
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 5 3092 – 3098

3092
IJRITCC | May 2015, Available @ http://www.ijritcc.org

Domain Orientation by Feature Modeling and Recommendation for Product

Classification

Kanifnath S. Hirave

PG Student,

Department of Computer Engineering.

VPCOE,

Baramati, India

E-mail: kanifhirave29@gmail.com

Prof.D.B.Hanchate

Assistant Professor,

Department of Computer Engineering.

VPCOE,

Baramati, India

E-mail: dinesh_b_hanchate@rediffmail.com

Abstract— Domain Analysis says that activity occurring before system analysis provides domain model. Domain model is input to

the system analysis to the designer‘s tasks. Domain analysis is the procedure of identifying, organizing, analyzing, and modeling

features common to a specific domain. The complete process is very time consuming and more man power is required for it.

There are various projects which require extensive domain analysis activities. In proposed method, recommended system is used

to reduce human efforts of performing domain analysis. It is not easy to discover relationship between items in a large database of

sales transactions but there are some algorithms for solving this problem. Data mining techniques are used to discover common

features across products as well as relationships among those features .Incremental diffusive algorithm is used to extract features.

Bi-Partity Distribution technique is used for feature recommendations during the domain analysis process

Keywords: Domain Analysis, Clustering, Incremental Diffusive Clustering (IDC), Recommender systems, Bi-Paritity Distribution.

__*****___
I. INTRODUCTION

Domain analysis is the process of identifying, organizing,

analyzing, and modeling features common to a particular

domain [3], [4]. It is conducted in primary stage of the software

development life-cycle (SDLC) to produce ideas for a product,

to find out similarities and differences in a domain, and to

identify opportunities for reuse. It is a leading element of the

software engineering process. Most domain analysis

techniques, such as the feature-oriented domain analysis

(FODA) [5] or the feature-oriented reuse method (FORM) [6]

depend on analysts manually reviewing the existing

requirement specifications or participant’s product brochures

and websites, and are quite labor intensive. The

accomplishment of these methods is reliant on the accessibility

of relevant documents or access to the existing project

repositories, as well as the knowledge and capability of the

domain analyst. Other approaches such as the domain analysis

and reuse environment (DARE)[7] utilize data mining and

information retrieval methods to provide automated support for

feature identification and extraction, but have a tendency to

focus their efforts on only a small requirements specifications.

The extracted features are limited by the scope of the available

specifications. In this paper, address these limitations through

presenting a new approach for finding a larger set of applicant

features. In previous methods that extract features from

exclusive project repositories, this approach extracts raw

feature descriptions. It analyzes the relationships between

features and products, and utilizes this information to

recommend features for an explicit project. This method takes

as input to initial product description, examines this

description, and then produces related feature recommendations

utilizing Bi-Paritity distribution Techniques. Previously

introduced feature recommender system is useful for limited

domain with comparatively small-sized software products.

Antivirus software, multimedia, and photography applications

are some of the software products.

Fig1: Example of feature Recommendations

In proposed system we extend this prior work by making

several extra contributions. Firstly, provide a more detailed

analysis of our technique for mining features from online

product listings utilizing incremental diffusive clustering (IDC)

[15][16] algorithm and then Bi-Partity distribution is used for

feature recommendations.

Step #1 : Enter Initial product description

Amiti Free Antivirus is an effective and easy to use

free antivirus for your PC. Protects against viruses,

trojans, worms and malware. Amiti Antivirus has

built-in real-time memory shields, scheduling,

multiple skin and translations support. Uses famous

clamav antivirus engine library.

Step #2:Confirm Features

We have identified the following features from your

initial product description. Please confirm

Easy to use

Protects against viruses, worms, viruses, Trojans ,

Malware

Real time memory shields

Scheduling, multiple skin and translations support.

Step #3: Recommended Features

Based on the features you have already selected we

recommended the following three features. Please

confirm

× Network intrusion detection

Real time monitoring

Web history and cookies management

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 5 3092 – 3098

3093
IJRITCC | May 2015, Available @ http://www.ijritcc.org

The final output is a set of recommended features which is

input for the requirements engineering process to help project

stakeholders who define the features for a specific software

product or product line. In this approach, the user can

interrelate with the system to provide response on candidate

features. In this example scenario, the user rejects network

intrusion; however, file monitoring and web history is added

to the initial product profile. Additional recommendations are

then generated based on this profile

The remainder of this paper is laid out as follows: Section

II describes old methods for domain analysis. Section III

describes implementation details of proposed system. Section

IV describes datasets. Section V describes results. Finally

Section VI describes conclusions.

II.LITERATURE SURVEY

This work fills the difference between automated feature

detection and recommender systems. So, this section provides

a brief background survey on each of these areas.

At the beginning, there is no any policy for domain

analysis, domain analysis is conducted manually [3]. Domain

analysis is carried out with help of data flow diagrams.

Domain analysis can be considered as a process which is

occurring previous to system analysis. [3]. Organized

detection and use of cohesion across related software systems

is required for successful software reuse. Domain analysis

offer, a general report of the necessities of that class of

structures and a set of methods for their implementation with

the help of observing related software systems. FODA [5]

create methods for accomplishment a domain analysis and

define the products of the domain analysis process. The

important technical condition for completing effective

software reuses efficient detection and use of unity across

related software systems. In FORM [5], inspection of a class

of related systems and the cohesion of primary systems exist.

It is possible to achieve a set of reference models. FORM

starts with an analysis of agreement among applications in a

particular domain in terms of services, operating

environments, domain tools. The feature model (FM)[5] is

defined as construction during the analysis is called feature

model. Feature model captures commonality. Domain

Analysis and Reuse Environment [6] is CASE tool which

helps in domain analysis of finding and recording the

similarities and differences of related software systems. DARE

[6] helps to capture of domain information from experts in a

domain. Captured domain information is stored in a domain

catalog, which is enclosed a general architecture for the

domain and domain specific components. We also studied the

problem of finding out association rules amongst items in huge

database of sales transactions. There are two algorithms i.e.

Apriori and Apriori-TID [7, 8] algorithm for Association Rule

Mining (ARM) which is well known algorithm to find

Association rules which are used for affinities among items

[7,8].The process of estimating items through the views of

other people is called as Collaborative filtering (CF)[9] .CF

technology fetches organized views of large interrelated

publics on the web which supporting filtering of large amounts

of data. We studied the very important part of collaborative

filtering, its key uses for users of the principle and exercise of

CF [9] algorithms. We also studied challenges of a CF

recommendation system and evaluation of Collaborative

Filtering [10].

III. SYSTEM IMPLEMENTATION

 The proposed framework is organized into two phases,

Offline phase and Online phase respectively. The system

architecture is as shown in fig.2

Offline phase: Dataset i.e. product descriptions are collected

from sourceforge.net Collected dataset is passed through the

preprocessing, IDC algorithm, post processing, and creation of

Product × Feature matrix. This is stage used for feature

extraction.

Preprocessing

 Initial feature descriptors are first preprocessed by

converting them into a set of keywords; eliminating commonly

occurring words i.e. stop words, and stemming the remaining

keywords to their root form i.e., terms. Given the vocabulary

of all such terms T ={t1,t2,..,tw}each feature descriptor, fi, is

represented as a vector of terms, vi={fi,1,fi,2,..,fi,w} where fij is a

term weight representing the number of occurrences of term tj

in the feature descriptor fi. These term weights are then

converted using a standard term frequency-inverse document

frequency(tf-idf) method [13] Such that tf-idf(fij)=fi

j.log2(D/dfj) where D denotes the total number of feature

descriptors and dfj denotes the number of feature descriptors

containing term tj. Finally the converted vector(with tf-idf

weights) is normalized to a unit vector resulting in the vector

vi=(Fi,1, Fi,2, Fi,W)

The following steps are then executed to identify features.

A. Granularity

In order to decide how many features or clusters to produce for

a given product category, IDC [15], [16] uses a revised

version of Can’s metric [17] which considers the degree to

which each feature descriptor distinguishes itself from other

feature descriptors. The ideal number of clusters K is

computed as follows:

K=

where Nj represents the total number of occurrences of

term tj.

B. Clustering

The feature descriptor vectors extracted in the

preprocessing stage is automatically clustered using the

incremental diffusive clustering algorithm (IDC) [15], [16] to

extract a meaningful and cohesive set of final features. In each

iteration, IDC first automatically clusters the feature

descriptors, and then, it detects and keeps as it is the highest

cluster. Once this cluster has been selected, its dominant terms

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 5 3092 – 3098

3094
IJRITCC | May 2015, Available @ http://www.ijritcc.org

Fig: Flow of System

are recognized and removed from all clusters. In our initial

version of IDC, a consensus-based spherical K-means

clustering methodology [16] was used in each iteration to

increase the cohesiveness of intermediate clusters. We

clustered feature descriptors in each of the sourceforge

categories separately, and then merged similar clusters across

the categories.

C. Selecting the Best Cluster

In each iteration, IDC stimulates the best cluster to the

status of a feature. Based on initial interpretations, the best

cluster from a set L={C1,C2,….,CK} is one that has high levels

of cohesion with wide coverage of the topics. To measure

cohesion for a cluster Ci = {vi,1,vi,2,..,vi,r} with centroid . The

similarity between the feature descriptors and their associated

centroids is computed and averaged as,

 ……………………..(2)

While topic coverage is computed as,

 ………………………(3)

 Cohesion and topic coverage scores are added together,

and the cluster with the highest combined score is selected as

the best cluster and promoted to the status of a feature.

Remember that if cohesion itself used to select the best cluster,

the algorithm would have been biased towards small clusters.

D. Removing Dominant Terms

In order to remove dominant terms, terms exhibiting

weights above a predefined threshold (0.15) in the centroid

vector of the “best” cluster are selected. Since the centroids are

also normalized, this threshold is held constant. These terms

are then removed from all descriptors in the data set. For

example, if dominant terms are identified as instant, e-mail,

and encrypt, then a descriptor originally specified as Encrypt

e-mail messages before transmission is reduced to messages

before transmission with the word before also removed as a

stop word. Future rounds of clustering are then performed on

the reduced version of descriptors. This process is repeated

until the targeted number of features, determined previously in

step 1, has been identified.

E. Post processing

A post processing step is performed to enhance the

identified features. This step involves the four tasks of

1. Removing misfits

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 5 3092 – 3098

3095
IJRITCC | May 2015, Available @ http://www.ijritcc.org

2. Recomputing centroids,

3. Checking for missing members, and finally

4. Merging similar features.

Misfits are removed by computing the similarity score

between each centroid and feature descriptor in the

corresponding cluster. Descriptors whose similarity to the

centroid drop below a given threshold value (set to 0.35 based

on experiential observations) are removed from the cluster.

Centroids are then shifted according to the remaining feature

descriptors using the same SPK algorithm adopted in the

initial clustering step. Missing feature descriptors are

recognized by re-computing the cosine similarity between

every feature descriptor not currently assigned to a cluster, and

the centroid of that cluster. Any feature descriptor showing a

similarity score higher than a given threshold (set to 0.35) is

added to that cluster. Finally, similar clusters are merged by

computing the cosine similarity between each pair of

centroids. Any pair of clusters showing a score above a given

threshold (set to 0.55) is finally merged into a single feature.

F. Feature Naming

Each feature is named by identifying the medoid, defined

as the descriptor which is most representative of the feature’s

theme. The medoid is identified by first calculating the cosine

similarity between each feature descriptor and the centroid of

the cluster, and then averaging all term weights in the feature

descriptor vector above a certain threshold (0.1). The cosine

similarity and the average of dominant term weights are then

added together to produce the score of each feature descriptor.

The feature descriptor scoring the highest value is selected as

the medoid and the corresponding original feature descriptor

(from sourceforge) is selected as the name for the feature. This

approach produces relatively meaningful names. As an

example, a feature based on the theme of updat, databas,

automat, viru was subsequently named Virus definition update

and automatic update supported.

G. Merging Category Clusters

This method includes processing each product category

separately, and then merging them into a single product-by-

feature matrix. This directly meets scalability issues of dealing

with large numbers of features, and has the additional

extensibility benefit of allowing new product categories to be

added incrementally. Merging is accomplished through

computing the cosine similarity between each pair of features,

and then merging features exhibiting

Online phase: online phase is used for feature

recommendation which is based upon the clusters generated

using IDC, we create a binary product-by-feature matrix,

M where P represents the number of products, F is

the number of identified features and mij is 1 if and only if the

feature j includes a descriptor originally mined from the

product i. This matrix, which contains the complete set of

recommendable features referred to as the feature pool from

now on, is used to generate feature recommendations in the

following steps.

1. Creating Initial Product Profile

First an initial product profile is built in a format

compatible with the feature model. To achieve this, the

domain analyst creates a short textual description of the

product, which is then processed to match elements of the

description to features in the feature pool. This matching is

accomplished by first performing basic preprocessing, such as

tokenization, stemming, and removal of stop words, and then

converting the product description p to a term vector

p=(w1,p,w2,p,….,wn,p) where each dimension corresponds to a

separate term. We used the standard term frequency-inverse

document frequency approach [13], also known as tf-idf,

which calculates the weight for each term based on the

normalized term frequency and the inverse document

frequency.

Once the product description is converted to term vector

form, it is compared to the term vector representation of each

feature in the feature pool using a standard information

retrieval metric such as the cosine similarity. Features are then

ranked according to their similarity to the product description,

and presented to the analyst for confirmation. As a result of

this step, an initial product profile is appended to the product-

by-feature matrix.

2. Feature Recommendations Using Bi-Paritity

Distribution

1. Calculate cosine similarity between term vector and

feature pool.

Sim (dj,dk) =

………(4)

Where ,

a. fi is i
th

feature,

b. dj is j
th

descriptor,

c. dk is k
th

descriptor.

2. Rank features with respect to their weights.

3. Find fractions of number of occurrences of each

feature to the total number .of occurrences.

4. Calculate Point Of Distribution (POD).

POD=

Where,

w is weight associated with feature.

5. Partition the ranked feature vector around POD.

6. Label Upper partition as Confirmed features and

Lower partition as Recommended features

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 5 3092 – 3098

3096
IJRITCC | May 2015, Available @ http://www.ijritcc.org

IV. DATASET

Proposed method evaluated in the context of four different

data sets collected from sourceforge
1,
 sourceforge

2

sourceforge
3,

sourceforge
4
. Dataset is stored in text file.

1. Antivirus product descriptions extracted from

sourceforge
1

2. Multimedia video product descriptions extracted from

sourceforge
2

3. I-pod application product descriptions extracted from

sourceforge
3

4. Photography product descriptions extracted from

sourceforge
4

1.
http://sourceforge.net/directory/os:windows/freshness:recentl

y-updated/?q=antivirus

2
.http://sourceforge.net/directory/os:windows/freshness:recentl

y-updated/?q=multimedia

3
.http://sourceforge.net/directory/os:windows/freshness:recentl

y-updated/?q=ipod%20application

4.
http://sourceforge.net/directory/os:windows/freshness:recentl

y-updated/?q=ipod%20application

V. RESULTS

5.1 Upload Dataset

5.2 Clustering

5.3 Find Best Cluster

5.4 Remove Dominant Terms

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 5 3092 – 3098

3097
IJRITCC | May 2015, Available @ http://www.ijritcc.org

5.5 Feature Naming

5.6 Product × Feature Matrix

5.7 Confirmed Features and Recommended Features.

VI. CONCLUSIONS

In proposed method presented a new feature recommender

system to support the domain analysis process. This is a

critical early phase part of the software development lifecycle

and is essential in both application development and product

line development. This system mines feature descriptors for

hundreds of products from publicly available software

repositories of product descriptions and uses this data to

discover features and their associations. For feature discovery,

this method proposed a new incremental diffusive clustering

algorithm. In this method we use the Bi-Paritity Distribution

approach to make additional recommendations. This has the

advantage of expanding an initially light product description

before making a more wide set of recommendations.

ACKNOWLEDGEMENT

 I avail this opportunity to express my deep sense of

gratitude and whole hearted thanks to my guide Prof. D.B.

Hanchate sir for giving his valuable guidance, inspiration and

encouragement to embark this paper. Without his

Coordination, guidance and reviewing, this task could not be

completed alone. Prof. D.B. Hanchate sir gave me all the

freedom I needed for this paper.

REFERENCES
[1] Negar Hariri, Carlos Castro-Herrera,Mehdi Mirakhorli,Jane Cleland-

Huang,Bamshad Mobasher,“Supporting Domain Analysis through

Mining and Recommending Features from Online Product Listings,

”IEEE Transactions on Software Engineering, vol. 39,no. 12,december
2013

[2] Kanifnath S. Hirave, Prof. Dinesh Bhagwan Hanchate “Survey on
ExFeature: A Feature Modeling and Recommending Technique For

Domain Oriented Product Listing “International Journal of Engineering

Research and General Science Volume 2, Issue 6, October-November,
2014 ,ISSN 2091-2730

[3] G. Arango and R. Prieto-Diaz, Domain Analysis: Acquisition of

Reusable Information for Software Construction. IEEE CS Press, May
1989.

[4] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson, “Feature
Oriented Domain Analysis (FODA) Feasibility Study,” Technical Report

CMU/SEI-90-TR-021, Software Eng. Inst., 1990.

[5] K.C. Kang, S. Kim, J. Lee, K. Kim, G.J. Kim, and E. Shin, “FORM: A
Feature-Oriented Reuse Method with Domain-Specific Reference

Architectures,” Annals of Software Eng., vol. 5, pp. 143-168, 1998.

[6] W. Frakes, R. Prieto-Diaz, and C. Fox, “Dare: Domain Analysis and

Reuse Environment,” Annals of Software Eng., vol. 5, pp. 125-141,

1998.

[7] R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association

Rules,” Proc. 20th Int’l Conf. Very Large Data Bases,1994.

[8] R. Agrwal and R. Srikant, “Fast Algorithms for Mining Association

Rules,” Proc. 20th Int’l Conf. Very Large Data Bases (VLDB ’94), pp.

487-499, Sept. 1994.

[9] J. Schafer, D. Frankowski, J. Herlocker, and S. Sen, “Collaborative

Filtering Recommender Systems,” The Adaptive Web, pp. 291-324,
Springer, 2007.

[10] J. Herlocker, J. Konstan, L. Terveen, and J. Riedl, “Evaluating

Collaborative Filtering Recommender Systems,” ACM Trans.
Information Systems, vol. 22, pp. 5-23, 2004.

[11] C. Castro-Herrera, C. Duan, J. Cleland-Huang, and B. Mobasher. A

recommender system for requirements elicitation in large-scale software

projects. Proc. of the 2009 ACM Symp. on Applied Computing, pages

1419–1426, 2009.

[12] K. Chen, W. Zhang, H. Zhao, and H. Mei. An approach to constructing

feature models based on requirements clustering. Requirements

Engineering, IEEE International Conference on, 0:31–40, 2005.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 5 3092 – 3098

3098
IJRITCC | May 2015, Available @ http://www.ijritcc.org

[13] C.D. Manning, P. Raghavan, and H. Schutze, Introduction to

Information Retrieval. Cambridge Univ. Press, 2008.

[14] E. Spertus, M. Sahami, and O. Buyukkokten. Evaluating similarity

measures: a large-scale study in the orkut social network. ACM. pages
678–684, Chicago, Illinois, USA, 2005.

[15] H. Dumitru, M. Gibiec, N. Hariri, J. Cleland-Huang, B. Mobasher, C.

Castro-Herrera, and M. Mirakhorli, “On-Demand Feature
Recommendations Derived from Mining Public Software

Repositories,”Proc. 33rd Int’l Conf. Software Engg., p. 10, May 2011

[16] C. Duan, J. Cleland-Huang, and B. Mobasher, “A Consensus Based

Approach to Constrained Clustering of Software Requirements,” Proc.

17th ACM Conf. Information and Knowledge Management, pp. 1073-
1082, 2008.

[17] F. Can and E. Ozkarahan, “Concepts and Effectiveness of the Cover-

Coefficient-Based Clustering Methodology for Text Data-bases,” ACM
Trans. Database Systems, vol. 15, pp. 483-517, 1990.

http://www.ijritcc.org/

