
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 7 4853 - 4857

4853
IJRITCC | July 2015, Available @ http://www.ijritcc.org

BCD To Floating Point Converter With Floating Point Adder Unit Using VHDL

1
Abhishek Kumar

Department of Electronics Engineering

Agnihotri College of Engineering,

Nagthana road, Wardha (MH) INDIA

E-mail: abhi111333@gmail.com

2
 Prof. Mayur S. Dhait

Department of Electronics Engineering

Agnihotri College of Engineering,

Nagthana road, Wardha(MH) INDIA

3
 Prof. Vijay R. Wadhankar

Department of Electronics Engineering

Nagthana road, Wardha(MH) INDIA

Agnihotri College of Engineering

Abstract— To perform numerical calculations on modern computers floating point arithmetic is a better way of approximating real number

arithmetic. Its advantage is that it can support a much wider range of values rather than fixed point and integer representation.

Addition/Subtraction, Multiplication and division are the common arithmetic operations. Among them the most complex one is the floating point

addition. Adder is the most important element of complex arithmetic circuits, in which input should be given in standard IEEE754 format. The

main objective of the work is to design and implement a binary to IEEE 754 floating point converter to represent 32 bit single precision floating

point values. Then the converter will be placed at the input of the designed floating point adder module to improve the overall design. The

modules are written using very high speed integrated circuit (VHSIC) Hardware Description Language (VHDL), and are then synthesized for

Xilinx vertex E FPGA using Xilinx Integrated Software Environment(ISE) design suite 13.1.

Keywords- floating point arithmetic, IEEE 754 format, VHDL, Xilinx

__*****___

I. INTRODUCTION

Nowadays the floating point arithmetic operations based

applications has become the most demanding applications. It is

hard to implement these operations on reconfigurable

hardware i.e. on FPGAs because of the complexity of their

algorithm. While many scientific problems require floating

point arithmetic with upper level of accuracy in their

calculations. Therefore VHDL programming for IEEE single

precision floating point adder have been explored. VHDL code

for floating point adder is written in Xilinx 13.1 and the

Design process of Xilinx will outline various parameters.

Because of the increasing demand of floating point arithmetic

operations, it becomes essential to find out a technique to feed

binary numbers directly as input for these applications. This

helps in time saving and becomes much easier. In the current

scenario, it is not possible, because, in the floating point adder,

inputs given should be in IEEE 754 format i.e. the binary

inputs cannot be given directly, because it needs to be

converted to the sign, exponent and mantissa form. Hence in

this project we have also designed a binary to floating point

converter for single precision bits and will be directly given to

the inputs of floating point adder which will solve this issue to

an extent.

The converter is based on IEEE single precision format and is

of 32 bits wide. The floating point format, real arithmetic can

be coded directly into hardware operations. So, this project

emphasizes on utilization of the capabilities of floating point

format. The range of binary input given will be from 0-256

bits, which is the maximum input range that can be provided

to satisfy the exponent range in the 32 bit IEEE 754 single

precision format.

The modules are written using very high speed integrated

circuit (VHSIC) Hardware Description Language (VHDL),

and are then synthesized for Xilinx vertex E FPGA using

Xilinx Integrated Software Environment(ISE) design suite

13.1.

II. IEEE FLOATING POINT REPRESENTATION

To represent real numbers in binary format floating point

numbers are the best possible way. There are two basic

formats described in IEEE 754 format, double-precision using

64-bits and single-precision using 32-bits.Table 1 shows the

comparison between the important aspects of the two

representations.

Table 1: Single and double precision format summary

Figure 1: IEEE 754 single precision format

The IEEE 754 single precision binary format representation is

shown in Fig. 1; [2] it consists of a one bit sign (S), an eight

bit exponent (E), and a twenty three bit fraction (M or

Mantissa). If the exponent is greater than 0 and smaller than

255, and there is 1 in the MSB of the significand then the

number is said to be a normalized number; in this case the real

number is represented by (1)

127=Bias

23;-2 m0 +22-2

m1+........+ 3-2 m20 + 2-2 m21 + 1-2 m22 =M Where

(1)(1.M) * bias)-2(E * (-1)S=Z

Sign bit is used to determine the Sign of a number, which will

be either 0 for a non-negative number or 1 for a negative

FORMAT SIGN EXPONENT MANTISSA

SINGLE

PRECISION

1(31) 8 (23 TO 30) 23(0 TO 22)

DOUBLE

PRECISION

1(64) 11(52 TO 63) 52(0 TO 51)

S

8 bit

Exponent-E

23 bit

Fraction (M or Mantissa)

0

1

8 31

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 7 4853 - 4857

4854
IJRITCC | July 2015, Available @ http://www.ijritcc.org

number. For IEEE single precision format a bias of 127 is

added to the actual exponent. The mantissa or significand is

composed of an implicit leading bit (to the left of the binary

point)with value 1,unless the exponent and 23 fraction bits to

the right of the binary point is all filled with zeros. The

numbers are always normalized and thus there is no need to

explicitly show the implicit ‘1’ bit, thereby precision is

increased. The IEEE 754 standard specifies some special

values.

III. BCD TO BINARY FLOATING POINT CONVERTER

A. Methodology

Methodological analysis used to convert the BCD number into

Binary Floating point number is described below. To convert

the BCD number into Binary floating point number IEEE-754

single precision format is used. Conversion of a BCD real

number into an IEEE 754 binary 32 format uses the following

outline:

1. Consider a BCD number.

2. To convert the number into floating point use the shift

and subtract-3 algorithm.

3. Represent the output of shift and subtract-3 algorithm

into normalized form.

4. To produce a proper final conversion adjust the result.

The example of conversion process is given below:

 Example- 255=(0010 0101 0101)BCD

 To convert the BCD number into floating point use shift

and subtract-3 Algorithm.

 The output of above number i.e (0010 0101 0101)BCD is

given as (11111111)2 by using shift and subtract-3

algorithm. Also in IEEE 754 binary32 format values need

to be represented in normalized form given as

1.1111111x2
7
 .

 From above, the exponent is 7, and in the biased form, it

is add to the power with 127 to

give the exponent as 127+7=134 represented as

10000110 in binary form.

 Therefore 127+7=134 = (1000 0110)2.

 The fraction is 1111111 (looking to the right of the

 binary point)

 To produce a proper final conversion adjust the result.

 The resulting IEEE 754 (single precision) 32 bit format

 representation of 255 i.e. (0010 0101 0101)BCD is:

 0-10000110-11111110000000000000000

We have done with the binary to floating point conversion

in IEEE 754 format. This conversion has been done by using

VHDL and later will be implemented in Xilinx FPGA.

B. Block diagram of converter

Block Diagram of BCD to floating point converter is shown

below. In IEEE 754 BCD to Floating point converter the main

modules are Shift and Subtract-3 module, and check and

Forward block.

As an input we give BCD number, the internal blocks of the

converter converts BCD number into floating point number.

Figure 2: Block Diagram of BCD to Floating Point

Converter

The principal purpose of this project is to provide a program

that converts a BCD number with a decimal point and/or an

exponent to a floating-point binary number. The floating-point

binary number has a mantissa of 23 bits, an exponent byte

consisting of a sign bit and seven magnitude bits, and a sign

flag (one byte) for the mantissa.

C. Subtract-3 Module

Subtract-3 Module states that if binary value in any of BCD

column is greater than 7 then subtract - 3 from that number.

Truth Table For Subtract -3 module is shown below.

Table 2: Truth table for subtract-3 module

Figure below shows subtract-3 block. Each subtract-3 block

contain 4 bit of input and 4 bit output.

Figure 3: Block Diagram of subtract-3 module

A3 A2 A1 A0 S3 S2 S1 S0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1

0 0 1 0 0 0 1 0

0 0 1 1 0 0 1 1

0 1 0 0 0 1 0 0

1 0 0 0 0 1 0 1

1 0 0 1 0 1 1 0

1 0 1 0 0 1 1 1

1 0 1 1 1 0 0 0

1 1 0 0 1 0 0 1

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 7 4853 - 4857

4855
IJRITCC | July 2015, Available @ http://www.ijritcc.org

D. Mathematical analysis of shift and subtract-3 algorithm

The working of Shift & Subtract-3 algorithm is described

below

1. Shift BCD number right one bit and examine each decade.

Subtract 3 from each 4-bit decade containing a binary value

greater than 7.

2. Shift right, examine, and correct after each shift until the

least significant decade contains a number smaller than eight

and all other converted decades contain zeros.

Mathematical Analysis of Shift & Subtract-3 algorithm is

shown below.

Table 3: Mathematical analysis of shift and subtract-3

algorithm

E. Output simulation and RTL view of BCD to Floating

point converter

Figure 4: output simulation of Subtract-3 module.

Figure 5: RTL schematic for subtract-3 module.

Figure 6: output simulation of Shift and Subtract-3algorithm.

Figure 7: RTL schematic for Shift and Subtract-3algorithm.

Figure 8: output simulation of BCD to floating point

converter.

Figure 8: RTL schematic for BCD to floating point converter.

IV. FLOATING POINT ADDER USING BCD TO

FLOATING POINT CONVERTER AS INPUT

Design method for adder using BCD to floating point

converter as input is described below. To improve the overall

performance of the design we use the output of the BCD to

floating point converter in IEEE-754 single precision floating

point format because of its greater accuracy and precision.

Adder is used to add two numbers, here we give two BCD

numbers as the input, and the converter we designed will

convert that BCD number into binary floating point numbers.

0010 0101 0101 Start

001 0010 1010 1 Shift 1

001 0010 0111 1 Sub-3

00 1001 0011 11 Shift 2

00 0110 0011 11 Sub-3

0 0011 0001 111 Shift 3

 0001 1000 1111 Shift 4

 0001 0101 1111 Sub-3

 000 1010 1111 1 Shift 5

 000 0111 1111 1 Sub-3

 0011 1111 11 Shift 6

 001 1111 111 Shift 7

 00 1111 1111 Shift 8

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 7 4853 - 4857

4856
IJRITCC | July 2015, Available @ http://www.ijritcc.org

Then by using floating point adder these floating point

numbers will be added.

Standard algorithm for floating point adder is given below, at

its input it takes two floating point numbers, and then add

them by following the steps given in the algorithm and give

the result in floating point format.

A. Floating Point Addition Algorithm

1. Read and compare the two operands, N1 and N2 for

denormalization and infinity. Set the implicit bit to 0 if

numbers are denormalized, otherwise it is set to 1. At this

point, the fraction part is extended to 24 bits.

2. Using 8-bit subtraction the two exponents, e1 and e2 are

compared. Swap N1 and N2 if e1 is less than e2 i.e. previous

f2 will now be referred to as f1 and vice versa.

3. Shift the smaller fraction, f2 to right by the absolute

difference result of the two exponents’ subtraction. Now both

the numbers have the same exponent.

4. To check whether the operation is a subtraction or an

addition the two signs are used.

5. The bits of the f2 are inverted for the operation of

Subtraction.

6. Now using a 2’s complement adder the two fractions are

added.

7. If the result of adder is a negative number, then it has to be

inverted and a 1 has to be added to the result.

8. Now in the first step of the normalization the result is

passed through a leading one detector or leading zero counter.

9. Using the results from the leading one detector, the result is

then shifted left to be normalized. In some cases, 1-bit right

shift is needed.

10. The result is then rounded towards nearest even, the

default rounding mode.

11. The result is left shifted by one if the carry out from the

rounding adder is 1.

12. The exponent is adjusted by using the results from the

leading one detector. After overflow and underflow check the

sign is computed, and then the result is registered.

Figure 9: Flow chart for standard floating point adder

B. Pipeline standard floating point adder

Pipelining is used to decrease clock period, to run the

operations at a higher clock rate, and to increase speedup by

increasing the throughput. By distributing the main module

into smaller operations pipelining can be achieved. In

pipelining the whole operation may take more clock cycles to

complete but new inputs can be added with every clock cycle

increasing the throughput. Pipeline architecture for floating

point adder is given below. In the first stage the two operands

are compared to identify denormalization and infinity. To

obtain the exponent difference the two exponents are

subtracted. To pre normalize the smaller mantissa the right

shifter is used. In the third stage along with the leading one

detection the addition is done. In the fourth stage to post

normalize the result left shifter is used. In the last stage the

exponent out is calculated and rounding is done. To set

overflow or underflow flags results are compared.

The main modules for a single-precision floating-point adder

are the exponent difference module, right shift shifter, 2’s

complement adder, leading one detector, left shift shifter, and

the rounding module. This adder is specially designed for

single-precision addition.

Figure 10: Pipeline standard floating point adder

C. Output simulation And RTL view of Floating Point Adder

Figure 11: Simulation Result for floating point adder

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 7 4853 - 4857

4857
IJRITCC | July 2015, Available @ http://www.ijritcc.org

Figure 12: RTL Schematic for floating point adder

V. LITERATURE REVIEW

Field Programmable Gate Arrays (FPGA) are

increasingly being used to design high end computationally

intense microprocessors capable of handling both fixed and

floating point mathematical operations. Addition is the most

complex operation in a floating-point unit and offers major

delay while taking significant area.

According to Reshma Cherian And Nisha Thomas they have

implemented binary to floating point converter, which was

based on IEEE 754 single precision format, and has delay of

17.381 n sec and power utilization was 0.295 W In "

Implementation of Binary to Floating Point Converter using

HDL".

According to Sunita S. malaj, S.B. Patil, Bhagappa R.

Umarane, In "VHDL Implementation of Interval Arithmetic

Algorithms for Single Precision Floating Point Numbers”, The

author proposes a new approach where the design and

implementation of single precision (32bit) Interval Arithmetic

Adder/subtractor unit is carried using VHDL for computing

interval arithmetic operations & functions suited for hardware

implementation.

According to Jairaj Bhattacharya, Aman Gupta, and Anshul

Singh “A High Performance Binary TO BCD Converter for

Decimal Multiplication ", this paper presented a novel

architecture for Binary to BCD conversion used in decimal

multiplication. The proposed converters flexible and can be

plugged into any homogeneous multiplication architectures to

achieve better performance irrespective of the method used to

generate binary partial products. The proposed architecture

shows, on an average, an improvement of 28% in terms of

power-delay product.

VI. CONCLUSION

This paper shows the efficient use of floating point Converter

and floating point Adder module together. This paper presents

an Implementation of an efficient 32 bit floating point Adder

with floating point Converter module at its input port to

support IEEE 754 standard with optimal chip area and high

performance using VHDL. Based on the above discussion, it is

clear that at the output of converter we have of 32 bit binary

floating point number with high accuracy and precision with

sign, exponent and mantissa form. And then by using it as

input to a floating point adder we get an improved result with

greater accuracy and precision. An improvement in conversion

and addition speed can highly improve system performance by

using new techniques. So the aim of our project is to analyze

the problem and study the different ways to overcome the

problems in an order to enhance the system performance.

REFERENCES

[1] Abhishek Kumar, Mayur S. Dhait” Review on Floating point

adder and converter unit using VHDL” in International Journal

of Science & Research, Volume 4 Issue-3, March2015.

[2] Reshma Cherian#, Nisha Thomas*, Y.Shyju# “Implementation

of Binary to Floating Point Converter using HDL”pp. 461-

64,©2013 IEEE

[3] Sunita.S.Malaj, S.B.Patil, Bhagappa.R.Umarane, "VHDL

Implementation of Interval Arithmetic Algorithms for Single

Precision Floating Point Numbers” International Journal of

Scientific & Engineering Research Volume 4, Issue3, March-

2013.

[4] Jairaj Bhattacharya, Aman Gupta, Anshul Singh.,"A High

Performance Binary TO BCD Converter for Decimal

Multiplication” International Symposium on VLSI Design,

Automation and Test, 2010.

[5] Guillermo Marcus, Patricia Hinojosa, Alfonso Avila and Juan

Nolazco-Flores “ A Fully Synthesizable Single-

Precision,Floating Point Adder/Substractor and Multiplier in

VHDL for General and Educational Use,” Proceedings of the

Fifth IEEE International Caracas Conference on Devices,

Circuits and Systems, Dominican Republic, Nov.3-5, 2004.

[6] "Design and Implementation of IEEE-754 Addition and

Subtraction for Floating Point Arithmetic Logic Unit",V.vinay

chamkur,

[7] W. Kahan “IEEE Standard 754 for Binary Floating-Point

Arithmetic,”1996

[8] Preeti Sudha Gollamudi, M. Kamaraju, “ Design of High

performance IEEE-754 single precision (32 bit) floating point

adder using VHDL. IJERT, Vol.2 Issue 7, pp. 2264-75, July-

2013.

[9] Shubhangi Bende, Prof. Sanjay Tembhurne, “Design of BCD to

floating point Converter based on single precision format”,

International journal os Scientific Research.

[10] Metin Mete, Mustafa Gok, “A multiprecision

floating point adder” 2011 IEEE.

[11] Ali malik, Soek bum ko , “Effective implementation of floating

point adder using

pipelined LOP in FPGAss,” ©2010 IEEE.

[12] Karan Gumber,Sharmelee Thangjam “Performance Analysis of

Floating Point Adder using VHDL on Reconfigurable

Hardware” in International Journal of Computer Applications

(0975 – 8887) Volume 46– No.9, May 2012.

[13] Rupali Dhobale, Soni Chaturvedi, “Implementation of 32 Bit

Binary Floating Point Adder Using IEEE 754 Single Precision

Format” IOSR Journel of VLSI and Signal Processing

(IOSR_JVSP) Volume 5, Issue 1, Ver. I (Jan_Feb.2015).

http://www.ijritcc.org/

