
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 7 4481 - 4487

4481
IJRITCC | July 2015, Available @ http://www.ijritcc.org

Improved PrefixSpan Algorithm for Efficient Processing of Large Data

Pratik Saraf
M.E. Scholar

Computer Engineering Department,

Thakur College of Engineering and Technology,

Mumbai

pratiksaraf308@gmail.com

Sheetal Rathi
Assistant Professor

Computer Engineering Department,

Thakur College of Engineering and Technology, Mumbai

sheetal.rathi@thakureducation.org

Abstract:- PrefixSpan (Prefix-projected Sequential pattern mining) algorithm is very well known algorithm for sequential data mining. It

extracts the sequential patterns through pattern growth method. The algorithm performs very well for small datasets. As the size of datasets

increases the overall time for finding the sequential patterns also get increased. The efficiency of PrefixSpan algorithm gets reduced while

processing the large data. The cost of constructing the projected dataset is also huge which ultimately affect the memory utilization.

The paper provides an improvised PrefixSpan algorithm which overcomes the problems faced by existing PrefixSpan thus reduces the time

complexity and enhances the memory utilization. The improvised PrefixSpan algorithm takes only 1/4th time to that of existing PrefixSpan

algorithm in order to find sequences from large sequential data which ultimately reduces the time complexity. Parallel processing through multi-

threading enabled the algorithm to find sequential pattern in such quick time. The memory utilization is also enhanced in improvised PrefixSpan

algorithm through GZIP. GZIP is lossless compression technique that performs very well on text-based contents. It achieves compression rates

of as high as 70-90% for larger files. It is helpful to reduce the construction cost of projected dataset. In this paper comparative analysis of

results of existing PrefixSpan algorithm and improvised PrefixSpan algorithm in terms of time complexity and memory utilization is done. The

results are drawn on basis of two threshold values that is minimum support and maximum prefix length.

Keywords:- PrefixSpan Algorithm, Minimum support, Maximum prefix length, Time complexity, Memory utilization.

__*****___

I. INTRODUCTION

The sequential pattern mining problem was first addressed

by Agrawal and Srikant [1995] [1, 2]. They said that, for a

given sequential database, in which each sequence consists

of a list of transactions. All these transactions are ordered by

transaction time and each transaction is a set of items.

Sequential pattern mining is made in order to discover all

sequential patterns based on user-defined minimum support.

The support of a pattern is calculated through the number of

data-sequences that the pattern contains.

Sequential Pattern Mining is a well known data mining

technique which consists of finding sub-sequences and

patterns which are appearing in a given set of sequence very

often. The PrefixSpan algorithm which is proposed by Jian

Pei et al. widely used to find the sequential patterns. It

avoids the huge candidate sequence generation thus

improvise the execution time and memory utilization. But

the data is not restricted to a limited size now as enormous

amount of data is generated daily. Though PrefixSpan is

efficient algorithm to find sequential patterns but it faces

problem when the large data is provided as input. The time

complexity increases and memory utilization is also poor.

These problems are handled by improvised PrefixSpan

algorithm is provided. Paper gives brief of the improvisation

made in existing PrefixSpan algorithm.

The first section of the paper gives evolution of various

sequential pattern mining algorithms. The second section

deals with the objective of work. The third section gives the

brief about the steps for executing the PrefixSpan algorithm

and the results of execution on various datasets (C16D200k,

C16D100k and C21D36k) are drawn in terms of time

complexity and memory utilization. In fourth section, the

improvisation in existing PrefixSpan is discussed along with

the improvised results. Last section deals with the

conclusion and future scope for the work.

II. RELATED WORK

Sequential pattern mining [1, 2] was first introduced by

Agrawal and Srikant in 1995, and three algorithms as

AprioriSome, AprioriAll and DynamicSome [1] are

proposed by them. Then different parameters such as time

constraints, sliding window time, and user-defined

systematic, are used so as to generalise the definition of

sequential pattern mining and proposed an Apriori-based,

improved algorithm as GSP (Generalized Sequential

Patterns). Zaki brought up SPADE [3] algorithm which was

based on the equivalence of classes. It was simply the

expansion of vertical data format sequential pattern mining

method. Later pattern growth method come into exists. Two

pattern growth algorithms were proposed by Han, which

included FreeSpan [4] and PrefixSpan [5]. Compared with

projected databases and subsequence connections,

PrefixSpan is more efficient than FreeSpan. SPMIP

(Sequential Pattern mining based on Improved PrefixSpan)

algorithm [6] by LIU Pei-yu et.al and BLSPM (bi-level

Sequential Pattern mining) algorithm [7] by Lian Dong and

Wang hong are proposed which overcome the problem of

constructing huge projected dataset in PrefixSpan algorithm.

III. OBJECTIVE OF THE WORK

The existing PrefixSpan algorithm is run on various

datasets. The sizes of datasets are increased gradually so as

to check the execution of algorithm from small datasets to

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 7 4481 - 4487

4482
IJRITCC | July 2015, Available @ http://www.ijritcc.org

large datasets. Various parameters like memory utilization,

time complexity and size of projected dataset are set as

benchmark for evaluating the results derived by algorithm

on different datasets. Finally the improvisation is done in

existing PrefixSpan through parallel processing and

compression technique (gzip). The results of both existing

PrefixSpan and improvised PrefixSpan are compared.

IV. PREFIXSPAN ALGORITHM
A pattern-growth method based on projection is used in

PrefixSpan algorithm [5] for mining sequential patterns. The

basic idea behind this method is, rather than projecting

sequence databases by evaluating the frequent occurrences

of sub-sequences, the projection is made on frequent prefix.

This helps to reduce the processing time which ultimately

increases the algorithm efficiency.

Jian Pei et al. proposed a novel algorithm called PrefixSpan

(Prefix-projected Sequential Pattern Mining) algorithm [5]

which works on projection of database and sequential

pattern growth. The divide and search space technique is

implemented by PrefixSpan. Algorithm mines sequential

patterns through following steps;

i. Find length-1 sequential patterns. The given

sequence S is scanned to get item (prefix) that

occurred frequently in S. For the number of time that

item occurs is equal to length-l of that item. Length-l

is given by notation <pattern> : <count>.

ii. Divide search space. Based on the prefix that derived

from first step, the whole sequential pattern set is

partitioned in this phase.

iii. Find subsets of sequential patterns. The projected

databases are constructed and sequential patterns are

mined from these databases. Only local frequent

sequences [8], [9] are explored in projected databases

so as to expand the sequential patterns. The cost for

constructing projected database is quite high. Bi-level

projection and pseudo-projection methods are used to

reduce this cost which ultimately increases the

algorithm’s efficiency.

The PrefixSpan has following advantages:

a. No candidate generation.

b. The frequency of local items only countable.

c. Divide-and-conquer search methodology is used.

d. It is superior to GSP as well as FreeSpan.

But still there is need to improvise the PrefixSpan algorithm

so as to reduce the cost for creating projected databases as

well as to reduce the scanning time of projected databases.

V. RESULTS OF EXISTING PREFIXSPAN

ALGORITHM

The results are drawn by executing the PrefixSpan algorithm

on different datasets. Minimum support (minsup) and

Maximum prefix length (MPL) are the two parameters

which are specified initially, on basis of which the

sequential patterns are generated. In previous research only

the minimum support values are considered to get the

sequential patterns through PrefixSpan algorithm. As the

algorithm is tested on large datasets the additional parameter

that is maximum prefix length is provided at start of

execution and results are drawn based on these two

parameters.

The different datasets C16D200k and C16D100k are

developed using synthetic dataset generator. One more

dataset C21D36k which is conversion of Bible into

sequence database is also used to draw the results of

algorithm execution. The C stands for average number of

item sets per sequence and D stands for number of

sequences in the labels of datasets.

Minimum support (MS) and maximum prefix length (MPL)

values are set initially on the basis of which the sequential

patterns are generated from sequential datasets. The

performance of PrefixSpan algorithm on different datasets is

evaluated by two parameters that are time complexity and

memory utilization. The values of time complexity and

memory utilization vary according to different datasets on

which the algorithm is run.

The different values of minimum support (MS) and

maximum prefix length (MPL) are provided initially for the

execution of PrefixSpan algorithm on different datasets

(C16D200k, C16D100k and C21D36k) and the results are

drawn in terms of time complexity and memory utilization.

C16D200k dataset has two hundred thousand transactions

with sixteen average numbers of items per sequence. The

existing PrefixSpan algorithm is run by varying the value of

minimum support from 0.5 to 0.7 while the maximum prefix

length ranges from 1 to 5. The time complexity for 0.5

minimum support is very high than that of 0.6 and 0.7

minimum support. The memory utilization for all minimum

support (0.5 to 0.7) does not shows that much variation and

thus quite similar.

Fig 1: Time complexity Bar Graph for C16D200k

0

5000

10000

15000

20000

25000

30000

35000

0
.5

/1

0
.5

/2

0
.5

/3

0
.5

/4

0
.5

/5

0
.6

/1

0
.6

/2

0
.6

/3

0
.6

/4

0
.6

/5

0
.7

/1

0
.7

/2

0
.7

/3

0
.7

/4

0
.7

/5

MS/MPL

TIME COMPLEXITY (ms)

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 7 4481 - 4487

4483
IJRITCC | July 2015, Available @ http://www.ijritcc.org

Fig 2: Memory Utilization Bar Graph for C16D200k

C16D100k dataset has one hundred thousand transactions. It

is a sequential dataset that contains sixteen numbers of items

per sequences. The algorithm is tested on C16D100k dataset

by varying the minimum support and maximum prefix

length values and the final results are drawn in terms of time

complexity and memory utilization.

Fig 3: Time complexity Bar Graph for C16D100k

Fig 4: Memory Utilization Bar Graph for C16D100k

C21D36k dataset is conversion of conversion of bible into

sequential dataset. It contains thirty six thousand sequential

transaction with twenty one average number of item sets per

sequence. The PrefixSpan algorithm is executed on

C21D36k. The performance of existing PrefixSpan

algorithm is evaluated in terms of time complexity and

memory utilization by varying the minimum support and

maximum prefix length values.

0

100

200

300

400

500

600

700

800

900

MS/MPL

MEMORY UTILIZATION (mb)

0

2000

4000

6000

8000

10000

12000

TIME COMPLEXITY (ms)

0

100

200

300

400

500

600

700

800

900

MEMORY UTILIZATION (mb)

MS/MPL

0

200

400

600

800

1000

1200

1400

1600

0
.5

/1

0
.5

/3

0
.5

/5

0
.6

/1

0
.6

/3

0
.6

/5

0
.7

/1

0
.7

/3

0
.7

/5

0
.8

/1

0
.8

/3

0
.8

/5

0
.9

/1

0
.9

/3

0
.9

/5

MEMORY UTILIZATION (mb)

MS/MPL

MS/MPL

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 7 4481 - 4487

4484
IJRITCC | July 2015, Available @ http://www.ijritcc.org

Fig 5: Memory Utilization Bar Graph for C21D36k [10]

Fig 6: Time Complexity Bar Graph for C21D36k [10]

VI. IMPROVISATION IN EXSITING PREFIXSPAN

The existing PrefixSpan algorithm faces the problem of

huge projected dataset cost which results into inefficient

memory utilization. The time complexity is also high while

running the algorithm on large datasets. In order to

overcome these problems improvisation is done in existing

PrefixSpan to process the large data and improvement is

done through;

1) Parallel processing and

2) Compression Technique (GZIP)

Fig 7: Improved PrefixSpan Architecture

VI.1 Parallel Processing

In order to achieve efficient and fast data processing for

large datasets the parallelization comes into play. The

parallel processing can be achieved through the

simultaneous use of more than one CPU or processor core to

execute a program or multiple computational threads. In

proposed system the parallelization is done through multi-

thread programming which enable to process the large data

in time efficient manner.

The existing PrefixSpan algorithm first derives the projected

dataset based on corresponding prefixes. Then various

sequential patterns are derived based on projected dataset.

At last the appropriate sequences are derived based on the

threshold values (Minimum support and Maximum prefix

length) which are provided at the start of the algorithm’s

execution.

In order to improved PrefixSpan these task are assigned to

different threads. That means one thread will read all the

data once, second thread will find the projected dataset, third

tread will derive sequential patterns. Another improvisation

is implementing compression which is also assigned to

another thread. Through multiple threads there is no need to

wait for completion of one process rather all processes can

work parallel. This finally reduces the overall time

complexity and thus improvised the existing PrefixSpan

algorithm.

VI.2 Compression Technique (GZIP)

GZIP is based on the DEFLATE algorithm. It is a

combination of LZ77 and Huffman coding. The LZ77 is

used to eliminate the duplicate string while the Huffman

coding deals with the bit reduction. GZIP first locates all

similar strings within a given text file and then replaces

those strings temporarily in order to reduce the overall size

of the file. GZIP is a generic compressor which enables it to

apply to any stream of bytes.

It also has feature to remember some of the previously seen

content and it helps to find and replace duplicate data

fragments in an efficient way. GZIP performs very well on

text-based contents. It often achieves compression rates of

as high as 70-90% for larger files. These features of GZIP

are very much useful in order to improvise the existing

PrefixSpan. As GZIP has such high compression rate on

large datasets it ultimately enhances the memory utilization.

VII. RESULTS OF IMPROVISED PREFIXSPAN

ALGORITHM

The existing PrefixSpan algorithm is improvised through

parallel processing and compression which results into time

and space efficient processing of large data. The improvised

PrefixSpan is run on C16D200k, C16D100k and C21D36k

datasets. The results show that the time complexity is

minimized significantly while the memory utilization is also

reduced.

For dataset C16D200k, the improvised PrefixSpan algorithm

is executed by varying the values of minimum support (MS)

and maximum prefix length (MPL). For existing PrefixSpan

algorithm when run on C16D200k dataset, the time

complexity varies from 1658 milliseconds to 10437

milliseconds.

But for improvised PrefixSpan algorithm, time complexity

is greatly reduced and it varies from 263 milliseconds to 407

0

6000

12000

18000

24000

30000

36000

42000

48000

54000

60000

66000

0
.5

/1

0
.5

/3

0
.5

/5

0
.6

/1

0
.6

/3

0
.6

/5

0
.7

/1

0
.7

/3

0
.7

/5

0
.8

/1

0
.8

/3

0
.8

/5

0
.9

/1

0
.9

/3

0
.9

/5

TIME COMPLEXITY (ms)

MS/MPL

Large

dataset

(Input
Sequence

s)

Improved

Prefix-

Span for
Large

Datasets

Sequentia

l Patterns

Evaluat

ion

Improvisation through

Parallel Processing and

Compression Technique

(GZIP)

http://www.ijritcc.org/
https://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Gzip

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 7 4481 - 4487

4485
IJRITCC | July 2015, Available @ http://www.ijritcc.org

milliseconds. Memory utilization is increased in improvised

PrefixSpan only for 0.5 minimum supports and when

maximum prefix length is set to 1. For other minimum

support values (0.6 and 0.7) the space utilization is reduced

through GZIP compression technique.

Fig 8: Time complexity Bar Graph for C16D200k of

Improvised PrefixSpan

Fig 9: Memory Utilization Bar Graph for C16D200k of

Improvised PrefixSpan

The improvised PrefixSpan algorithm is executed on dataset

C16D100k by varying the values of minimum support (0.5

to 0.7) and maximum prefix length (1 to 5). When existing

PrefixSpan algorithm is run on C16D100k dataset, the time

complexity varies from 359 milliseconds to 9532

milliseconds.

After improvising PrefixSpan through parallel processing

time complexity is significantly reduced and it varies from

265 milliseconds to 484 milliseconds. In case of memory

utilization, it is increased in improvised PrefixSpan only for

0.5 minimum supports and for 1 maximum prefix length.

For other minimum support values (0.6 and 0.7) the memory

utilization is enhanced through GZIP compression.

Fig 10: Time Complexity Bar Graph for C16D100k of

Improvised PrefixSpan

Fig 11: Memory Utilization Bar Graph for C16D100k of

Improvised PrefixSpan

The improvised PrefixSpan algorithm is also tested on

dataset C21D36k which is conversion of bible into sequence

dataset. The values of minimum support (0.5 to 0.9) and

maximum prefix length (1 to 5) are set to a threshold value

and are changed regularly. When existing PrefixSpan

algorithm is run on C21D36k dataset, the time complexity

varies from 374 milliseconds to 363847 milliseconds.

0

50

100

150

200

250

300

350

400

450

MS/MPL

TIME COMPLEXITY (ms)

0

100

200

300

400

500

600

700

800
MEMORY UTILIZATION (mb)

0

100

200

300

400

500

600

MS/MPL

TIME COMPLEXITY (ms)

0

100

200

300

400

500

600

700

800

900
MEMORY UTILIZATION (mb)

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 7 4481 - 4487

4486
IJRITCC | July 2015, Available @ http://www.ijritcc.org

When the existing PrefixSpan algorithm is improvised

through multi-threads based parallel processing, time

complexity is significantly reduced and it varies from 260

milliseconds to 375 milliseconds. In case of memory

utilization, it is increased in improvised PrefixSpan only for

0.5 minimum supports and for 1 maximum prefix length.

For other minimum support values (0.6 to 0.9) the efficient

memory utilization is achieved through compression

(GZIP).

Fig 12: Time Complexity Bar Graph for C21D36k of

Improvised PrefixSpan

Fig 13: Memory Utilization Bar Graph for C21D36k of

Improvised PrefixSpan

VIII. CONCLUSION

First the performance of existing PrefixSpan algorithm is

evaluated by running the algorithm on different datasets

(C16D200k, C16D100k and C21D36k). The two parameters

minimum support and maximum prefix length are set at

beginnig of the algorithm's execution. The sequences which

having value more than minimum support (provided at start)

are extracted from sequential datasets. When the pattern

occurs in sequential dataset is divided by the total number of

sequences in the database, the minimum support is

calculated. As the PrefixSpan algorithm is run on large

datasets, the maximum prefix pattern value plays important

role to get sequential output. It is used to specify the length

of the sequence to be there in output. For getting the

sequential output based on minimum support and maximum

prefix length,. The two parameters time complexity and

memory utilization are set as the benchmark for

performance evaluation when PrefixSpan algorithm is run

on different datsets based on various values of minimum

support and maximum prefix length. Both the parameters

vary from one dataset to other. These results are plotted in

bar graph and are useful in order to analyse the performance

of existing algorithm.

When the existing PrefixSpan algorithm is run on

C16D200k, C16D100k and C21D36k datasets, the time for

finding sequential output is high as these datasets are large

datasets. It ultimately increased the overall time complexity

of algorithm. As the existing algorithm is tested on large

datasets, it faces the problem of huge cost construction for

projected datasets. It ultimately leads to inefficient memory

utilisation.

In order to overcome these problems of existing PrefixSpan

when tested on large datasets, the improvisation is done

through parallel processing and compression technique

(GZIP). The parallel processing is done through by

assigning various processes to corresponding threads which

termed as multi-thread programming. It helps to process the

large data in time efficient manner which ultimately reduced

the overall time complexity to 1/4
th

 of the existing

PrefixSpan algorithm.

The efficient memory utilisation is provided by

implementing the compression technique GZIP which is

termed as lossless compression. GZIP achieved efficient

compression through Huffman Coding and LZ77. Huffman

coding improvises the entropy encoding while LZ77

replaces the repeated occurrences of data with a single copy

of the data existing earlier in the uncompressed data stream.

Thus GZIP achieves compression rates of as high as 70-90%

for larger files by combining features of Huffman coding

and LZ77. This compression ultimately enhances the

memory utilization and reduces the overhead construction

cost of projected dataset.

0

50

100

150

200

250

300

350

400

0
.5

/1

0
.5

/3

0
.5

/5

0
.6

/1

0
.6

/3

0
.6

/5

0
.7

/1

0
.7

/3

0
.7

/5

0
.8

/1

0
.8

/3

0
.8

/5

0
.9

/1

0
.9

/3

0
.9

/5

TIME COMPLEXITY (ms)

0

100

200

300

400

500

600

700

800

0
.5

/1

0
.5

/3

0
.5

/5

0
.6

/1

0
.6

/3

0
.6

/5

0
.7

/1

0
.7

/3

0
.7

/5

0
.8

/1

0
.8

/3

0
.8

/5

0
.9

/1

0
.9

/3

0
.9

/5

MEMORY UTILIZATION (mb)

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 7 4481 - 4487

4487
IJRITCC | July 2015, Available @ http://www.ijritcc.org

IX. FUTURE SCOPE

The PrefixSpan algorithm can further be improved in order

to process BIG sequential data. Other constraints can also be

added in order to develop the algorithm for concrete

application. As for concrete application only limited and

specific sequential output will be needed. More precision

can be introduced through additional parameters for final

sequential outputs.

X. ACKNOWLEDGMENT

The authors are grateful to Dr. R. R. Sedamkar for his

exemplary guidance, valuable feedback and constant

encouragement for the research. His valuable suggestions

were of immense help throughout the research work.

REFERENCES

[1] R Agrawal and R Srikant, 1995. Mining sequential patterns,

In Proceedings of 1995 International Conference Data

Engineering (ICDE’95), pp. 3- 14, Taipei, Taiwan.

[2] R Agrawal and R Srikant, 1994. Fast algorithms for mining

association rules, In Proc. 1994 Int. Conf. Very Large Data

Bases (VLDB’94), pp. 487- 499, Santiago, Chile.

[3] M. Zaki, 2001. SPADE: An Efficient Algorithm for Mining

Frequent Sequences, Machine Learning, vol. 40, pp. 31- 60.

[4] Han J., Dong G., Mortazavi-Asl B., Chen Q., Dayal U., Hsu

M.-C., 2000. Freespan: Frequent pattern-projected sequential

pattern mining, In Proceedings 2000 Int. Conf. Knowledge

Discovery and Data Mining (KDD’00), pp. 355-359. 2000.

[5] Jian Pei, Jiawei Han, Behzad Mortazavi, Umeshwar Dayal,

2004. Mining Sequential Patterns by Pattern-Growth: The

PrefixSpan Approach, IEEE transactions on knowledge and

data engineering, Vol. 16, pp. 1424-1440.

[6] LIU Pei-yu, GONG Wei and JIA Xian, 2011. An Improved

PrefixSpan Algorithm Research for Sequential Pattern

Mining, In Proceedings 2011 International Symposium, pp.

377-380.

[7] Liang Dong and Wang Hong. 2014. A improved

PrefixSpan Algorithm for Sequential Pattern Mining, In Proc.

2014 IEEE International Conference, Vol. 1, pp. 103-108.

[8] Zhou Zhao, Da Yan and Wilfred Ng. 2014. Mining

Probabilistically Frequent Sequential Patterns in Large

Uncertain Databases, IEEE transactions on knowledge and

data engineering, Vol. 26, pp. 1171-1184.

[9] J. Pei, J. Han and W. Wang, 2007. Constraint-based

sequential pattern mining: the pattern growth methods, J

Intell. Inf. Syst, Vol. 28, No.2, pp. 133 –160.

[10] Pratik Saraf, R. R. Sedamkar and Sheetal Rathi 2015.

PrefixSpan Algorithm for Finding Sequential Pattern with

Various Constraints, International Journal of Applied

Information Systems, Vol. 9, pp. 37- 41.

http://www.ijritcc.org/

