Systems
Performance Management. Rajesh Mansharamani. p1-8.

[75] Tawhid, R,. and Petriu, D.C. (2011). Automatic
Derivation of a Product Performance Model from a
Software Product Line Model. IEEE. p1-10.

[76] Egyed, A. (2011). Automatically Detecting and Tracking
Inconsistencies in Software Design Models. IEEE. 37 (2),
p1-17.

[77] Trubiani, C and Koziolek, A. (2011). Detection and
Solution of Software Performance Antipatterns in Palladio
Architectural Models. ACM. p1-9.

[78] Mohan Reddy, R,CH,. Geetha, E, D and Srinivasa, KG.
(2011). EARLY PERFORMANCE PREDICTION OF
WEB SERVICES. IJWSC. 2 (3), p1-11.

[79] Song, Q,. Jia, Z,. Shepperd, M,. Ying, S and Liu, J .
(2011). A General Software Defect-Proneness Prediction
Framework. IEEE. 37 (3), p1-15.

[80] Balsamo, S,. and Marin, A. (2011). Performance
Engineering with Product-form Models: Efficient
Solutions and Applications. ACM. p1-12.

[81] Mansharamani, R. (2011). Performance Requirements
Gathering & Analysis. Rajesh Mansharamani. p1-24.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 9 5678 - 5686

__

5686

IJRITCC | September 2015, Available @ http://www.ijritcc.org

[82] Mansharamani, R. (2011). Performance Targets for
Developers. Rajesh Mansharamani. p1-14.

[83] Mansharamani, R. (2011). High Level Requirements for
Capacity Management. Rajesh Mansharamani. p1-5.

[84] Abdullatif, A.AL,. and Pooley, R.J. (2010). UML-JMT: A
Tool for Evaluating Performance Requirements. IEEE. p4-
5.

[85] Distefano, S. (2011). From UML to Petri Nets: The PCM-
Based Methodology. IEEE. 37 (1), p1-5.

[86] DR Naamad, A. (2012). NEW CHALLENGES IN
PERFORMANCE ENGINEERING. EMC Corporation.
p1-24.

[87] Gooijer, T.D,. Jansen, A,. Koziolek, H,. and Koziolek, A.
(2012). An Industrial Case Study of Performance and Cost
Design Space Exploration. ACM. p4-5.

[88] Arcelli, D. (2012). Model-based software refactoring
driven by performance analysis. Dipartimento di
Ingegneria e Scienze dell’Informazione e Matematica
Universit`a degli Studi di L’Aquila. p1-8.

[89] Aziz, M.W,. Mohamad, R and Jawawi, D.N.A. (2012).
SOA4DERTS: A Service-Oriented UML profile for
Distributed Embedded Real-Time Systems. IEEE. p4-5.

[90] Traore, I,. Woungang, I,. Ahmed, A.A.E.S,. and Obaidat,
M.S. (2012). Software Performance Modelling using the
UML: a Case Study.ACADEMY PUBLISHER. 7 (1), p1-
17.

[91] Kounev, S,. Spinner, S and Meier, P. (2012). Introduction
to Queueing Petri Nets: Modelling Formalism, Tool
Support and Case Studies. IEEE. p1-8.

[92] Arcelli, D and Cortellessa, V. (2013). Software model
refactoring based on performance analysis: better working
on software or performance side?. ACM. p1-33.

[93] Abebe, M and Yoo, C.J. (2014). Classification and
Summarization of Software Refactoring Researches: A
Literature Review Approach. ISSN. 46,p1-6.

[94] Etxeberria, L,. Trubiani, C,. Cortellessa, V,. and
Cortellessa G . (2014). Performance-based Selection of
Software and Hardware Features under Parameter
Uncertainty. ACM. p4-5.

[95] Arcelli, D and Cortellessa, V. (2015). Assisting Software
Designers to Identify and Solve Performance
Problems. ACM. p1-6.

[96] Steven H. Lett. (n.d). Using Peer Review Data to Manage
Software Defects. Software Engineering. p1-6.

[97] Kasi Reddy, G,. SambasivaRao, B,. Kumar, S.D,. and
Rani, P.B. (2013). Software Performance Evaluation of a
Polar Satellite Antenna Control Embedded System. ISSN.
2 (1), p1-8.

[98] Schwetmen, H. (1982). Implementing the mean value
Algorithm for the Solution of Queueing Network
Models. Purdue University. p1-31.

[99] Woodside, M,. Zink, K and Petriu, D . (2005). Issues in
Performance Annotations for UML. Carleton University.
p1-35.

[100] Woodside, C.M. (2006). The Use of Optimal Filters to
Track Parameters of Performance Models. Carleton
University. p1-22.

[101] Ruhroth, T,. Voigt, H and Wehrheim, H. (2009). Measure,
diagnose, refactor: A formal quality cycle for software
models. IEEE. p1-8.

[102] L. Tahvildari and K. Kontogiannis. Requirementsdriven
software re-engineering framework. In WCRE 2001,
pages 71–80, 2001.

[103] M. Bertoli, G. Casale, and G. Serazzi. Java modelling
tools: an open source suite for queueing network
modelling and workload analysis. In Proc. QEST’06, 119–
120, IEEE Press.

[104] J. Mylopoulos, L. Chung, and B. Nixon. Representing and
using nonfunctional requirements: A processoriented
approach. IEEE Transactions on Software Engineering,

18(6):483–497, Jun 1992. Special Issue on Knowledge
Representation and Reasoning in Software Engineering.

[105] Hon Hopkins. Component Premier. Communications of
the ACM (2000): 27-30.

[106] Wojtek Kozaczynski and Grady Booch. Component Based
Software Engineering. IEEE (1998): 34-37.

http://www.ijritcc.org/

