
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 7 4348 - 4352

4348
IJRITCC | July 2015, Available @ http://www.ijritcc.org

Query Formulation and Recommendation for Relational Databases Using User

Sessions and Collaborative Filtering

Mr. S. D. Chopade

Department Of Computer Engineering

DGOI, FOE, Daund

Savitribai Phule Pune University, Pune

Duand, Pune, India

sagarchopade30@gmail.com

Prof. S. S. Bere

Department Of Computer Engineering

DGOI, FOE, Daund

Savitribai Phule Pune University, Pune

Duand, Pune, India

sachinbere@gmail.com

Abstract- Structured Query Language (SQL) has a uniform structure over different programming languages. The queries fired on Database

Management System (DBMS) contain textual information along with selected segments of data parsed by data base management system to fire it

as a structured query. Currently DBA needs to execute complex queries on large databases. Many times user or DBA fires similar queries on

database server to get useful information. The queries which are similar to each other can then be categorized into two types a) the tuples retrieved

by SQL queries are similar b) the fragment of the queries are similar. System gives recommendation to those similar queries so that it saves the

time of DBA to construct it again and again. Query suggestions given to DBA or users are known as Query Recommendation. To develop a

Query Recommendation system many authors suggested the use of Query Log. Query suggestions are divided into two areas mainly

Collaborative Recommendations and Single Log Recommendations. This system is designed by single or collaborative log using parameter

known as mixing factor. In this paper we analyzed Sql query Recommendation concepts and their uses.

There are basically two types of similarity measure for Query Recommendation considered in [1] such as 1) Fragment Based 2) Tuple Based.

Here in this research paper we are motivated towards generating recommendations for nested SQL queries. We adopt hierarchical classification

on query log to create classes of similar queries and further to generate recommendations for SQL Query we proceed with finding matching class

from which the recommendations can be modeled.

Keywords- Recommendation Systems, SQL Query, SQL Query Log, DBMS, Mixing factor, Query Fragments.

__*****___

I. INTRODUCTION

Database systems are largely recommended in scientific

community. These databases usually employ a web-based

interface that allows users to submit SQL queries and

retrieve the results. Relational database systems executes

complex queries on large data sets, the discovery of useful

information remains a big challenge. As an example, users

who are not familiar with the database may overlook all

queries data that are not useful, or user may don’t know data

provided by database contains relevant information or not.

Many times users of database system don’t have relevant

knowledge of sql queries that would allow them to run

complex queries and retrieve results [1].

To address this important problem of assisting users when

exploring a database, we designed the QueRIE (Query

Recommendations for Interactive data Exploration) system

using two methods- 1) Tuple based recommendation which

maintains session of particular user. 2) Fragment based

recommendation which fragment the quire for comparison.

QueRIE system continuously monitors the users querying

behavior and finds matching patterns in the systems query

log, in an attempt to identify previous users with similar

information needs and uses these similar users and their

queries to recommend queries that the current user may find

interest-ing. In this we describe an instantiation of the

framework, where the active users session is represented by

a set of query fragments. The recorded fragments are used to

identify similar query fragments in the previously recorded

sessions, which are in turn assembled in potentially

interesting queries for the active user. We show through

experimentation that the proposed method generates

meaningful recommendations on real-life traces from the

SQL database and propose a scalable design that enables the

incremental update of similarities, making real-time

computations on large amounts of data feasible [2].

II. RELATED WORK

In Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad

Chakka, Ning Zhang and Raghotham Murthy, Hive- A

Petabyte Scale Data Warehouse Using Haddop, Hadoop is a

popular open-source map-reduce implementation which is

being used in companies like Yahoo, Facebook etc. to save

and execute every big data sets on commodity hardware.

Map-reduce is programming model for processing large data

set with a parallel distributed algorithm on a cluster. Hive

also includes a system catalog megastore that contains

schemas and statistics, which are useful in data exploration,

query optimization and query compilation. In facebook, the

Hive warehouse contains tens of thousands of tables and

stores over 700TB of data and is being used extensively for

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 7 4348 - 4352

4349
IJRITCC | July 2015, Available @ http://www.ijritcc.org

both reporting and ad-hoc analyses by more than 200 users

per month. The entire data processing infrastructure in

facebook prior to 2008 was built around a data warehouse

built using a commercial RDBMS. The data that we were

generating was growing very fast - as an example we grew

from a 15TB data set in 2007 to a 700TB data set today. In

current world Hadoop is a technology that addresses our

scaling needs. Hadoop was already an open source project

that was being used at megabyte scale and provided

scalability using commodity hardware was a very

compelling proposition for us. The same jobs that had taken

more than a day to complete could now be completed within

a few hours using Hadoop. Currently author considers only

a subset of SQL as valid queries. Authors are working

towards making HiveQL subsume SQL syntax. Hive

currently has a naive rule-based optimizer with a small

number of simple rules [5].

In Badrul Sarwar , George Karypis , Joseph Konstan and

John Riedl, Item Based Collaborative Filtering Recom-

mendation Algorithms, Science and Engineering University

of Minnesota, Minneapolis, MN 55455 Recommender

systems apply knowledge discovery techniques to the

problem of making personalized recommendations for

information, products or services during a live interaction.

These systems, especially the k-nearest neighbor

collaborative filtering based ones, are achieving widespread

success on the Web. The tremendous growth in the amount

of available information and the number of visitors to Web

sites in recent years poses some key challenges for

recommender systems. These are: producing high quality

recommendations, performing many recommendations per

second for millions of users and items and achieving high

coverage in the face of data sparsity. In traditional

collaborative filtering systems the amount of work increases

with the number of participants in the system. New

recommender system technologies are needed that can

quickly produce high quality recommendations, even for

very large-scale problems [11].

In Gloria Chatzopoulou, Magdalini Eirinaki and Neoklis

Polyzotis, Query Recommendations for Interactive Database

Exploration. Users employ a query interface to issue a series

of SQL queries that aim to analyze the data and mine it for

interesting information. In this paper, authors present a

query recommendation framework supporting the interactive

exploration of relational databases and an instantiation of

this framework based on user-based collaborative filtering.

Such queries need to be considered in the recommendation

process. First-time users, however, may not have the

necessary knowledge to know where to start their

exploration. Other times, users may simply overlook queries

that retrieve important information. The experimental

evaluation demonstrates the potential of the proposed

approach. The authors should stress that this is a first-cut

solution to the very interesting problem of personalized

query recommendations. There are many open issues that

need to be addressed. For instance, an interesting problem is

that of identifying similar queries in terms of their structure

and not the tuples they retrieve. Two queries might be

semantically similar but retrieve different results due to

some filtering conditions [9].

The Javad Akbarnejad , Gloria Chatzopoulou , Magdalini

Eirinaki, Suju Koshy, Sarika Mittal, Duc On, Neoklis

Polyzotis and Jothi S. Vindhiya Varman, SQL QueRIE

Recommendations, This system aims at assisting non-expert

users of scientific databases by tracking their querying

behavior and generating personalized query

recommendations. The system is supported by two

recommendation engines and the underlying

recommendation algorithms. The first identifies potentially

interesting parts of the database related to the corresponding

data analysis task by locating those database parts that were

accessed by similar users in the past. The second identifies

structurally similar queries to the ones posted by the current

user. Both approaches result in a recommendation set of

SQL queries that is provided to the user to modify, or

directly post to the database. The demonstrated system will

enable users to query and get real-time recommendations

from the SkyServer database, using user traces collected

from the SkyServer query log. QueRIE does not require an

explicit user profile or keyword-based queries. On the

contrary, it closes the loop by accepting SQL queries as

input, decomposing them in order to identify interesting

database areas for each user, and re-transforms them in SQL

queries that are presented as recommendations.

III. PROPOSED SYSTEM

The Design architecture of the system as depicted Fig.1. The

queries that are relevant are passed to both the DBMS and

the Recommendation Engine. The data base management

system executes every query and gives a set of results. At

the same time, the query is stored in the Query Log. The

Recommendation Engine combines the current users input

with information gathered from the database interactions of

past users, as recorded in the Query Log, and generates a set

of query recommendations that are returned to the user.

A. Preliminaries

Tuple-Based Query Recommendation: In this instantiation

of the QueRIE framework, the session summary Si is

represented as a weighted vector, where every coordinate

corresponds to a distinct database tuple. We assume that the

total number of tuples in the database, and as a consequence

the length of the vector, is T. The weight Si[] represents the

importance of a given tuple 2 T in session Si, and is non-

zero only if is a witness for at least one query in the session.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 7 4348 - 4352

4350
IJRITCC | July 2015, Available @ http://www.ijritcc.org

The intuition is that Si captures the tuples in the base tables

that are touched by the queries in the user’s session. So,

session having similar queries will map to the equivalent

summary [3][4].

We assume that the vector SQ represents a single query Q.

The value of each element SQ[] signifies the importance of

the tuple as the witness for Q. [6]

Fragment-Based Query Recommendations: The fragment-

based instantiation of the QueRIE framework works in a

similar manner to the tuple-based one. The two main

differences lie in the representation of the session

summaries and the formulation of similarities. More

specifically, the coordinates of the session summaries

correspond to fragments of queries instead of witnesses. We

identify as fragments the following syntactical features of

the queries in the session: attribute references, table’s

references, join and selection predicates. At a high level, the

idea behind this approach is to recommend queries whose

syntactical features match the queries of the current user.

User-based collaborative filtering main disadvantage is that

it inherently requires real-time similarity calculations, as the

active users profile gets updated. This significantly slows

the real-time generation of recommendations, making such a

choice inappropriate for large-scale systems. On the other

hand, item-based collaborative filtering performs all

similarity calculations during the training process, and thus

has much smaller overhead during the recommendations

generation phase. This is the reason why we decided to

follow a methodology similar to the item-based

collaborative filtering. Our objective is to identify fragments

that co-appear in several queries posed by different users,

and use them in the recommendation process. These

fragments may, or may not include the ones in the users

active session S0 depending on the value of the mixing

factor . Thus, QueRIE first calculates (offline) the pair-wise

similarities of all query fragments recorded in the query

logs. These similarities are subsequently used to predict, in

real time, the rank (i.e. importance) of each fragment with

regards to the current user session. In turn, the highest

ranked query fragments are the query characteristics used to

mine the query logs and select the most relevant queries that

are used as recommendations [4][6].

B. The Framework

Figure 1: System Architecture

Algorithm:

Input:

 Set Of SQL Queries Q = {Q0, Q1, Q2……..Qn-1}

 Threshold thr=0.5

Output:

Set Of Clusters C= {C0, C1, C2……Cm-1}

Steps:

Step 1: Create first cluster C0, assign first Query Q0 to C0

 C0<- Q0

 C= C U C0

Step 2: for i=1 to n-1

 flag=0

 mostmatching=-1

Do

 For j=0 to m-1

 2.1 CalculateCosineSimilarity, sim=(Qi, Cj)

 If(sim>= thr and sim>= flag)

 flag=sim

 mostmatching=j

 2.2 if(mostmatching==-1)

 Create new cluster Cm

 Cm<- Qi

C=C U Cm

 Else

 Cmostmatching<- Qi

 End

IV. DATASET AND RESULT ANALYSIS

The general query log is a general record of what mysqld is

doing. The server writes information to this log when clients

connect or disconnect, and it logs each SQL statement

received from clients. The general query log can be very

useful when you suspect an error in a client and want to

know exactly what the client sent to mysqld [1]. We

extensively tested the proposed system on a sample

SQLEXPRESS database containing 7 relational tables. The

log contains 60 simple SQL queries and 40 nested SQL

queries. Further we fired some queries over database along

with Fragment based query recommendation, tuple based

recommendation and hierarchical classification based nested

query recommendation. Then we calculated accuracy in

terms of precision and availability in terms of recall to find

efficiency of each technique.

http://www.ijritcc.org/
http://dev.mysql.com/doc/refman/5.1/en/mysqld.html
http://dev.mysql.com/doc/refman/5.1/en/mysqld.html

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 7 4348 - 4352

4351
IJRITCC | July 2015, Available @ http://www.ijritcc.org

Sr. No #Relevant Queries

in log

#Recommended

Queries

#Correctly recommended

Queries

Recall Precision

1 35 8 3 0.23 0.38

2 67 21 10 0.31 0.48

3 31 17 12 0.54 0.70

4 16 13 10 0.76 0.76

5 10 9 7 0.90 0.77

Table 1: Results Analysis for Tuple based Recommendations

Sr. No #Relevant Queries

in log

#Recommended

Queries

#Correctly recommended

Queries

Recall Precision

1 31 10 6 0.32 0.60

2 32 15 11 0.47 0.73

3 25 18 15 0.72 0.83

4 15 14 12 0.93 0.86

5 9 9 8 1.00 0.89

Table 2: Results Analysis for Fragment based Recommendations

Sr. No #Relevant Queries

in log

#Recommended

Queries

#Correctly recommended

Queries

Recall Precision

1 51 16 10 0.31 0.63

2 26 13 11 0.50 0.85

3 19 14 13 0.74 0.93

4 27 25 24 0.92 0.96

5 9 9 9 1.00 1.00

Table 3: Results Analysis for Classification based nested Query Recommendations

Figure 2: Precision Vs Recall graph

As shown in Figure2 the three techniques and their

respective Presion Vs Recall graphs are plotted. For Tuple

based recommendation we found 0.55 (55%) availability of

the reccommendations and corresponding accuracy 0.62

(62%). Further for the Fragment based recommendation we

found 0.67 (67%) availability of the reccommendations and

corresponding accuracy 0.78 (78%). Then we tested

hirarchical classification based recommendation and found

availability as 0.69 (69%) while precision as 0.87 (87%).

The extensive analysis shows that classification based

recommendation has comparatively high precision and

recall values than Tuple based and Fragment based

recommendation techniques.

V. CONCLUSION

In this paper we present the QueRIE framework that aims to

generate useful SQL query recommendations to users of

relational databases. Taking into consideration the findings

of our previous work, where we developed a tuple-based

instantiation of the framework using user-based similarities

to generate recommendations, we decided to follow an item-

based approach using query fragments to represent user

sessions. On the other hand, the fragment-based approach

can be implemented very efficiently; the space of fragments

grows slowly, the summaries are very sparse and, most

importantly, the fragment-to-fragment similarities can be

computed and stored for very fast retrieval when

recommendations need to be generated. The analysis

showed that this trade-of between computational efficiency

and accuracy is worth pursuing, since we are able to have a

scalable implementation running with real, big data, with an

acceptable loss in precision. In fact, when the tuple-based

instantiation employs approximation techniques to enable

real-time calculations, the loss in precision is much greater

than that of the fragment-based one.

ACKNOWLEGEMENT

I express great many thanks to Prof. S. S. Bere and

Department Staff for their great effort of supervising and

leading me to accomplish this fine work. They were a great

source of support and encouragement. To every person who

gave me something too light along my pathway. I thanks for

believing in me.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 7 4348 - 4352

4352
IJRITCC | July 2015, Available @ http://www.ijritcc.org

REFERENCES

[1] J. Akbarnejad et al., “SQL QueRIE recommendations,”

PVLDB,vol. 3, no. 2, pp. 1597–1600, 2010.

[2] A. Thusoo et al., Hive - A petabyte scale data warehouse

using hadoop, Proc. IEEE 26th ICDE, Long Beach, CA,

USA, Mar. 2010, pp. 9961005.

[3] S. Mittal, J. S. V. Varman, G. Chatzopoulou, M.

Eirinaki, and N. Polyzotis,QueRIE: A recommender

system supporting interactive database exploration,Proc.

IEEE ICDM, Sydney, NSW, Australia, 2010.

[4] J. Akbarnejad et al., SQL QueRIE

recommendations,PVLDB, vol. 3, no. 2, pp.15971600,

2010.

[5] N. Alon, Y. Matias, and M. Szegedy, The space

complexity of approximating thefrequency

moments,Proc. 28th STOC, New York, NY, USA, 1996.

[6] E. Cohen, Size-estimation framework with applications

to transitive closure andreachability,J. Comput. Syst.

Sci., vol. 55, no.3, pp. 441453, 1997.

[7] G. Linden, B. Smith, and J. York, “Amazon.com

recommendations:Item-to-item collaborative filtering,”

IEEE Internet Comput.,vol. 7, no. 1, pp. 76–80, Jan./Feb.

2003.

[8] N. Koudas, C. Li, A. K. H. Tung, and R. Vernica,

“Relaxing joinand selection queries,” in Proc. 33nd Int.

Conf. VLDB, Seoul, Korea,2006, pp. 199–210.

[9] V. Singh et al., “Skyserver traffic report—The first five

years,”Microsoft Research, Tech. Rep. MSR TR-2006-

190, 2006.

[10] B. Liu, Web Data Mining: Exploring Hyperlinks,

Contents and UsageData, 2nd ed. Berlin, Germany:

Springer, 2007.

[11] B. M. X. Jin and Y. Zhou, “Task-oriented web user

modeling forrecommendation,” in Proc. User Modeling,

Edinburgh, U.K., 2005.

[12] B. Mobasher, “Data mining for personalization,” in The

AdaptiveWeb: Methods and Strategies of Web

Personalization. Berlin,Germany: Springer, 2007, pp.

90–135, LNCS 4321.

[13] K. Stefanidis, G. Koutrika, and E. Pitoura, “A survey on

representation,composition and application of

preferences in databasesystems,” ACM Trans. Database

Syst., vol. 36, no. 4, Article 19, 2011.

[14] G. Koutrika, “Personalized DBMS: An elephant in

disguise or achameleon?” IEEE Data Eng. Bull., vol. 34,

no. 2, pp. 27–34, Jun.2011.

[15] S. Borzonyi, D. Kossmann, and K. Stocker, “The

skyline operator,”in Proc. IEEE ICDE, Heidelberg,

Germany, 2001.

[16] J. Chomicki, Preference formulas in relational

queries,ACM Trans. Database Syst., vol. 28, no. 4, pp.

427466, 2003.

[17] W. Kiessling, Foundations of preferences in database

systems,Proc. Int. Conf. VLDB, Hong Kong, China,

2002.

[18] W. Kiessling, M. Endres, and F. Wenzel, The preference

SQL system - An overview,IEEE Data Eng. Bull., vol.

34, no. 2, pp. 1118,Jun. 2011.

[19] G. Koutrika and Y. Ioannidis, Personalized queries under

a generalized preference model,Proc. 21st ICDE,

Washington, DC,USA, 2005.

[20] J. Levandoski, M. Mokbel, and M. E. Khalefa, FlexPref:

A framework for extensible preference evaluation in

database systems,Proc. IEEE ICDE, Long Beach, CA,

USA, 2010.

[21] E. Pitoura, K. Stefanidis, and P. Vassiliadis, Contextual

database preferences,IEEE Data Eng. Bull., vol. 34, no.

2, pp. 1926,Jun. 2011.

[22] A. Giacometti, P. Marcel, and E. Negre, Recommending

multidimensional queries,. 11th Int. Conf. DaWaK,

Linz,Austria, 2009.

http://www.ijritcc.org/

