
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 7 4954 - 4957

4954
IJRITCC | July 2015, Available @ http://www.ijritcc.org

High Speed Modified Booth’s Signed 64x64 Bit Multiplier Using Wallace

Structure by Radix-32

Manas M. Ramteke

 Deptt. of E & TC, B.D.C.O.E.,

 Sevagram, Wardha, India

manasramteke87@gmail.com

Prof. P. R. Indurkar
1
, Prof. Mrs. D. M. Khatri

2

 Deptt. of E & TC, B.D.C.O.E.,

 Sevagram, Wardha, India
1
prashantindurkar@rediffmail.com

2
deepali.85@rediffmail.com

Abstract — The Main objective of the implemented work is completely based on enhancing speed performance multiplication process using

radix-32 modified Booth algorithm and Wallace Tree Structure. It is designed for fixed length 64x64 bit operands. In Wallace structure, 3:2and

4:2 Compressors are used which accumulate the partial products. The implemented modified Booth multiplier is verified and advantages over

the existing multiplier are quantitatively analyzed. This implemented multiplier provides less delay 0.238 ns. Many researchers had been worked

and presented the modified booth multiplier with optimized delay. In this paper, it has been shown that the implemented 64 bit multiplier

provides better delay in comparison with those existing papers. A VHDL code has been written and successfully synthesized and simulated

using Xilinx ISE 13.1 simulator software. Also partial products which are generated are less as compared to conventional multiplier. No. of logic

blocks required for fast multiplication process has been reduced in terms of no. of slices in comparison with previous ones.

Keywords- Radix-32, 3:2 Compressor, 4:2 Compressor ,Wallace Tree

__*****___

I. INTRODUCTION

 Multipliers are basic elements in several applications in

engineering, semiconductor technology and digital signal

processing. The overall performance of digital signal

processing can be improved by increasing the speed

performance of multiplication. In the implemented algorithm,

factors of designing multiplier are nothing but generation and

summation of partial products. These partial products are

summed using compressor in structure of Wallace Tree. CLA

has been used for final results where CLA indicates carry look

ahead adder that ahead carry of compressor. Thus to improve

the speed performance of multiplication, number of partial

products have been reduced by using radix-32 Booth

Algorithm and Wallace structure is for delay reduction. After

studying many literature survey of researchers we have

concluded that the decision of using radix-32 is better than

radix-16 as radix-32 produces less no. of partial products.

II. LITERATURE SURVEY

A. Wallace Tree Structure

 Wallace C.S. (1964) introduced a fast technique to

perform multiplication of large operands. Unlike an array

multiplier, the partial product matrix for a tree-multiplier is

rearranged in a tree-like format, reducing both the critical path

and the number of adder cells needed. The Wallace tree

multiplier belongs to a family of multipliers called column

compression multipliers. The basic principle in this family of

multipliers is to achieve partial product accumulation by

successively reducing the number of bits of information in

each column using full adders or half adders. The compressors

in the Wallace structure are used to compress the data and thus

produce less no. of partial products. The Wallace tree consists

of numerous levels of such column compression structures

until finally, only two full-width operands remain. These two

operands can then be added using fast carry look ahead adder

to obtain the product result. Thus the Wallace tree multiplier

uses as much hardware as possible to compress the partial

product matrix as quickly as possible into the final product.

Fig 1. Wallace structure multiplier[4]

B. Types of Compressors

 This compresses the data which helps to reduce the
number of levels which also causes enhancing the speed of
multiplier. There are various types of compressors which are
used in modified Booth multiplier.

http://www.ijritcc.org/
mailto:prashantindurkar@rediffmail.com
mailto:deepali.85@rediffmail.com

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 7 4954 - 4957

4955
IJRITCC | July 2015, Available @ http://www.ijritcc.org

a) 3:2 Compressor Architecture [5]

 The 3:2 compressor [5] takes 3 inputs x1, x2, x3 and

generates 2 outputs, the sum bit s, and the carry bit c as

shown in Figure 2(a). The compressor is governed by the

basic equation.

x1 + x2 + x3 = Sum + 2 * Carry

 The 3:2 compressors can also be employed as a full adder

cell when the third input can be considered as the Carry input

from the previous compressor block or x3 = Cin. Existing

architecture is shown in Figure 2. Employ two XOR gates in

the critical path. The equations governing the existing 3:2

compressor outputs are shown below:

Sum = x1 XOR x2 XOR x3

Carry = (x1 XOR x2) x3 + (x1’ XOR x2’) x1

Fig 2. 3:2 Compressor block diagram and architecture

b) 4:2 Compesor Architecture

 The 4:2 compressors [6] has 4 inputs X1, X2, X3 and

X4 and 2 outputs Sum and Carry along with a Carry-in (Cin)

and a Carry-out (Cout) as shown in Figure 3. The input Cin is

the output from the previous lower significant compressor.

The Cout is the output to the compressor in the next significant

stage.

 Similar to the 3:2 compressors the 4:2 compressors in

Figure 3 is governed by the basic equation given below:

x1+x2+x3+x4+Cin = Sum + 2*(Carry + Cout)

The standard implementation of the 4-2 compressor is done

using two 3:2 compressors as shown in Figure 3.

Fig 3. 4:2 compressor block diagram

When the individual full Adders are broken into their

constituent XOR blocks, it can be observed that the overall

delay is equal to 4*Δ-XOR. The block diagram in Figure 4

shows the existing architecture for the implementation of the

4:2 compressor with a delay of 3*Δ-XOR. The equations

governing the outputs in the existing architecture are shown

below:

Sum = x1 XOR x2 XOR x3 XOR x4 XOR Cin

Cout = (x1 XOR x2) x3 + (x1 XOR x2)’ x1

Carry = (x1 XOR x2 XOR x3 XOR x4) Cin + (x1

XOR x2 XOR x3 XOR x4)’x4

Fig 4. 4:2 compressor architecture [6]

III. DESIGN METHODOLOGY

A. Radix-32 Implemented Modified Booth Algorithm

 To generate and reduce the number of partial

products of multiplier, proposed modified Booth Algorithm

has been used, In the proposed modified Booth Algorithm,

multiplier has been divided in groups of 6 bits and each groups

of 6 bits have been operationed according to modified Booth

Algorithm for generation of partial products 0, ±1A, ±2A,

±3A, ±4A, ±5A, ±6A, ±7A, ,±8A, ±9A, ±10A, ±11A, ±12A,

±13A, ±14A, ,±15A, ±16A. These partial products are

summed using compressor in structure of Wallace Tree. CLA

has been used for final results where CLA indicates carry look

ahead adder that ahead carry of compressor.

 In radix-32 Booth Algorithm [4], multiplier operand B is

partitioned into groups having each group of 6 bits. In first

group, first bit is taken zero and other bits are least significant

five bit of multiplier operand. In second group, first bit is most

significant bit of first group and other bits are next five bit of

multiplier operand. In third group, first bit is most significant

bit of second group and other bits are next five bit of

multiplier operand. This process is carried on.

 For each group, Partial product is generated using

multiplicand operand A. For n bit multiplier there is n/5 or

[n/5 + 1] groups and partial products in proposed modified

Booth Algorithm radix-32. Table is shown for Proposed radix-

32 modified Booth algorithm has been designed and radix-32.

So it reduces the number of partial products in comparison to

radix-16, improves the computational efficiency of multiplier,

reduce the calculation delay. Computation of complex

multiplier and re-encoding of multiplier can be executed in

parallel. Factor Fi is calculated using equation and figure 5.

The recoding of multiplier by radix-32 is shown in table I [4].

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 7 4954 - 4957

4956
IJRITCC | July 2015, Available @ http://www.ijritcc.org

 Fi = (k1 + 2k2 + 4k3 + 8k4 + 16k5)

 Where k1,k2,k3,k4,k5 = 0 when 00 or 11

 k1,k2, k3,k4,k5 = +1 when 01

 k1, k2,k3,k4,k5 = -1 when 10

Fig 5. finding value of k1, k2, k3, k4, k5

Table I. Proposed radix-32 booth’s algorithm [4]

B. Design process for implemented modified multiplier

 In this paper, the design process of

implementation of 64x64-bit operands multiplier has been

explained. Modified Booth Algorithm is used to enhance the

speed and it is based on radix-32 which produces less number

of partial products. Booth encoder matches the 6 bits of

multiplier with its recoded bits and provides the multiplier

value has shown in table I. After generation of partial

products, 3:2 and 4:2 compressors compresses the data which

results in less no. of levels required for overall multiplication

process. In Wallace tree structure summation delay is less

because of using both 3:2 compressor and 4:2 compressor in

summation operation. Again CLA has been used for final

results where CLA indicates carry look ahead adder that ahead

carry of compressor.

C. Simulation result

 For VHDL code of High speed 64x64 bit multiplier

using radix-32, Xilinx ISE 13.1 has been used for synthesizing

and simulation. By using this tool, VHDL code has been

successfully synthesized and simulated..The result of

simulation has been shown in figure 6.

Fig 6. Simulation result for 64X64 bit modified booth’s

multiplier using radix-32.

D. RTL schematic view for proposed algorithm

 After successful simulation, the rtl view for

implemented algorithm is shown below.

Fig 7. RTL view for implemented algorithm.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 7 4954 - 4957

4957
IJRITCC | July 2015, Available @ http://www.ijritcc.org

E. Comparison Table

Comparison among various multipliers and proposed

multiplier is shown in table II below [4].

Multiplier Delay in

ns

Slices used

64X64 bit multiplier

using radix-4 and array

structure

28.96 14271/69120

(20%)

High speed parallel

32X32 bit multiplier

using radix-16 booth

encoder

7.55 182/2352 (7%)

64X64 bit multiplier 4.88 -

Signed 64X64 bit

multiplier using radix 16

booth algorithm

1.8 3347/69120 (3%)

Signed 64X64 bit

multiplier using radix-32

booth algorithm.

1.4 3677/69120

(5.31%)

Proposed high speed

signed 64X64 bit

multiplier using radix-32

booth algorithm.

0.284 1704/69120 (2%)

Table II . Comparison among multipliers[4]

IV. CONCLUSION

In this paper we have designed 64x64 bit multiplier

using radix-32 Modified Booth Algorithm and Wallace

structure. It is observed that compressors in the Wallace tree

improves the speed of implemented multiplier and radix-32

reduces no. of partial products.

Implemented design provides less delay 0.284 ns and

requires less number of levels of Wallace tree structure. No. of

logic blocks required for fast multiplication process has been

reduced in terms of no. of slices in comparison with previous

ones.

Since delay and area has been reduced hence it can be

concluded that the overall power consumption will get reduced

when implemented for low power VLSI design.

ACKNOWLEDGMENT

I wish to thank Prof. P. R. Indurkar and Prof. Mrs. D. M.

Khatri for their guidance and support. I also thankful to

Manish Bansal, Sangeeta Nakhate and Ajay Somkuwar for

their paper in IEEE 2011 which help me in my implemented

work and for successful result.

REFERENCES

[1] High Performance Complex Number Multiplier Using Booth-

Wallace Algorithm by Rizalafande Che Ismail and Razaidi

Hussin, ICSE2006 Proc. 2006, Kuala Lumpur, Malaysia.

[2] Power Aware and High Speed Reconfigurable Modified Booth

Multiplier by S. Sri Sakthi and N. Kayalvizhi, IEEE 2011.

[3] Disposition (reduction) of (negative) partial product for Radix 4

Booth’s Algorithm by Manoj Sharma and Richa Verma, IEEE

2011.

[4] High performance pipelined signed 64x64-bit multiplier using

radix-32 modified Booth algorithm and Wallace structure by

Manish Bansal, Sangeeta Nakhate, and Ajay Somkuwar IEEE

2011.

[5] A High Speed Wallace Tree Multiplier Using Modified Booth

Algorithm for Fast Arithmetic Circuits Jagadeshwar Rao M and

Sanjay Dubey, IOSR Journal of Electronics and Communication

Engineering (IOSRJECE) Sept. 2012.

[6] A High Speed and Area Efficient Booth Recoded Wallace Tree

Multiplier for fast Arithmetic Circuits by Jagadeshwar Rao M

and Sanjay Dubey, 2012 Asia Pacific Conference on

Postgraduate Research in Microelectronics & Electronics

(PRIMEASIA).

[7] High speed Modified Booth Encoder multiplier for signed and

unsigned numbers by Ravindra P. Rajput and M. N. Shanmukha

Swamy, 2012 14th International Conference on Modelling and

Simulation

[8] Design of a Low-Error Fixed-Width Radix-8 Booth Multiplier

by Saroja S. Bhusare and V. S. Kanchana Bhaaskaran, IEEE

2013.

[9] Implementation of Pipelined Booth Encoded Wallace Tree

Multiplier Architecture by Rahul D. Kshirsagar, Aishwarya E.

V., Ahire Shashank, Vishwanath and P. Jayakrishnan, IEEE

2013.

http://www.ijritcc.org/

