
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 7 5014 - 5018

__

5014
IJRITCC | July 2015, Available @ http://www.ijritcc.org

Decoding the Volatile keyword in C through Assembly Code

Anubhav Chaturvedi
Department of Computer Science

And Engineering,

The M. S. University of Baroda,

Vadodara, Gujarat,India

acanubhav@gmail.com

Saurabh Jain
Department of Computer Science

And Engineering,

The M..S. University of Baroda,

Vadodara,Gujarat,India

saurabhjain9307@gmail.com

Dr. Anjali Jivani
Department of Computer Science

And Engineering,

The M. S. University of Baroda,

Vadodara,Gujarat,India

anjali_jivani@yahoo.com

Abstract— The growing complexity and high efficiency requirements of embedded systems call for new code optimization techniques and

architecture exploration, using re target able C and C++ compilers. The first commercial tools are already in industrial use. The volatile keyword

is intended to prevent the compiler from applying any optimizations on objects that can change in ways that cannot be determined by the

compiler. In this paper we have tried to decode this volatile keyword mystery by digging into the assembly code generated by implemented C

program.

Keywords- vimdiff, withvolatile, withoutvoatile, polling, delay

__*****___

I. INTRODUCTION

The volatile keyword is intended to prevent the compiler

from applying any optimisations on objects that can change in

ways that cannot be determined by the compiler. So, what are

its instructions to the compiler? It tells the compiler that the

value of the variable may change at any time during the

execution of the code without the knowledge of the compiler.

If proper precautions are not taken, the desired output may not

be achieved. A variable should be declared volatile whenever

its value may change unexpectedly. . Volatile variables are

variables that can be changed at any time by other external

programs or by the same program.

II. IMPLEMENTATION IN C PROGRAMMING

The syntax for declaring the variable as ‗volatile‘ is: volatile

dataType variable. Some examples for the volatile keyword

are: (Note : All codes are compiled in the gcc compiler

version: gcc version 4.8.4 (Ubuntu 4.8.4-2ubuntu1~14.04)).

Now displaying the Polling Implementation.

A. Without Volatile Keyword

//filename:withoutvolatile1.cpp

#include<iostream>

Using namespace std;

Intmain()

{inti=0;

Int flag=0;

While(flag!=1)

{

//keep pooling till flag becomes 1

if(i==50)

{flag=1;}

++I;}}

B. With Volatile Keyword

//filename:withvolatile.cpp

#include<iostream>

Using namespace std;

Intmain()

{inti=0;

Volatile int flag=0;

While(flag!=1)

{

//keep pooling till flag becomes 1

if(i==50)

{flag=1;}

++I;

}}

Here, our intention is to keep polling inside the while

loop until the flag value is SET to the value 1, which might be

done by an I/O device. However, during the compilation

phase, the compiler will find that this piece of code is not

achieving any valuable results; hence, the code

(withoutvolatile.cpp) will be optimized by removing this. If

one observes the code that follows below, the condition inside

the while loop is replaced by the compiler to while (TRUE).

This is primarily done in compilers in the embedded systems

environment, where generating optimal machine code is very

important. In case of studying about the Linux device drivers

and also troubleshooting them this is the primary component.

C. int main()

{inti = 0;

int flag = 0;

while(TRUE)

{//Infinite loop;}

//rest of the code

return 0;}

III. OPTIMIZATION AND USES IN OPERATING SYSTEM

A. Optimisation

How can one confirm that the compiler is really optimizing the

code? For that you must see the assembly implementation of

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 7 5014 - 5018

__

5015
IJRITCC | July 2015, Available @ http://www.ijritcc.org

the above program by compiling the C source code with the -

save-temps option as shown below:

gcc -o withoutvolatilewithvolatile.c -save-temps

1. When we compile code with the –save-temps

option of gcc, it generates three output

files:Preprocessed code (with the .i extension).

2. Assembly code (with the .s extension).

3. Object code (with the .o option).Maintaining the

Integrity of the Specifications

Figure 1. To list all the files with ―with‖ ―without‖ volatile in front

of them.

Now, if you observe Figure 2, the size is found to be 1743

bytes in the fifth column. Next, qualify the flag variable to

‗volatile‘ for the code shown in example 1, and generate the

assembly code (call this withvolatile.s) before checking the size

by issuing the ls command. The size obtained in my system is

shown in Figure 3. Now, if you observe Figure 3, the size is

found to be 1784 bytes in the fifth column. So, when we

compare the sizes of both the codes, with and without the

‗volatile‘ key word, it is obvious that the compiler is not

optimizing the 'flag' variable when it is qualified as 'volatile'.

We can experiment further to explore where exactly the

compiler is optimizing the code. To find this out, apply the

vimdiff command to the assembly codes generated with and

without the keyword ‗volatile‘—the difference is shown below.

Figure 2. To see the size of withoutvolatile.s we need to run ls -l

command on it.

A. Withvolatile

.file "withvolatile.cpp"

 .local _ZStL8__ioinit

 .comm _ZStL8__ioinit,1,1

 .text

 .globl main

 .type main, @function

main:

.LFB971:

 .cfi_startproc

 pushq %rbp

 .cfi_def_cfa_offset 16

 .cfi_offset 6, -16

 movq %rsp, %rbp

 .cfi_def_cfa_register 6

 movl $0, -4(%rbp)

 movl $0, -8(%rbp)

 jmp .L2

.L4:

 cmpl $50, -4(%rbp)

 jne .L3

 movl $1, -8(%rbp)

.L3:

 addl $1, -4(%rbp)

.L2:

 movl -8(%rbp), %eax

 cmpl $1, %eax

 setne %al

 testb %al, %al

 jne .L4

 movl $0, %eax

 popq %rbp

 .cfi_def_cfa 7, 8

 ret

 .cfi_endproc

.LFE971:

 .size main, .-main

 .type

 _Z41__static_initialization_and_destruction_0ii,

@function

_Z41__static_initialization_and_destruction_0ii:

.LFB972:

 .cfi_startproc

 pushq %rbp

 .cfi_def_cfa_offset 16

 .cfi_offset 6, -16

 movq %rsp, %rbp

 .cfi_def_cfa_register 6

 subq $16, %rsp

 movl %edi, -4(%rbp)

 movl %esi, -8(%rbp)

 cmpl $1, -4(%rbp)

 jne .L6

 cmpl $65535, -8(%rbp)

 jne .L6

 movl $_ZStL8__ioinit, %edi

 call _ZNSt8ios_base4InitC1Ev

 movl $__dso_handle, %edx

 movl $_ZStL8__ioinit, %esi

 movl $_ZNSt8ios_base4InitD1Ev, %edi

 call __cxa_atexit

.L6:

 leave

 .cfi_def_cfa 7, 8

 ret

 .cfi_endproc

.LFE972:

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 7 5014 - 5018

__

5016
IJRITCC | July 2015, Available @ http://www.ijritcc.org

 .size

 _Z41__static_initialization_and_destruction_0ii, .-

_Z41__static_initialization_and_destruction_0ii

 .type _GLOBAL__sub_I_main, @function

_GLOBAL__sub_I_main:

.LFB973:

 .cfi_startproc

 pushq %rbp

 .cfi_def_cfa_offset 16

 .cfi_offset 6, -16

 movq %rsp, %rbp

 .cfi_def_cfa_register 6

 movl $65535, %esi

 movl $1, %edi

 call

 _Z41__static_initialization_and_destruction_0ii

 popq %rbp

 .cfi_def_cfa 7, 8

 ret

 .cfi_endproc

.LFE973:

 .size _GLOBAL__sub_I_main, .-

_GLOBAL__sub_I_main

 .section .init_array,"aw"

 .align 8

 .quad _GLOBAL__sub_I_main

 .hidden __dso_handle

 .ident "GCC: (Ubuntu 4.8.4-2ubuntu1~14.04)

4.8.4".section .note.GNU-stack,"",@progbits

Figure 3. To see the size of withvolatile.s we need to run ls -l

command on it.

B. Withoutvolatile

.file "withoutvolatile.cpp"

 .local _ZStL8__ioinit

 .comm _ZStL8__ioinit,1,1

 .text

 .globl main

 .type main, @function

main:

.LFB971:

 .cfi_startproc

 pushq %rbp

 .cfi_def_cfa_offset 16

 .cfi_offset 6, -16

 movq %rsp, %rbp

 .cfi_def_cfa_register 6

 movl $0, -8(%rbp)

 movl $0, -4(%rbp)

 jmp .L2

.L4:

 cmpl $50, -8(%rbp)

 jne .L3

 movl $1, -4(%rbp)

.L3:

 addl $1, -8(%rbp)

.L2:

 cmpl $1, -4(%rbp)

 jne .L4

 movl $0, %eax

 popq %rbp

 .cfi_def_cfa 7, 8

 ret

 .cfi_endproc

.LFE971:

 .size main, .-main

 .type

 _Z41__static_initialization_and_destruction_0ii,

@function

_Z41__static_initialization_and_destruction_0ii:

.LFB972:

 .cfi_startproc

 pushq %rbp

 .cfi_def_cfa_offset 16

 .cfi_offset 6, -16

 movq %rsp, %rbp

 .cfi_def_cfa_register 6

 subq $16, %rsp

 movl %edi, -4(%rbp)

 movl %esi, -8(%rbp)

 cmpl $1, -4(%rbp)

 jne .L6

 cmpl $65535, -8(%rbp)

 jne .L6

 movl $_ZStL8__ioinit, %edi

 call _ZNSt8ios_base4InitC1Ev

 movl $__dso_handle, %edx

 movl $_ZStL8__ioinit, %esi

 movl $_ZNSt8ios_base4InitD1Ev, %edi

 call __cxa_atexit

.L6:

 leave

 .cfi_def_cfa 7, 8

 ret

 .cfi_endproc

.LFE972:

 .size

 _Z41__static_initialization_and_destruction_0ii, .-

_Z41__static_initialization_and_destruction_0ii

 .type _GLOBAL__sub_I_main, @function

_GLOBAL__sub_I_main:

.LFB973:

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 7 5014 - 5018

__

5017
IJRITCC | July 2015, Available @ http://www.ijritcc.org

 .cfi_startproc

 pushq %rbp

 .cfi_def_cfa_offset 16

 .cfi_offset 6, -16

 movq %rsp, %rbp

 .cfi_def_cfa_register 6

 movl $65535, %esi

 movl $1, %edi

 call

 _Z41__static_initialization_and_destruction_0ii

 popq %rbp

 .cfi_def_cfa 7, 8

 ret

 .cfi_endproc

.LFE973:

 .size _GLOBAL__sub_I_main, .-

_GLOBAL__sub_I_main

 .section .init_array,"aw"

 .align 8

 .quad _GLOBAL__sub_I_main

 .hidden __dso_handle

 .ident "GCC: (Ubuntu 4.8.4-2ubuntu1~14.04)

4.8.4"

 .section .note.GNU-stack,"",@progbits

In the disassembly of the non-volatile version

(withoutvolatile.s) of the while loop shown in the statements in

Italics, load the value of the flag into memory locations [-

8(%rbp) & -4(%rbp)] outside the loop labeled .L2. This is

because, since the flag variable is not declared volatile, the

compiler assumes that its value cannot be modified outside the

program. Having already read the value of the flag into

memory locations [-8(%rbp) & -4(%rbp)], the compiler omits

reloading the value of the flag variable when optimization is

enabled, because its value cannot change. The result is

ultimately the control getting into the infinite loop labeled .L2.

In contrast, in the disassembly of the volatile version

(withvolatile.s) of the while loop shown in above code, the

compiler assumes that the value of the flag variable can change

outside the program and performs no optimisations.

Consequently, the value of the flag is loaded into the register

%eax every time from the memory [-8(%rbp)] inside the loop

labeled .L2. As a result, the value of the flag is checked every

time, and further decisions are taken depending upon the value

of the flag variable. To avoid optimization problems caused by

changes to the program state external to the implementation, it

is always safer to declare the variable as ‗volatile‘. This helps

to avoid unexpected results. From this, we can conclude that

the ‗volatile‘ key word prevents optimization of the code by the

compiler.

B. Uses In Operating System

1. Delay generations using loops Let us consider

another example, where ‗for‘ loops are used commonly in the

Embedded C code to generate small delays in LED's used in

PC's and Laptops as shown in the following code:

int main()

{ inti;

 //Loop for delay generation

 for(i = 0; i < 100; i++)

{ ; }

 //Again the remaining code goes here

return 0; }

In fact, a compiler might optimize the code shown above into

nothing. A local variable ‗i‘ is the counter for a loop that does

nothing but increment value ‗i‘ until it‘s equal to 100. Thus,

the optimizer can replace the loop with a single assignment

that just sets ‗i‘ to its final value. When that happens, the delay

code doesn‘t achieve what the programmer had intended. So, it

is always better to declare the local variable ‗i‘ as ‗volatile‘

even though the code might be less efficient, since we will get

the desired results, as shown in the code below:

int main()

{ volatileinti;

 //Loop for delay generation

 for(i = 0; i < 100; i++)

{ ; }

 //Again the remaining code goes here

return 0; }

Similar results are acquired when we run both the codes,

leading to a difference in sizes of the codes sizes and also

addition of code in the assembly code of ―volatile‖ containing

program to tell the compiler not to optimize the code.

2. Global variables accessed by multiple tasks within a

multi-threaded application Let us consider one more example

to show how the global variable will be affected by the

compiler optimization in a multi threaded application. The

example code snippet is shown below:

#define FALSE 0

#define TRUE 1

volatile unsigned intglobal_item_count;

//Other functions

voidthread_one(void)

{

global_item_count = FALSE;

while(global_item_count == FALSE)

{ sleep(1);}

//Some code goes here

}

voidthread_two(void)

{

 //some code goes here

 global_item_count++;

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 7 5014 - 5018

__

5018
IJRITCC | July 2015, Available @ http://www.ijritcc.org

 sleep(5);

 //some code goes here

}

In the above demo program, the compiler doesn‘t have any

knowledge of the context switching between two threads. If

the compiler optimizations are turned ‗ON‘, then the compiler

will assume that the global_item_count variable is always

‗ZERO‘ and no other part of the thread is attempting to modify

it. So, the compiler may replace the while loop in the code

above, as shown in the code below:

. . . while(TRUE)

{ sleep(1);}

which is nothing but the infinite loop; so in order to avoid such

optimizations by the compiler, it is safe to declare the variable

global_item_count as ‗volatile‘. Similarly, one can realize the

effect of the producer consumer problem accessing the global

variable without declaring it as ‗volatile‘.

3. Interrupt service routines Let us consider another

example given in in the code snippet below, where ‗volatile‘

plays a very important role in the ISR (Interrupt Service

Routines): int flag = 0;

voidrx_isr(void)

{ flag = 1; }

int main()

{while(!flag) { //Some code goes here } ... }

In the above example, if the flag is not declared as ‗volatile‘,

the compiler may optimize the code (assuming always that the

flag is ZERO) and replace the while(!flag) to while(TRUE),

which is nothing but the infinite loop. But the flag value might

change when the interrupt occurs.

Note : Whether to declare the variable as ‗volatile‘ or not is

cross-compiler dependent. Anyhow it is a good practice to

declare the variable as ‗volatile‘ to achieve the portability of

the code.

A variable should be declared volatile whenever its value can

change asynchronously. In real time, three types of variables

can change:

 Memory-mapped peripheral registers (e.g., polling and

waiting).

 Global variables modified by an Interrupt Service

Routine.

 Global variables accessed by multiple tasks within a

multi-threaded.

IV. CONCLUSION

The main use of the ‗volatile‘ key word is to prevent the

compiler from optimizing the code in terms of time complexity,

by generating a code that uses CPU registers as faster ways to

represent variables. Declaring the variable as ‗volatile‘ forces

compiled code to access the exact memory location in RAM on

every access to the variable to get its latest value, thereby

avoiding any runtime surprises for the programmer.

REFERENCES

[1] http://www.geeksforgeeks.org/

[2] The 8051 Microcontroller (Merrill's international series in

engineering technology)

[3] http://www.tldp.org/LDP/abs/abs-guide.pdf-Bash Scripting

Guide

[4] http://www.tldp.org/LDP/abs/html/

[5] askubuntu.com/

http://www.geeksforgeeks.org/
http://www.tldp.org/LDP/abs/abs-guide.pdf-Bash
http://www.tldp.org/LDP/abs/html/

