
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 5 2799 - 2802

2799
IJRITCC | May 2015, Available @ http://www.ijritcc.org

Implementation of SystemVerilog Environment for Functional Verification of

AHB-DMA Bridge

Disha Goswami

P.G Student, Department of Electronics Engineering,

Gujarat Technological University,

Ahmedabad, India

Dr. Dharmesh J. Shah

Director, Shruj LED Technologies

Ahmedabad, India,

djshah99@gmail.com

Abstract— Now day’s functional verification is a very hot topic. With the growing complexity of modern digital systems and embedded system

designs, the task of verification has become the key to achieving faster time-to-market requirement for such designs. Verification is the most

important aspects of the ASIC design flow. It is estimated that between 40 to 70 percent of total development effort is consumed by verification

task. This paper describes the verification of AHB-DMA interface using system Verilog. System Verilog is the special hardware description

language used in functional verification. The verification environment designed using System Verilog.

Keywords-System Verilog, DMA, AHB, APB

__*****___

I. INTRODUCTION

The enormous growth of VLSI technology enables

the integration of more than several million transistors on a

single chip to make a Soc (System-on-Chip). The process of

verification consumes from 60% to 80% of the design cycle

which is expected to continually increase. To overcome this

problem is to adopt a reuse-oriented, coverage-driven

verification methodology.

 System Verilog is the industry's first unified

Hardware Description and Verification Language (HDVL)[1].

The verification features of SystemVerilog include:

• Assertion-based verification

• Random constrained stimuli generation

• Functional coverage

• Advanced object-orientation

AMBA AHB-Lite provides requirements of high-

performance designs. It is a bus interface that supports a single

bus master and provides high-bandwidth operation [2]. AHB-

Lite slaves are internal memory devices, external memory

interfaces, and high bandwidth peripherals and also low-

bandwidth peripherals can be included as AHB-Lite slaves

like AMBA Advanced Peripheral Bus (APB). Bridging

between this higher level of the bus and APB is done using an

AHB-Lite slave, known as an APB bridge.

AMBA APB is low bandwidth and low performance bus. The

bridge connects the high performance AHB bus to the APB

bus. So, for APB the bridge acts as the master and all the

devices connected on the APB bus acts as the slave. The

bridge is used for communication between the high

performance bus and the peripheral devices. Direct memory

access, a technique for transferring data from main memory to

a device without passing it through the CPU.

II. VERIFICATION CHALLENGES

Due to the increasing complexity of integrated

circuits, verification engineers need a method to reduce the

complexity of the design verification, So to overcome this, it is

always good to have hardware verification language as a tool

and SystemVerilog is preferred here. Some of the benefits

using system Verilog as verification languages are here:

In the directed testcases it becomes difficult to make

a perfect set of stimulus required to determine functionality.

We can write directed testcases to check certain set of features,

but it is always difficult to write direct testcases for all

possible valid as well as error scenarios, when the number of

features keeps doubling. Constrained random generation

allows verification engineers to automatically generate tests

for functional verification to hit all possible scenarios. By

using constrained one can set the range within which test

bench exercises the target device. By specifying constraints,

one can easily create tests that can obtain hard-to-reach corner

cases. The constraints define the legal values that can be

specified to the random variables.

 Figure.1. Random test Vs Directed test

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 5 2799 - 2802

2800
IJRITCC | May 2015, Available @ http://www.ijritcc.org

It is really significant to notice bugs in the early phase

of design, to shorten time to market, that is the reason we need

assertion based verification. Assertions are primarily used to

validate the behavior of a design. Piece of verification code

that monitors a design implementation for compliance with the

specifications. ABV define properties that specify expected

behavior of the design. By using ABV one can improve

Improves observability of the design, Improves debugging of

the design.

There is another advantage of using system verilog to reduce

verification time is the use of code coverage and functional

coverage. Code coverage is a tool that can identify what code

has been executed in the design under verification. Code

coverage basically gives the information about how many

lines of code have been executed. Code Coverage indicates the

how much of RTL has been exercised. The Functional

Coverage indicates which features or functions have been

covered under verification testsuits. Both of them are very

important. With only Code Coverage, it may not represent the

real features coverage. On the other hand, the functional

coverage may leave out some unused RTL coverage. By using

all these methods, verification engineers save their time in the

test bench generation, bugs found in the early phase and

product easily available at the time limit.

III. TESTBENCH ARCHITECTURE

A test bench is a layer of code that is created to apply input

patterns (stimulus) to the design under test (DUT) and to see

whether the DUT produces the outputs expected.

Figure.2.Testbench

A central concept for any modem verification methodology is

a layered testbench which helps you control the complexity,

that is coming about in the instance of a testbench design

itself, by breaking the problem into manageable pieces.

Figure.3. Layered Testbench

In figure 3 signal layer work with the DUT. We drive all the

input signals of the DUT and observe the output from the

output signals of the DUT. In command layer driver, and

monitor exist. Here in the driver, we actually have the

generated stimulus which we apply to a DUT. The driver

drives the DUT according to driving protocol. Monitor

performs the exact and the opposite operation from the driver.

It collects all output signals from the DUT, which is applied to

the scoreboard. In functional layer transactor, scoreboard,

checker etc. exists in which we perform functional operation.

In scoreboard we collect generated stimulus and monitor

outputs. We keep track of passing and failed transactions in

scoreboard. Checker check the functionality whether the

output is as expected or not. Here I present testcase

environment of AHB-DMA.

 Fig.4.AHB-DMA verification testcase environment

IV. SYSTEMVERILOG VERIFICATION

ENVIRONMENT

 The following subsections describe the components

of a verification component.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 5 2799 - 2802

2801
IJRITCC | May 2015, Available @ http://www.ijritcc.org

Figure.5.Verification environment

1) Top module

Top module is the highest level of layered testbench.

In top module all modules are combined and instantiated. This

is test case which is class of system Verilog which contains

instances of apb_env.

2) dut_test

 Test cases are identified from the design

specification. Normally the requirement in test cases becomes

a test case.
Program testcase (apb_interface intf);

3) dut_env
We collect all the modules and keep them one

module named environment module. Thus the environment

module has all other modules except top module.

class apb_env;

 virtual apb_interface intf; // interface instance

 master_agent agent; //

task run();

endtask: run

endclass : apb_env

4) dut_agent

The agent is basically a container. It contains driver,

monitor and sequencer .it has instance of interface, driver and

generator.
 class master_agent;

 virtual apb_interface intf; // interface instance

master_generator generator; // instance of

generator

 master_driver driver;

5) dut_driver

All generated stimuli are collected to a driver module

through the mailbox and then, according to driving protocol all

these input stimuli are applied to the DUT. According to test

plan requirement different scenarios are created and applied to

DUT.
class apb_driver;

//Declare objects

 //Define virtual interfaces

//Define mailbox

//Construction

//Allocate memory to define objects

//Make task which for APB read and write

 driver operation

endclass: apb_driver

6) dut_stimulus

The stimulus module contains all stimulus signal

definitions which need to be randomized.

class master_generator;

 //Define objects

//Define mailbox

//Construction

//Make one task which start the generator

operation

//Inside the task all signals are randomized

which are declared as rand in stimulus

module

//Put randomized data in to mailbox

endclass:master_generator

7)dut_monitor

Monitor module is used for monitoring all signals. It

just sample the dut signal from the interface but does not drive

them.

8) Mailbox

A mailbox is used to exchange messages between

processes. Mailbox is a convenient method for inter-process

communication. We can place and retrieve message with put()

and get() method.

V. SIMULATION RESULTS

Here I represent the simulation result of AHB-DMA interface.

In this first reads addresses and read data fetch from the

memory to the FIFO and when the FIFO is full, the data write

to the DMA.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 5 2799 - 2802

2802
IJRITCC | May 2015, Available @ http://www.ijritcc.org





Figure.6 and 7 Simulation results with read /write data

 

Figure.8. Read/write data and address

VI. CONCLUSION

In this paper proposed uniform verification environment of

AHB-DMA interface proposed using system verilog. To

ensure the correctness of functionality of the design

verification is much needed. Verification reduces time-to-

market and makes design error free. To overcome the

verification challenges system verilog is preferred because of

its constrained random stimulus generation, code coverage and

functional coverage.

REFERENCES

[1] Purvi Mulani,Jignesh Patoliya,Hitesh Patel,

Dharmendra Chauhan,” verification of i2c dut using

systemverilog”, IJAET, Vol.I, Oct.-Dec, 2010.

[2] Myoung-Keun You and Gi-Yong

Song,”SystemVerilog- based Verification

Environment using SystemC Custom Hierarchical

Channel”, 2009 IEEE.

[3] J. Bergeron, (2003), “Writing Testbenches:

Functional Verification of HDL models”, Kluwer

Academic Publishers, 2003.

[4] System Verilog 3.1a Language Reference Manual:

Accellera's Extensions to Verilog, Accellera, Napa,

California,2004.

http://www.ijritcc.org/

