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Abstract— In this paper, we consider the single server queueing system having Baileys bulk service rule with phase wise. In this 

model various system characteristics like probability that the system emptiness, variability of the system size and the coefficient 

of variation are obtained. 
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I.  Introduction  

In the bulk service queueing models, Bailey (1954) and 
Jaiswal (1960) considered units arrive at random form a single 
queue in order of arrival and are served in batches, the size of 
each batch being either a fixed number of customers or the 
whole queue length whichever is smaller.  Jaiswal (1961) 
extended this model to the case, where at a service epoch if 

m )0( sm  persons are already present with the server 

then )( ms   persons or the whole queue length whichever is 
smaller will be taken into service. This service rule is termed as 
Bailey’s Bulk Service.  However, in these models the arrival 
and service processes are independent. But in some situations, 
like at an elevator or at a bus stop. etc., the service processes 
depends on the arrival processes in order to have optimal 
operating policies. So, for this kind of situations, we develop 
and analyze the interdependent queueing model with Bailey’s 
Bulk service rule. 

In this paper we considered the arrival processes is 

Poissonian and the service processes is Erlangian with 

interdependent arrival and service processes. 
In this model the system behavior is analyzed by obtaining 

the difference-differential equations of the model and solving 
them through generating function techniques. The system 
characteristics like, mean queue length, variability of the 
system size and coefficient of variation are derived and 
analyzed in the light of the dependence parameter. 
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    INTERDEPENDENT MODEL WITH 

PHASE WISE SERVICE 

 

        In this section, we consider the single server queueing 

system with interdependent arrival and service process having 

the Bailey’s bulk service rule with phase wise.  Here, we 

assume that the server serves only at instants 

 ,,,, n21 ttt (i.e., the service is available at time 

instants ,,,,
n21
ttt ).  If m )0( sm  persons are 

present in the waiting line at time n
t  then the server takes a 

batch of X persons {i.e., the server takes  )( ms   persons or 

whole queue length whichever is smaller}, here X is a random 

variable and s  is the service capacity. Along with, we 

assume that the number of arrival of the customers and the 

number of service completions in each phase are correlated 

and follows  a  bivariate Poisson distribution of the form  
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  here ...210    , 21 , ,,xx  ;      , 0       

and      ,min     

 tx=X,x=XP 221 /1  is the joint probability of 1x
 

arrivals and 2x  services during time t. 

The marginal distribution of arrival and services are Poisson 

with parameters λ and µ respectively. Thus inter arrival times 

and service times follow negative exponentials distributions of 

the form  λe
- λ t

  and  µe
- µt

 respectively where λ is the mean 

arrival rate and µ is the mean service rate (Feller 1969).  ∈ is 

the covariance between the number of arrivals and services at 

time t .  This dependence structure turns out to be 

independent structure if ∈ = 0 (Teicher1954). 

Let m
b

 be the probability that there are m  

customers present with the server in the system at a service 
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epoch. Then the server takes X customers 

{i.e., )( ms  customers or the whole queue length whichever 

is smaller}.  s  is the maximum size of the batch that is to be 

taken into service. 

We have 
0

m
b

 if  sm      and   1

1
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b  with this 

dependence structure we develop 1 /  
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Interdependent model with Bailey’s bulk service. 

III. POSTULATES OF THE MODEL 

The postulates of the model with this dependence structure are  

1. The occurrence of the events in non-overlapping time 

intervals is statistically independent. 

2. The probability that no arrivals and no service completions 

occur in an infinitesimal interval of    

    time  Δt  is  1 – [(λ + μ -) t] +O (Δt) 

3. The probability that no arrival and one service completion 

occurs in Δt  is  (μ – ) t + O(Δt) 

4. The probability that one arrival and no service completion 

occurs in Δt  is  (λ- ) t + O(Δt) 

5. The probability that one arrival and one service completion 

accrues in Δt is  t + O(Δt). This postulate is due to the 

dependence structure between the arrivals and service 

completions. 

6. The probability that the occurrence of an event other than 

the above events during Δt  is  O(Δt) 

There is an equivalence between the postulates and 

the process. Further for given values of   λ,   μ the covariance   

 = r , where r is the correlation coefficient between 

arrivals and service.  Since  is a function of r and is treated as 

dependence parameter (). This is the structure given by Rao 

K.S (1986). 

Let )(tPn be the probability that there are n 

customers waiting in the queue at time t and service is in the 

thr phase. 

      Using the phase-type technique analogue of MORSE 

(1957), we can have the differential equation of the model as  
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here     
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Assuming the system is in steady – state, the state transition 

equations of the model are 
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To solve these steady-state equations, we adopt the generating 

function approach.   
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 be the generating faction of nP  

Following the heuristic argument of JAISWAL(1961). We 

get the probability generating faction of  
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Applying Roche’s Theorem,  for the denominator, we get, 
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It can be shown to have )1( s  zero’ s inside the unit circle 

and one at 1y and the remainder outside the unit circle 

.1y  However this requires the condition, 
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The condition is necessary for statistical equilibrium. Thus 

 yP can be written as 
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Where iy ’s  are the roots of modules greater than one of the 

equation 
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Using the boundary condition P(1)=1,  we obtain 

         13...   -1     iyC   
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Where iy ’s  are given in equation (12) 

       

Using the probability generating function, we can analyze the 

system behavior of this model.  Expanding equation (14) and 

collecting the coefficient of 
ny , will give us the probability 

that there are  n  customers in the system. 

 

 

 

 

 

 

IV. MESURES OF EFFECTIVENESS 

 

The probability that the system is empty can be obtained as 
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Where  iy ’s are as given in equation (12) 

 

Using the equation (15) the values of 0P are computed for 

various values of s  and for given values of  ,   and k  

and are given in table (1).  From table (1)  it is observed that 

the values of 0P increases as  increases for fixed values of 

 ,   and k .  It is also noticed that the values of 

0
P increases as the batch size s  increases for fixed values 

 ,   and k . 

                   The Average Number of customers in the system 

can be obtained by differentiating )(yP  with respect to y 

and substituting 1y . 

From equation (14)  and using L-Hospital’s rule, we have 
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Where  iy ’s  given in equation (12) 

 Using equation (16), we have computed the values of 

L for various values  of and s  are presented in table (2) 

From table (2) it is observed that  the values of L 

decreases as increases for fixed of  ,   and k .  And it is 

also noticed from table (2) that the values of L decreases as the 

batch size s  increases .  

 

The variability of the system size is obtained by using the 

formula                       
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Using equation (17) we have computed the values of V for 

various values of k  an  and  for fixed values of   ,  and ,  

also for various values of s  and  for fixed values of μλ,   

and k  

 

The coefficient of variation of the system is  

                          19...   .
L

V
VC  

 

Where V and L are as given in equation (18) and (16) 

respectively. 

 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication                                       ISSN: 2321-8169 
Volume: 3 Issue: 5                                                                                                                                                                         3450 - 3455 

_______________________________________________________________________________________________ 

3453 
IJRITCC | May 2015, Available @ http://www.ijritcc.org                                                                 

_______________________________________________________________________________________ 

 The values of  V and C.V are computed for various 

values of s  ,  and for fixed values of    ,   and k are 

presented in table (3) and table (4). 

 

                 It is observed that as s  increases the variability of 

the system size decreases and the coefficient of variation 

increases as the dependence parameter increases the variability 

of the system size deceases and the coefficient of variation 

increases for fixed values of k ,   and  .  It is also 

noticed that as k  increases the system variability increases 

for fixed values of   ,  ,   and s ,  the coefficient of 

variation decreases for fixed values of    ,  ,   and s . 

As the dependence parameter increases the variability of the 

system size decreases and the coefficient of variation increases 

for fixed values of     ,  , k and s  

 

 

 

 

Table 1.   VALUES OF 0P             k = 2,       =  1,     =  6 

s/  
0 0.2 0.4 0.6 0.8 

1. 

2. 

3. 

4. 

0.3611 

0.6270 

0.6938 

0.7228 

0.4792 

0.6868 

0.7403 

0.7640 

0.7716 

0.7533 

0.7925 

0.8107 

0.7294 

0.8252 

0.8519 

0.8643 

0.8781 

0.9069 

0.9202 

0.9266 

  

 

Table 2.    Values of  L     k = 2,       =  1   =  6  

s/  
0 0.2 0.4 0.6 0.8 

1. 

2. 

3. 

4. 

1.7499 

0.5857 

0.4335 

0.3762 

1.0767 

0.4502 

0.3457 

0.3030 

0.2923 

0.3259 

0.2588 

0.2306 

0.3689 

0.2104 

0.1725 

0.1556 

0.1408 

0.1023 

0.0864 

0.0789 

                                                

 

 

 

 Table 3.   Values of V      k = 2,       =  1   =  6  

S/  
0 0.2 0.6 0.8 

1. 

2. 

3. 

4. 

4.7704 

0.9091 

0.6047 

0.5019 

2.2149 

0.6405 

0.4542 

0.3860 

.5008 

0.2515 

0.1993 

0.1770 

0.1948 

0.1120 

0.0931 

0.0843 
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Table  4.   Values of  C.  V     k = 2,       =  1   =  6  

S/  
0 0.2 0.6 0.8 

1. 

2. 

3. 

4. 

1.2481 

1.6279 

1.7937 

1.8834 

1.3822 

1.7775 

1.9494 

2.0434 

1.9183 

2.3839 

2.5881 

2.7031 

2.8825 

3.2709 

3.5220 

3.6823 

 

 

 

CONCLUSION 

The interdependent waiting line systems are extended to interdependent 

queueing systems with Bailey’s Bulk Service.  In this paper the units arrive at 

random form a single queue in order of arrival and are served in batches, the 

size of each batch being either a fixed number of customers or the whole 

queue length whichever is smaller. 

               If m )0( sm  persons are present in the waiting line at 

time when the server turns for picking the batch, then the server takes a batch 

of )( ms   persons or the whole queue length whichever is smaller, 

where s  is the service capacity. 

            The behavior of the system is analyzed through system 

characteristics with the dependence parameter.  

It is observed that the probability that the system emptiness is increasing 
when the mean dependence rate is increasing.  This is useful for utilizing the 
service facility on secondary jobs.  These models are also including the models 
given by Jaiswal (1961) and Bailey (1954). 
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