
International Journal on Recent and Innovation Trends in Computing and Communication                                       ISSN: 2321-8169 
Volume: 3 Issue: 5                                                                                                                                                                        3196 – 3200 

______________________________________________________________________________________________ 

3196 
IJRITCC | May 2015, Available @ http://www.ijritcc.org                                                                 

_______________________________________________________________________________________ 

Implementing Graph Pattern Mining for Big Data in the Cloud 

Chandana Ojah 

M.Tech in Computer Science & Engineering 

Department of Computer Science & Engineering, 

PES College of Engineering, Mandya 

Ojah.chandana@gmail.com 

Dr. MC Padma 

Professor & HOD, 

Computer Science & Engineering, 

PES College of Engineering, Mandya 

padmapes@gmail.com 
 

Abstract – With the increasing popularity of various social networking sites, there is an explosive growth in data associated with these, so 

mining big data has become an important problem in the graph pattern mining research area. Graph mining helps to explore the patterns from 

networks or databases. Till now various graph mining techniques exist for mining frequent patterns for a graph database which contains 

relatively small sized graphs. But with the rapid arrival of the era of big data, traditional graph mining approaches have been unable to meet 

large data analysis needs. In this context, this paper proposes an adaptation to the big graph data mining approach especially in the field of social 

networks. The proposed approach is based on Hadoop plateform, and improves the efficiency by processing big data in distributed fashion. 

Again the proposed approach can be adapted to cloud environment which has the merits – load balancing, scalability and efficiency. 

Experiments have been conducted with real Facebook data set. The approach can be also adapted to dataset larger than experimented data. 

Index Terms – Big Data, Cloud computing, social network mining, Graph pattern mining 

__________________________________________________*****_________________________________________________ 

I.  INRODUCTION 

Recently, Big Data has become a very popular term in the 
whole IT industry. Big data usually includes data sets with 
sizes beyond the ability of commonly used software tools 
to capture, curate, manage, and process data within a tolerable 
elapsed time. Big data has 4V characteristics-Volume, Variety, 
Velocity, and Value. One such field in Big Data is big graph 
data. Here, the data forms the shape of a graph or network. 
The data are connected to each other such as in various social 
networks (Facebook, Google+, twitter etc.) where edges 
represent interactions between people, communication 
networks (email communication networks with edges 
representing communication), citation network (nodes 
represent papers, edges represent citations), Amazon networks 
(nodes represent products and edges link commonly co-
purchased products) and many more. Graph mining has been 
studied to explore the patterns from networks or databases. 
Graph mining has been studied to explore different patterns 
from networks or graph databases. In recent years, many 
applications have applied this method, such as [1], to discover 
infrastructure patterns in management database. Also it has 
been used in biomedical data such as in [2]. However, these 
approaches have limitations in supporting big graph data due 
to complexity of the problem. Experiments in [3] and [4] 
shows that numbers of nodes supported is approximately 1000. 
SUBDUE [5] and SPIDERMINE [] has demonstrated 
scalability, but they are not based on cloud computing 
environment. 

The objective of our paper is to develop an approach for 
finding frequent patterns, both small and large patterns from 
large dataset from Facebook in Hadoop framework in the 
cloud. These patterns will be based on different features or 
attributes or personal data related to Facebook users such as 
birthday, work, education type etc. We can use these patterns 
for various further analysis such as studying the patterns to 
know students from which institutes are mostly related, 
employees from which organisations are mostly related etc. 
The Apache Hadoop software library is a framework that 
allows for the distributed processing of large data sets across 

clusters of computers using simple programming models. It is 
designed to scale up from single servers to thousands of 
machines, each offering local computation and storage. Use of 
cloud services eliminates our need to invest in hardware up 
front, so we can develop and deploy applications faster. We 
can launch as many or as few virtual servers as we need, 
configure security and networking, and manage storage. Also 
it enables us to scale up or down to handle changes in 
requirements or spikes in popularity, reducing our need to 
forecast traffic. 

More specifically, this paper presents a cloud implementation, 

which selects some initial points from the graph to start the 

pattern mining approach. This algorithm uses Breadth First 

Search (BFS) approach for pattern growth as it is more 

efficient comparing to other graph traversing approaches. Also 

it is complete as compared to Depth First Search. Our 

approach consists of mainly 3 phases, Mining phase, 

Isomorphism Test phase and Pattern Pruning phase. The first 

phase of our approach is the pattern or sub-graph mining 

phase. Here we first mine patterns using BFS. Then we 

calculate the support count for each pattern. Support count is 

nothing but the total number of occurrences of the pattern or 

sub-graph in the large graph. The support count of each graph 

is required in the subsequent phases. After pattern mining 

phase, next phase is pattern isomorphism test phase. When we 

get the first single-edged patterns, it may happen that two 

patterns may be same. (E.g. let us deriving our patterns based 

on work-organisation. So, IBM-TCS and TCS-IBM is the 

same pattern). So, these two patterns are not two different 

patterns. The two are same pattern. So we have to increase the 

count of this pattern when we find two patterns as isomorphic. 

It is the last phase of our framework. Actually all the phases 

keep executing continuously step by step. After getting the 

initial single-edged patterns or sub-graphs, isomorphism test is 

conducted on the resulted patterns. The isomorphism test 



International Journal on Recent and Innovation Trends in Computing and Communication                                       ISSN: 2321-8169 
Volume: 3 Issue: 5                                                                                                                                                                        3196 – 3200 

______________________________________________________________________________________________ 

3197 
IJRITCC | May 2015, Available @ http://www.ijritcc.org                                                                 

_______________________________________________________________________________________ 

results in increasing the count for those patterns which are 

isomorphic and the count of remaining patterns remains the 

same. As there is a minimum support count or threshold is 

attached with our approach, we will choose those patterns 

which have support count greater than the minimum support 

count or threshold.  

II. RELATED WORKS 

The related work forms three groups, graph pattern mining, 

and HADOOP and Amazon Web Services.  

A. Graph Pattern Mining 

Frequent graph pattern mining is a popular topic in graph 

pattern mining field. Before, emphasis was given to mining 

frequent patterns from a graph dataset, which contains 

different small sized graphs. But due to the increase in 

popularity of single large graphs such as the Web graph, 

Facebook graph, Twitter graph etc. has drawn attention to 

frequent pattern mining of single large graph. SUBDUE [5] 

can be considered as the most famous graph pattern mining 

approach for a single large graph. SUBDUE has the ability to 

discover substructures, compress the database, and represent 

concept of structure, but it is computation intensive. SEuS [3] 

and MoSS [4] are useful for smaller sized graphs, but they are 

not suitable for larger sized graphs. There have also been a few 

graph mining approaches developed on the cloud in past years. 

As in [6], authors introduced Mizan, which provides efficient 

fine-grained vertex migration to balance computation and 

communication. Gbase [7] provides parallel indexing 

mechanism for graph operations that both saves storage space 

and query responses. In c-SPIDERMINE [9], authors have 

introduced the top-k pattern mining approach in the cloud. 

B. MapReduce and Hadoop 

The Apache Hadoop [10] software library is a framework that 

allows for the distributed processing of large data sets across 

clusters of computers using simple programming models. It is 

designed to scale up from single servers to thousands of 

machines, each offering local computation and storage. 

MapReduce [11] is the heart of Hadoop. It is this 

programming paradigm that allows for massive scalability 

across hundreds or thousands of servers in a Hadoop cluster. 

The MapReduce concept is fairly simple to understand for 

those who are familiar with clustered scale-out data processing 

solutions. 

C. AWS and EC2 

Amazon Web Services (AWS) [12] is a collection of remote 

computing services, also called web services that make up 

a cloud computing platform offered by Amazon.com. These 

services are based out of 11 geographical regions across the 

world. The most central and well-known of these services 

are AmazonEC2 and Amazon S3. These products are 

marketed as a service to provide large computing capacity 

more quickly and cheaper than a client company building an 

actual physical server farm. Amazon Elastic Compute 

Cloud (EC2) [13] is a central part of Amazon.com’s cloud 

computing platform, Amazon Web Services (AWS). EC2 

allows users to rent virtual computers on which to run their 

own computer applications. EC2 allows scalable deployment 

of applications by providing a Web service through which a 

user can boot an Amazon Machine Image to create a virtual 

machine, which Amazon calls an "instance", containing any 

software desired. A user can create, launch, and terminate 

server instances as needed, paying by the hour for active 

servers, hence the term "elastic". 

III.  PROPOSED APPROACH 

This section presents the details of our proposed method to 

mine frequent patterns from a large graph. Our experimental 

data is already partitioned, i.e. the single large graph has been 

partitioned into several sub-graphs. The framework for our 

proposed method can be shown as in figure 1. 

 
There are three phases in our proposed approach. Section IIIA 

addresses the first phase i.e. Mining Phase, section IIIB 

addresses the second phase i.e. Isomorphism Test phase, and 

lastly, section IIIC addresses the Pattern Pruning phase. 

A.  Mining Phase  

In this section, we introduce our pattern mining approach 

which includes two parts. First, to start mining patterns in a 



International Journal on Recent and Innovation Trends in Computing and Communication                                       ISSN: 2321-8169 
Volume: 3 Issue: 5                                                                                                                                                                        3196 – 3200 

______________________________________________________________________________________________ 

3198 
IJRITCC | May 2015, Available @ http://www.ijritcc.org                                                                 

_______________________________________________________________________________________ 

graph, we have to choose some initial points or nodes for 

mining. Here we have taken those points as initial points, 

which have the highest number of associativity. As we are 

dealing with social networks, the nodes of graph will be the 

people and edges will be the connection among people. 

Associativity of a node points to the number of connections of 

that node. The top-k nodes having highest associativity will be 

chosen as the initial points to start mining. 

Algorithm 1: Initial node set 

Require: k, number of initial nodes 

Ensure: node set V = {vi} 

 

1: Sort the nodes in decreasing order of the no of time it 

appears 

2: V = {vi | 1 ≤ i ≤ k} 

3: output V 

 

After discovering the initial k-points to start mining, the points 

should be extended to discover single-edged graph patterns. 

For this extension purpose, we have used Breadth First Search 

approach in our proposed system. 

Definition 1: Breadth-first search (BFS) is an algorithm for 

traversing or searching tree or graph data structures. It starts 

at the tree root (or some arbitrary node of a graph, sometimes 

referred to as a ‘search key’) and explores the neighbour 

nodes first, before moving to the next level neighbours. 

Algorithm 2: Set Up Single-edged graphs 

Require: V initial node set 

Ensure: Ginit = {g1,g2,…,gk}, k single edge graphs 

 

1: for each vi ∈ V 

2:  Ginit ⬅ {(vi, vo) | 1 ≤ i ≤ k, vo∈G Λ vo∈V} 

3: Output Ginit 

 

B. Isomorphism test phase 

 

In this section, Isomorphism test will be conducted among the 

patterns mined. After getting the initial single-edged patterns, 

the next step is to perform isomorphism test among the single-

edged patterns. Isomorphism test ensures that two isomorphic 

patterns are not considered to be two different patterns. 

Besides, the count of that pattern should be increased. 

Definition 2: In graph theory, an isomorphism of graphs G 

and H is a bijection between the vertex sets of G and H , f: 

V(G) → V(H) such that any two vertices u and v of G are 

adjacent in G if and only if ƒ(u) and ƒ(v) are adjacent in H. 

This kind of bijection is generally called "edge-preserving 

bijection", in accordance with the general notion of 

isomorphism being a structure-preserving bijection. 

If an isomorphism exists between two graphs, then the graphs 

are called isomorphic and we write . In the case 

when the bijection is a mapping of a graph onto itself, i.e., 

when G and H are one and the same graph, the bijection is 

called an automorphism of G. 

Algorithm 3: Isomorphism Test 

Require: g1, g2 

Ensure: true or false  

1: create a pattern edge between every pair of nodes in each 

graph. 

2: match the pattern graphs 

3: if pattern graph Gp1 is isomorphic to pattern graph Gp2 

4: output true 

5: else output false 

C. Pattern Pruning Phase 

 

 It is the last phase of our framework after mining and 

isomorphism test. Actually all the phases keep executing 

continuously step by step. After getting the initial single-edged 

patterns or sub-graphs, isomorphism test is conducted on the 

resulted patterns. The isomorphism test results in increasing 

the count for those patterns which are isomorphic and the 

count of remaining patterns remains the same. As there is a 

minimum support count or threshold is attached with our 

approach, we will choose those patterns which have support 

count greater than the minimum support count or threshold. In 

any pattern discovery mechanism this approach is taken as we 

all are mostly interested with frequently occurring patterns. 

The patterns or sub-graphs with higher count are more 

interesting to study. Thus in our approach in pruning phase, all 

the patterns or sub-graphs with support count less than the 

minimum support count or threshold will be pruned or 

discarded.  

After pruning of infrequent patterns, again the frequent 

patterns are extended, isomorphism tests are done and the 

infrequent patterns are pruned. This process continues until we 

reach the stopping conditions. There are two stopping 

conditions, occurrence of either one terminates our approach. 

1.  All the graph patterns discovered in the previous step are 

infrequent. 

2. All the nodes of the graph are visited. Once a node is visited 

by some pattern while extending, it is marked as visited and 

cannot be visited again. 

Algorithm 4: Prune Infrequent Patterns 

Require: Gintermediate = intermediate set of graphs, t threshold 



International Journal on Recent and Innovation Trends in Computing and Communication                                       ISSN: 2321-8169 
Volume: 3 Issue: 5                                                                                                                                                                        3196 – 3200 

______________________________________________________________________________________________ 

3199 
IJRITCC | May 2015, Available @ http://www.ijritcc.org                                                                 

_______________________________________________________________________________________ 

Ensure: Gfrequent frequent set of graphs 

1: for each gi ∈ Gintermediate  

2:  calculate Supg, the support count of gi 

3:  if Supg > t  

4:   G ⬅ gi 

5: output Gfrequent 

 

Algorithm 5: Edge Extension 

Require: Gi, the input graph 

Ensure: Gext or null 

1: if any nodes are left in the graph 

2:  Gext = add an edge to the subgraph using BFS 

3: if all nodes are exhausted 

4:   prune the subgraph 

5: output Gext 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

In this section, we present the performance evaluation of 

proposed approach with real data sets [14]. The setting of the 

environment will be introduced in section IV A. Result 

analysis will be discussed in section IV B. 

A. Experimental environment 

This paper implements our proposed approach on Hadoop 

2.6.0 in a cloud computing environment consisting of 4 virtual 

machines. One node acts as master node and others serve as 

slave nodes. We are using AWS EC2 instances of type 

t2.macro, each one is having 1 vCPU, and 1 GiB memory. 

B. Result analysis 

Users have to give the input partitioned graphs, the number of 

initial nodes, the feature based on which the patterns will be 

discovered (work id, education type etc.) and the threshold 

value. Depending upon the feature chosen, the number of 

initial nodes and threshold, different patterns will be 

discovered. 

 

1) Effect of number of initial nodes chosen on result: 

As the initial nodes for mining can be specified by users, the 

number of patterns retrieved will vary if the selected feature 

and threshold are kept constant. In figure 2, we have recorded 

number of frequent patterns against number of initial nodes 

chosen for mining. (Feature: education;type , threshold:6).  

 

 
Fig 2: No. of frequent patterns against number of initial nodes. 

 

2) Effect of threshold value chosen on result: 

 

The threshold value also can be adjusted by user. The number 

of patterns will vary if the number of initial nodes for mining 

and feature is kept constant. In figure 3, we have recorded the 

number of frequent patterns against threshold value. (Feature: 

education;type, number of initial nodes:20). 

 

 
Fig 3: No. of frequent patterns against number of threshold 

values 

V. CONCLUSION 

Big data mining is now a hot research question, MapReduce 

brings a simple distributed programming. This paper proposes 

an approach based on Hadoop and cloud computing in 

handling big graph data. In the face of mining large data sets, 

the parallelization is a good solution. Our proposed approach 

is an approximation-based approach which will results in 

frequent graph patterns ranging from single-edged to n-edged 

graph patterns based on the initial node set, feature based on 

which patterns are searched for and the threshold value. The 

graph patterns can be studied for different purposes. Also we 

can get patterns from combination of feature sets from the 

patterns listed in the input graph. The proposed approach can 

be used for other social network graphs if the data format is 

same as the input dataset. In future work, more real big data 

sets can be examined for this approach. Moreover, we can 

improve the way of finding the initial nodes for pattern 

mining, pattern extension and stopping conditions. 

0

500

1000

1500

2000

init_nodes=10 init_nodes=15 init_nodes=20

No. of frequent patterns

0

500

1000

1500

2000

2500

threshold=4 threshold=6 threshold=8

No. of frequent patterns



International Journal on Recent and Innovation Trends in Computing and Communication                                       ISSN: 2321-8169 
Volume: 3 Issue: 5                                                                                                                                                                        3196 – 3200 

______________________________________________________________________________________________ 

3200 
IJRITCC | May 2015, Available @ http://www.ijritcc.org                                                                 

_______________________________________________________________________________________ 

 

REFERENCES 

[1] P. Anchuri, M. J. Zaki, O. Barkol, R. Bergman, Y. Felder, 

S. Golan, and A. Sityon, “Graph mining for discovering 

infrastructure patterns in configuration management 

databases,” Knowledge and information systems, vol. 33, 

no. 3, pp. 491– 522, 2012. 

[2] V. Bonnici, R. Giugno, A. Pulvirenti, D. Shasha, and A. 

Ferro, “A subgraph isomorphism algorithm and its 

application to biochemical data,” BMC Bioinformatics, vol. 

14, no. Suppl7, p. S13, 2013. 

[3] S. Ghazizadeh and S. S. Chawathe, “Seus: Structure 
extraction using summaries,” in Discovery science. 

Springer, 2002, pp. 71–85. 

[4] C. Borgelt, T. Meinl, and M. Berthold, “Moss: a program 

for molecular substructure mining,” in Proceedings of the 
1st international workshop on open source data mining: 

frequent pattern mining implementations. ACM, 2005, pp. 

6–15. 

[5] L. B. Holder, D. J. Cook, and S. Djoko, “Substucture 
discovery in the subdue system.” in KDD Workshop, 1994, 

pp. 169–180. 

[6] Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom, D. 

Williams, and P. Kalnis, “Mizan: a system for dynamic 

load balancing in large-scale graph processing,” in 

Proceedings of the 8th ACM European Conference on 

Computer Systems. ACM, 2013, pp. 169–182. 

[7] U. Kang, H. Tong, J. Sun, C.-Y. Lin, and C. Faloutsos, 
“Gbase: an efficient analysis platform for large graphs,” 

The VLDB Journal, vol. 21, no. 5, pp. 637–650, 2012. 

[8] http://www.cs.ucsb.edu/~xyan/papers/vldb11_spider.pdf 

[9] Chun-Chien Chen, Kuan-Wei Lee, Chi-Chieh Chang, De-
Nian Yang and Ming-Syan Chen “Efficient Large Graph 

Pattern Mining for Big Data in the Cloud”. 

[10] http://hadoop.apache.org/. 

[11] http://en.wikipedia.org/wiki/MapReduce. 
[12] http://en.wikipedia.org/wiki/Amazon_Web_Services. 

[13] http://en.wikipedia.org/wiki/Amazon_Elastic_Compute_Cl

oud. 

[14]  “Standford large network dataset collection”, 
http://snap.standford.edu/data/ 

 

 

 

 

 

 

 

 


