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Abstract—In state space design, state feedback control is a powerful control technique. In state feedback control the Feedback of complete state
vector gives the designer to have total control over the closed loop poles. Many times in state feedback control, all states are not available to feed
back. To measure all unmeasurable states of the system the observer is needed. In real time system the system uncertainty will occur. So
observer should estimate the state of the system in the presence of uncertainty. It is needed to control the system for which observer should be
very robust to estimate the states of the system correctly. So here Utkin observer and Walcott zak observer’s are taken here. Their performances
are compared to find the robustness against the system uncertainty. Utkin sliding mode observer has only the switching gain to minimize the
observer error. But the Walcott-zak observer has static and nonlinear observer gain to minimize the observer error.

Index Terms—Utkin observer, state feedback control, Walcott zak observer.
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cantilever beam model is taken and the evaluation of the

| INTRODUCTION algorithms for smart cantilever beam is present.

In state feedback control the Feedback of complete state vector

gives the designer to have total control over the closed loop II. UTKIN OBSERVER

poles. Many times in state feedback control, all states are not  Consider a continuous time linear system described by
available to feed back. To measure all unmeasurable states of X(t) = Ax(t) + Bu(t) )
the system the observer is needed. A key feature in the Utkin y(t) = Cx(t) )

observer [5] is the introduction of a switching function in the

observer to achieve a sliding mode and also stable error Where Ae R™™ BeR™™ and p<m Assume that the
dynamics. This sliding mode characteristic which is a matrices Band Care of full rank and pair  (A,C)is
consequence of the switching function is claimed to result in
system performance which includes insensitivity to parameter
variations, and complete rejection of disturbances. Similar to
the Utkin observer, the sliding mode functional observer also
utilizes a switching function in its design and invariably will

observable.

As the outputs are to be considered, it is logical to effect a
change of coordinates so that the outputs appear as components
of the states. One possibility is to consider the transformation

inherit the benefits of insensitivity to noise rejection as X > Tex
reported for the Utkin observer. The Utkin Sliding Mode N,
Observer does not have a static observer gain in its structure Where, T, = 0 ®3)

and instead, the switching gain plays the role of stabilizing the

error dynamics. However, the disadvantage of this sliding  Where the columns of N, € R (=P span the null space of C.
observer structure reveals it- self when there exist uncertainties
and disturbances. In this case, the observer can only estimate
the states with a bounded error and not asymptotically. The
Walcott zak sliding mode Observer [4] has static and
nonlinear observer gain it reduces error due to system  Where

uncertainty the Walcottzak observer algorithm explained in  p is the number of output from the system.

This transformation is nonsingular, and with respect to this
new coordinate system, the new output distribution matrix is

crt =for, | (4)

section 1. N is the order of the system.
) ) ) ) If the other system matrices are written as
In section Il discusses about Utkin observer. Section IlI
discusses about walcottzak observer. In section IV the smart Te ATC_l - {Aﬂ &t (5)
A21 A22

http://www.ijritcc.org



http://www.ijritcc.org/

TCB{Bl} (6)
BZ

Then the nominal system can be written as

X, (t) = A x (1) + AL y(t) + Byu(t) @)
y(t) = Ay x (1) + Ay, y(t) + Byu(t) 8)
where

Xy
Tex = y ©)]

The observer proposed by Utkin [1] has the form

(10)
(11)

estimates  for

Xy (1) = Ay % (0) + AL y(t) + Bju(t) + Lv
y(t) = Ay x (1) + A, y(t) + Bou(t) —v
Where  (x,,Y,)

(X, ¥;), L € R™P*Pis a constant feedback gain matrix and

represent the state
the discontinuous vector V is defined component wise by

v; =Msgn(y; - y;)
Where M eR 4 If the errors between the estimates and the
true states are written as a e, =%, —x,and €, = Yy —y then

from equations (7)to (11) the following error system is
obtained

e (t) = Ae () + Apey (1) + Ly
6, (1) = Agye, (1) + Age, (1) —v

(12)
(13)
Since the pair (A, C) is observable the pair (A;;, A,;) isalso
observable. As a consequence , L can be chosen to make the

spectrum of A, + LA, lie inC_. Define a further change of
coordinates

(14)

and let € =e, + Le, The error system with respect to the
new coordinate can be written as
& (t) = '&1151 (t)+ '&1293/ ®)
&, (1) = Ay (1) + Aje, (1) -V
Where
'&11 = Ay + LA21"&12 =Ap + LAy, - ,&11Land

A, = Ay — Ayl
It follows from (3.12) that in the domain

Q={(e,.2,) [ Aty | + 052 (Ayy + Ap)e, | <M -7

(15)
(16)

Where 77 < M is some small positive scalar, the reachability
condition
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eje, <-nle,| 17)

is satisfied. Consequently, an ideal sliding motion will take

place on the surface
So ={(ey.ey) ey =0} (18)

It follows that after some finite timet,, for all subsequent

time, €, = Oand é, = 0

Equation (15) then reduces to

éLl t) = A11€1 ) (19)
Which, by choice of L, represents a stable system and
e, — 0 consequently, X, — x;as t — .

I, WALCOTT ZAK OBSERVER

SYNTHESIS OF A DISCONTINUOUS OBSERVER
Consider the dynamical system
X(t) = Ax(t) + Bu(t) + B&(t, x,u) (20)
Where AcR™",BeR™™,C e RP”"and P > m in addition the
matrixes B and Care assumed to be of full rank. The function
f:R, xR"xR™ — R"is unknown and represents the system
uncertainty. A natural problem to consider initially is the
special case when the uncertainty is matched: suppose
f(t,x,u) = B&(t, x,u) (21)
Where the function&:R, xR" xR™ — R™ is unknown, but
bounded, so that
Jetx ] < ]+t v)

Where r, is a known scalar and «:R, xRP — R, isaknown

(22)

function.
Suppose that there exists a linear change of coordinates T, so
that the system can be written as

X (1) = AuXg () + A y (1) + Byu(t)

X, (1) = Ay xq (1) + Ay, y(t) + Bou(t) + D&
Where x; eR" P, yeRP
eigenvalues. Consider an observer of the form

X () = Arg Xy () + A, §1(8) + Byu(t) - Ape, (t)

91.6) = Ag Ry (1) + Ag 9(8) + Bou(t) — (A, — Ay ey () +V (25)

(23)

and the matrix A;; has stable

(24)

Where A5, is a stable design matrix and ey =y-y (26)
—pt, y,u)|Dy = if e, %0
= |P2ey | (27)
0 else

p(t! Y, U) 2 rl"U"-l-O!(t, y) +7/0
e (t) =% (1) — x, (1)
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€, (t) = A (1) (28)
&y (1) = Agey (1) + A, (1) +V — Dyé (29)
There exists a family of symmetric positive definite matrices
P, such that the uncertain dynamical error system above is
quadratically stable. x
Let Q, e RM PP and Q, e RP*P be symmetric positive
definite design matrices and define P, € RP*P to be the unique
symmetric positive definite solution to the Lyapnouv equation.

T
P,A% + A5 P, =-Q, (30)
Using the computed value of P, define
Q=ALPQ;" P Ay +Q, (31)

and notice thatQ e Q" >0.
Let B eRMP*("P) pe unique symmetric positive definite
solution to the Lyapunov equation

A1TlP1 + PlT Ay = —(:)

Consider the quadratic form given by

(32)
V(e,.e,)=¢{ Pe, +e, Pe, (33)

As a candidate Lyapunov function. The derivative along the
system trajectory

T T T (34)
—-e,Q.e, —2e, Pv—-2e P,D,&
It is easy to verify that
(ey -Q;'PAxe) Q, (ey ~Q;'PAye) =
T T AT T AT
eszey —e; Ay Pey —ey Ay Pre (35)

T AT a1
+e; Ay PQy P Ay e

Substituting the identity (35) into equation (34) and writing for

notational ~ convenience (e, -Q,'P,Ae) as ey
then

V =—e/ Qe +e] AL P,Qy P, Ay, &) Q,8, +2e] PV —2e) P,D,¢&
=—e] Qe, — &) Q,8, +2e, P,v—2e] P,D,¢&

=—6] Qe _EyT Q8 — Ze; P,D, & -2p(t, Y, U)"Dz""Pzey"
Using uncertainty bound and the bound for p(e) from
equation (25) in the inequality above

V <-el Qe —8) Q.8 —2p(t,, U)"Dz""Pzey"

+ 2(r1||u||+a(t, y)}|D2||||P2ey||

< —EI Qlel - -é;— Qz-éy - 270"D2""Pzey"
<0 for(e;,e,) =0

And hence the error system is quadratically stable.
Consider the hyper plane in the error space given by
S, = peR":Ce=0] (36)
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If % represents the state estimate for and & = % — x then the
robust observer can conventiently be written as

K(t) = AR(t) + Bu(t)—G,Ce(t) + G,V (37)
Where the linear gain
G =T01{A“ : } (38)
A22 - A22
and the nonlinear gain
0
G -Ioains?) | @)
p
and
P,Ce .
—p(t,y,u)|D,|-2=; if FCe =0
V= |P.Ce]
0 else
(40)

Even in the special case when D =B the observer
formulation (37) to (40) is different from that of
walcott & zak (3] for the case when p > msince their results
guarantee sliding will take place on the surface in the error
space given by {ee R": FCe=O}. In the above formulation
this is guaranteed.

Let (A, D,C)represent the linear part of the uncertain
system in (20) which represents the propagation of the
uncertainty  through to the output. Consider the problem of
constructing an observer for the uncertain system of the form

2(t) = Az(t) + Bu(t) -G, Ce(t) + G,V (41)

where e=z—x, vis discontinuous about the hyperplane

S, = {e eR":Ce= O}and G, G, € R™P are appropriate gain
matrices. The purpose of this section is determining the class
of systems for which the observer (41) provides quadratic
stability of the error system despite the presence of bounded
matched uncertainty. The canonical form from the section will
provide an intermediate step for establishing the form in
section from which the observer was designed.

Let G, and G, be appropriate gain matrices so that

A, =A-G,C is stable, and assume an ideal sliding mode

insensitive to uncertainty exists on the hyperplane in the error
space given by S, . The error system satisfies

e(t)Ae(t)—D&(t, x,u) -G,V (42)
For a unique equivalent control to exist, det (CGn) #0.
. (1 _ -1
e(t) = (1 -G, (CG,) "C)e(t) 43)

+(1 -G, (CG,) ™ C)DE(t, x, u)
To be insensitive to the uncertainty it follows that
(1-G,(CG,)™*C)D=0
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or equivalently
D=G,(CG,)'C
Since by assumption rank (D) =q. Therefore it

(44)
c ab be

assumed without loss of generality that the system (A, D,C) is

in the canonical form. If the nonlinear gain matrix is
partitioned so that

(45)

Then CG, =TG, and so detdet(G,) = 0. From equation (45).

It follows that the poles of the (linear) reduced order motion
are given by

ﬂ((Ao )11 - Gle_l (Ao )21 ) (46)
where (A, ),, and (A, ),, represent the top left and bottom left

sub-blocks of the closed-loop matrix A, partitioned in a

compatible way to the canonical form. By definition the
matrix A, = A-G,C, so

(A) =Au —(G|C)11
Where (G|C)ll represents the top left sub-block of the square
matrix G,C . However, it is easy to check that (G,C),, =0 for
all G; eR™ and so(A,),, = Ay, . Similarly it can be shown
that (A, ),, = A, and consequently.

(A ~6:67* (A )1 )= Al - 6167 A

From equation (44) it follows that

GG, Dy =0
Which after considering the structure of D implies
6,6, =[G 0]

Where G, e R"P*(P=0) and therefore from the definition of

(47)

A, it follows that

A _Gle_lAzl =An _§A211
By construction the pair (A, Ajyq)

{zerosof (A, D,C)}= 1A% c A(A, —GA,,,)forall

G < R-Px(p-a)

is such that

Let (A, D,C)represent the system and suppose rank(CD) =q
and any invariant zeros lie in C_. Without loss of generality it
can be assumed that the system is already in the canonical
where the matrix A} is stable. As a consequence there exists a
that (Aj; — LA,;)is  stable.
Define nonsingular transformation as

I L
T, =| P

Where Ee[l O(n—p)qu

matrix L e R™PX(P-9)  gych

(48)

After changing coordinates with respect to T, , the new output
distribution matrix becomes
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c=cit=po 1]
From the definition of L and D;
= - 0
LD, =[L o] [D:] =0
and so the uncertainty distribution matrix is given by
LD,] _ [ 0 l —0
1D, ~ 11Dl ™
Finally, if & = TLATT* it can be shown by direct evaluation
that

LA
=3 ¥

This is stable by choice of L. The system triple (A,D,C) is
now in the canonical form (24) a robust observer exists.

In the special case where p = q an observer of the form (45)
which is insensitive to the uncertainty in (20) exists if one only
if

@:anz[

= Ay + LAy,

det(CD) = 0. (49)
The invariant zeros of (A,D,C) lie in C_.(49).That is, the
triple (A,D,C) is minimum phase and relative degree 1. In
this case the restriction that det(CD} =0 guarantees the
existence of exactly n—p invariant zeros and therefore the

reduced order sliding motion is totally determined by these
ZEros.

IV. SIMULATION RESULTS

State space model of Smart cantilever beam with uncertainty
is considered in this work

(%, ()] [ 92.1084  64.5070 -39.8911 65.1749
X,(t)| |-159.5286 14.3813 112.5734 -118.4229
% (t) | [116.4182  -111.6173 -15.247  160.9807
| X4(t)| |-63.1027  39.0227 -63.7560 -93.4438
%, (t) ] [-0.5220 -0.0141

X, (t) . 0.2457 oo + -0.0387 (L10*sin(1900)

x3(t) | |-0.3766 0.0421

| X4(t)| |0.7240 0.0058

y =L 0 0 0x® %@® x5 xOf
Assume initial conditions of the actual system is
x(0)=.5 1.5 0 of

Assume initial conditions of the estimator system is
20)=[o 0 o of

System uncertainty is £(x,t, y) = —sin(190t) ;

Assume that input to the actual system and observer system as
same. That is u=0 or known.

Observe the system states using Utkin observer

The Utkin observer is explained in Il.

Applying the Utkin observer for the above system. The results
obtained as

Assume M=1 obtains L as [0.1 0.1 0.1]
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The observer starts at 0 sec but it response to track the actual
state after 2 sec only. It tries to approach the actual state and it
continuously minimizes the error but due to system uncertainty
present in actual system it cannot able to track.
Observe The System States Using Walcott Zak Observer

The Walcott Zak observer is expressed as.
K(t) = AR(t) + Bu(t)—G,Ce(t) + G,V

Assumptions
Stable design matrix

p(ty,u)=15

2927
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From the algorithm Linear gain
G :[376 -366 255 266]r

Nonlinear gain G, =[0.0141 0.0387 —-0.0421 —0.0058]'
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The observer starts at 0 sec but it response to track the actual
state after 6 sec. It tries to approach the actual state and it
continuously minimizes the error and it eliminates the error
due to system uncertainty.

V. CONCLUSION

From the results obtained, the Utkin observer starts to track
the actual system states after 1 sec and it is unable to approach
the actual system states in presence of uncertainty. This can be
seen from the simulation results. Because the Utkin Sliding
mode observer does not have a static observer gain in its
structure and instead, the switching gain Lv plays the role of
stabilizing the error dynamics. So it is unable to minimize the
error due to system uncertainty.
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From the results obtained, the Walcott Zak observer starts to
track the actual system states after 1 sec and it is able to
approach the actual system states after 6 sec. Because the
Walcott Zak observer has two error stabilizing components one
is feedback the estimation error and another one is the
switching function. The switching function + has the range of
upper bound value of the system uncertainty. The estimation
error is feedback to the observer with linear gain ; and the
switching function is feedback with the non linear gain G,
these two feedback error gains play an important role to
minimize the error due to system uncertainty very effectively
and observe the system, for this the system uncertainty is
assumed to be an unknown function but with bounded range.
So the Walcott Zak observer is robust against system
uncertainty when compared to the Utkin observer.

Both Utkin observer and Walcott Zak observer are having
one disadvantage. The problem of observing the states of a
system, some of whose inputs are not available for
measurement. Utkin observer and Walcott Zak observer cannot
observe the system states, under such conditions. Both are
suitable for only the input to the system is available and zero.
In future the unknown input observer can be designed with
controller.
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