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Abstract—In state space design, state feedback control is a powerful control technique. In state feedback control the Feedback of complete state 

vector gives the designer to have total control over the closed loop poles. Many times in state feedback control, all states are not available to feed 

back. To measure all unmeasurable states of the system the observer is needed. In real time system the system uncertainty will occur. So 

observer should estimate the state of the system in the presence of uncertainty. It is needed to control the system for which observer should be 

very robust to estimate the states of the system correctly. So  here Utkin observer and Walcott zak observer`s are taken here. Their performances 

are compared to find the robustness against the system uncertainty. Utkin sliding mode observer has only the switching gain to minimize the 

observer error. But the Walcott-zak observer has static and nonlinear observer gain to minimize the observer error. 

 

Index Terms—Utkin observer, state feedback control, Walcott zak observer. 

__________________________________________________*****_________________________________________________ 

 

I. INTRODUCTION 

In state feedback control the Feedback of complete state vector 

gives the designer to have total control over the closed loop 

poles. Many times in state feedback control, all states are not 

available to feed back. To measure all unmeasurable states of 

the system the observer is needed. A key feature in the Utkin 

observer [5] is the introduction of a switching function in the 

observer to achieve a sliding mode and also stable error 

dynamics. This sliding mode characteristic which is a 

consequence of the switching function is claimed to result in  

system performance which includes insensitivity to parameter 

variations, and complete rejection of disturbances. Similar to 

the Utkin observer, the sliding mode functional observer also 

utilizes a switching function in its design and invariably will 

inherit the benefits of insensitivity to noise rejection as 

reported for the Utkin observer. The Utkin Sliding Mode 

Observer does not have a static observer gain in its structure 

and instead, the switching gain plays the role of stabilizing the 

error dynamics. However, the disadvantage of this sliding 

observer structure reveals it- self when there exist uncertainties 

and disturbances. In this case, the observer can only estimate 

the states with a bounded error and not asymptotically. The 

Walcott zak sliding mode  Observer [4] has static and 

nonlinear observer gain it reduces error due to system 

uncertainty the Walcottzak observer algorithm explained in 

section III. 

 

In section II discusses about Utkin observer. Section III 

discusses about walcottzak observer. In section IV the smart  

 

cantilever beam model is taken and the evaluation of the 

algorithms for smart cantilever beam is present. 

 

II. UTKIN OBSERVER 

Consider a continuous time linear system described by 

)()()( tButAxtx                               (1) 

)()( tCxty                                              (2) 

Where 
mnnn

RBRA


 ,  and mp  .Assume that the 

matrices B and C are of full rank and pair  ),( CA is 

observable. 

As the outputs are to be considered, it is logical to effect a 

change of coordinates so that the outputs appear as components 

of the states. One possibility is to consider the transformation  

xTx c  
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Where the columns of 
)( pnn

c RN  span the null space of C. 

This transformation is nonsingular, and with respect to this 

new coordinate system, the new output distribution matrix is 

 pc ICT 0
1



                                        (4) 

Where  

p is the number of output from the system. 

n is the order of the system. 

If the other system matrices are written as 
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B
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Then the nominal system can be written as   

)()()()( 1121111 tuBtyAtxAtx               (7) 

)()()()( 222121 tuBtyAtxAty               (8) 

   

where  


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




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y

x
xcT

1
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The observer proposed by Utkin [1] has the form  

                                                                                  

LvtuBtyAtxAtx  )()()()( 1121111
                       (10) 

vtuBtyAtxAty  )()()()( 222121            (11) 

Where ),( 11 yx  represent the state estimates for
 

ppn
RLyx




)(

11 ),,( is a constant feedback gain matrix and 

the discontinuous vector v is defined component wise by  

                  
)ˆsgn( iii yyMv   

Where  RM If the errors between the estimates and the 

true states are written as a 111
ˆ xxe  and yyey  ˆ  then 

from equations (7)to (11) the following error system is 

obtained 

LvteAteAte y  )()()( 121111
           (12) 

vteAteAte yy  )()()( 22121
       `    (13)                       

Since the pair ),( CA  is observable  the pair ),( 2111 AA  is also 

observable. As a consequence , L can be chosen to make the 

spectrum of 2111 LAA    lie in C . Define a further change of 

coordinates  








 


p

pn

I

LI
T

0

~
                                                            (14) 

 

and let yLeee  11
~

. The error system with respect to the 

new coordinate can be written as  

)(
~

)(1
~~

)(~
12111 teAteAte y

             
(15)                                                   

vteAteAte yy  )(
~

)(~)( 22121
                                       (16) 

Where 

LALAAALAAA 11221212211111

~~
,

~
 and

LAAA 212212

~
 .

 
 It follows from (3.12) that in the domain  

  MeAAeAee y

T

y )(5.0:),{( 2222max1231  

Where M  is some small positive scalar, the reachability 

condition 

    yy

T

y eee 
               

 (17) 

                                                  

is satisfied. Consequently, an ideal sliding motion will take 

place on the surface 

     }0:),1{(  yeyeeoS                              (18)                                      

       

It follows that after some finite time st , for all subsequent 

time, 0ye and 0ye  

 

Equation (15) then reduces to 

        )(~~
)(~

1111 teAte 
               

(19) 

Which, by choice of L , represents a stable system and  

0~
1 e   consequently, 11

ˆ xx  as t .  

III. WALCOTT ZAK OBSERVER 

SYNTHESIS OF A DISCONTINUOUS OBSERVER 

Consider the dynamical system 

),,()()()( uxtBtButAxtx 
           

(20) 

Where mPandRCRBRA npmnnn   ,, in addition the 

matrixes B and Care assumed to be of full rank. The function    

nmn RRRRf : is unknown and represents the system 

uncertainty. A natural problem to consider initially is the 

special case when the uncertainty is matched: suppose 

),,(),,( uxtBuxtf                                                     (21)    (4.2.2) 

Where the function
mmn RRRR :  is unknown, but 

bounded, so that  

),(1),,( yturuxt                                    (22)
                   

Where 1r is a known scalar and    RRR p:  is a known 

function. 

Suppose that there exists a linear change of coordinates    so 

that the system can be written as        

)()()()( 1121111 tuBtyAtxAtx      

22221211 )()()()( DtuBtyAtxAtx             (23) 

 Where 
ppn RyRx   ,1   and the matrix 11A  has stable 

eigenvalues. Consider an observer of the form  
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22122221211


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Where 
sA22 is a stable design matrix and yyey  ˆ
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)()( 1111 teAte                                     (28) 

222121 )()()( DvteAteAte y
s

y                           (29) 

There exists a family of symmetric positive definite matrices  

2P such that the uncertain dynamical error system above is 

quadratically stable. x 

Let 
)()(

1
pnpnRQ  and 

ppRQ 2  be symmetric positive 

definite design matrices and define
ppRP 2   to be the unique 

symmetric positive definite solution to the Lyapnouv equation. 

 2222222 QPAAP
Tss                                                (30) 

Using the computed value of 2P  define  

  1222
1

2222
ˆ QAPQPAQ TT                                            (31)  

and  notice that 0ˆˆ  TQQ .  

Let  )()(
1

pnpnRP   be unique symmetric positive definite 

solution to the Lyapunov equation       

QAPPA TT ˆ
111111                                                       (32) 

Consider the quadratic form given by 

y
T
y

T
y ePeePeeeV 21111 ),(                                      (33) 

As a candidate Lyapunov function. The derivative along the 

system trajectory 
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It is easy to verify that  
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Substituting the identity (35) into equation (34) and writing for 

notational convenience )( 1212
1

2 eAPQey
  as ye~  

then
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Using uncertainty bound and the bound for )(   from 

equation (25) in the inequality above  
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And hence the error system is quadratically stable. 

Consider the hyper plane in the error space given by  

         0:  CeReS n
o                     (36) 

If    represents the state estimate for  and  then the 

robust observer can conventiently be written as 

 vGtCeGtButxAtx n )()()(ˆ)(ˆ 1
                       (37)  

 

 

Where the linear gain  
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and the nonlinear gain  

      







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and  
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Even in the special case when BD   the observer 

formulation (37) to (40) is different from that of 

 for the case when mp  since their results 

guarantee sliding will take place on the surface in the error 

space given by  0:  FCeRe n
. In the above formulation 

this is guaranteed.  

 Let ),,( CDA represent the linear part of the uncertain 

system in (20) which represents the propagation of the 

uncertainty  through to the output. Consider the problem of 

constructing an observer for the uncertain system of the form 

    vGtCeGtButAztz n )()()()( 1            (41) 

where xze  , v is discontinuous about the hyperplane   

 0:  CeReS n
o and )(, pn

nl RGG  are  appropriate gain 

matrices. The purpose of this section is determining the class 

of systems for which the observer (41) provides quadratic 

stability of the error system despite the presence of bounded 

matched uncertainty. The canonical form from the section will 

provide an intermediate step for establishing the form in 

section from which the observer was designed. 

Let lG  and nG  be appropriate gain matrices so that  

CGAA lo   is stable, and assume an ideal sliding mode 

insensitive to uncertainty exists on the hyperplane in the error 

space given by oS  . The error system satisfies 

       vGuxtDteAte no  ),,()()(                                  (42) 

For a unique equivalent control to exist,  0)(det 
n

CG . 
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To be insensitive to the uncertainty it follows that  

    DCCGGI nn ))(( 1 =0 
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    or equivalently  

     CCGGD nn
1)(                         (44) 

Since by assumption qDrank )( . Therefore it   c ab be 

assumed without loss of generality that the system ),,( CDA  is 

in the canonical form. If the nonlinear gain matrix is 

partitioned so that  

                            









2G

G
G

n
n                                    (45) 

Then 2TGCGn   and so det 0)det( 2 G . From equation (45). 

It follows that the poles of the (linear) reduced order motion 

are given by 

              
21

1
2111 oo AGGA                                           (46) 

where  
11oA  and  

21oA represent the top left and bottom left 

sub-blocks of the closed-loop matrix oA  partitioned in a 

compatible way to the canonical form. By definition the 

matrix CGAA lo  , so  

     
111111)( CGAA lo   

Where  
11

CGl  represents the top left sub-block of the square 

matrix CGl . However, it is easy to check that   0
11
CGl  for 

all 
rr

l RG   and so   1111
AAo  . Similarly it can be shown 

that   2121
AAo   and consequently. 
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211121
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AGGAAGGA oo
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From equation (44) it follows that 

    021
1

21  DGG  

Which after considering the structure of implies 

 01
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Where )()(
1

qppnRG   and therefore from the definition of 

11A  it follows that 

2111121
1

2111 AGAAGGA  
 

By construction the pair  ),( 21111 AA    is such that  

   )(),,( 2111111 AGAACDAofzeros o   for all   

     )()( qppnRG   

Let ),,( CDA represent the system and suppose qCDrank )(  

and any invariant zeros lie in C . Without loss of generality it 

can be assumed that the system is already in the canonical 

where the matrix 
oA11  is stable. As a consequence there exists a 

matrix )()( qppnRL   such that )( 21111 LAA  is stable. 

Define nonsingular transformation as 

    







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T

LI
T pn

L
0

                                                              (48) 

Where     qpnIL  )(0  

 After changing coordinates with respect to LT , the new output 

distribution matrix becomes  

   pL ITCc 01    

From the definition of  and  

 
and so the uncertainty distribution matrix is given by  

  

Finally, if , it can be shown by direct evaluation 

that  

 

This is stable by choice of L. The system triple ),,( CDA  is 

now in the canonical form (24) a robust observer exists.  

In the special case where  an observer of the form (45) 

which is insensitive to the uncertainty in (20) exists if one only 

if  

        .                                                      (49) 

The invariant zeros of ),,( CDA  lie in .(49).That is, the 

triple ),,( CDA  is minimum phase and relative degree 1. In 

this case the restriction that  guarantees the 

existence of exactly  invariant zeros and therefore the 

reduced order sliding motion is totally determined by these 

zeros. 

IV. SIMULATION RESULTS 

State space model of Smart cantilever beam with uncertainty 

is considered in this work 
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  Ttxtxtxtxty )()()()(0001)( 4321  

Assume initial conditions of the actual system is  

 Tx 005.15.1)0(   

Assume initial conditions of the estimator system is  

 Tx 0000)0(ˆ   

System uncertainty is )190sin(),,( tytx  ; 

Assume that input to the actual system and observer system as 

same. That  is u=0 or known. 

Observe the system states using Utkin observer  

The Utkin observer is explained  in II. 

Applying the Utkin observer for the above system. The results 

obtained as   

Assume M=1 obtains L as  1.01.01.0  
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Figure.1 System uncertainty  

 
Figure.2 Actual state    vs estimated  state   

Figure.3 Estimation error between actual state    vs estimated state   

      

 
Figure.4 Actual state    vs estimated  state   

FiFigure.5 Estimation   error between actual state    vs estimated state 

   

 
Figure.6 Actual state )(3 tx  vs estimated state )(3

ˆ tx  

 

 

Figure.7 Estimation error between actual state )(3 tx  vs estimated state )(3
ˆ tx  

 
Figure.8 Actual state )(4 tx  vs estimated state )(ˆ

4 tx  

 

 
Figure.9 Estimation error between actual state )(4 tx  vs estimated state )(ˆ

4 tx  

 

The observer starts at 0 sec but it response to track the actual 

state after 2 sec only. It tries to approach the actual state and it 

continuously minimizes the error but due to system uncertainty 

present in actual system it cannot able to track. 

 Observe The System States Using Walcott Zak Observer  

 

The Walcott Zak observer is expressed as. 

vGtCeGtButxAtx n )()()(ˆ)(ˆ 1
  

Assumptions   

Stable design matrix                     1022 sA  

               15),,( uyt  

 

Amplitude 

Amplitude  
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From the algorithm Linear gain       

 TlG 266255366-376  

 Nonlinear gain   TnG 0058.00421.00387.00141.0                               

 
 

Figure.10 Actual state    vs estimated state   

 

 

 
Figure.11 Actual state    vs estimated  state   

 
Figure.12 Actual state )(3 tx  vs estimated state )(3

ˆ tx  

 
Figure.13 Actual state )(4 tx  vs estimated state )(ˆ

4 tx  

 

Figure.14 Estimation error between actual state    vs estimated state   

 
Figure.15 Estimation error between actual state )(3 tx  vs estimated state )(3

ˆ tx  

Figure.16 Estimation error between actual state )(4 tx  vs estimated state )(ˆ
4 tx  

 

 
Fig.17 Estimation error between actual state    vs estimated state.               

 

The observer starts at 0 sec but it response to track the actual 

state after 6 sec. It tries to approach the actual state and it 

continuously minimizes the error and it eliminates the error 

due to system uncertainty. 

 

V. CONCLUSION 

From the results obtained, the Utkin observer starts to track 

the actual system states after 1 sec and it is unable to approach 

the actual system states in presence of uncertainty. This can be 

seen from the simulation results. Because the Utkin Sliding 

mode observer does not have a static observer gain in its 

structure and instead, the switching gain Lν plays the role of 

stabilizing the error dynamics. So it is unable to minimize the 

error due to system uncertainty. 
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From the results obtained, the Walcott Zak observer starts to 

track the actual system states after 1 sec and it is able to 

approach the actual system states after 6 sec. Because the 

Walcott Zak observer has two error stabilizing components one 

is feedback the estimation error and another one is the 

switching function. The switching function  has the range of 

upper bound value of the system uncertainty. The estimation 

error is feedback to the observer with linear gain  and the 

switching function is feedback with the non linear gain  

these two feedback error gains play an important role to 

minimize the error due to system uncertainty very effectively 

and observe the system, for this the system uncertainty is 

assumed to be an unknown function but with bounded range. 

So the Walcott Zak observer is robust against system 

uncertainty when compared to the Utkin observer. 

Both Utkin observer and Walcott Zak observer are having 

one disadvantage. The problem of observing the states of a 

system, some of whose inputs are not available for 

measurement. Utkin observer and Walcott Zak observer cannot 

observe the system states, under such conditions. Both are 

suitable for only the input to the system is available and zero. 

In future the unknown input observer can be designed with 

controller. 
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