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Abstract-- Flattening household electricity demand reduces generation costs, since costs are disproportionately affected by peak 

demands. Buildings today consume more energy  than either of society‘s other broad sectors of energy consumption industry and 

transportation. As a result, nearly half (47%) of energy use in residential buildings is lost in electricity transmission and 

distribution (T&D) from far-away power plants to distant homes. An important way to decrease both T&D losses and carbon 

emissions is through distributed generation (DG) from many small on-site renewable energy sources deployed at individual 

buildings and homes. Distributed generation (DG) uses many small onsite energy harvesting deployments at individual buildings 

to generate electricity. DG has the potential to make generation more efficient by reducing transmission and distribution losses, 

carbon emissions, and demand peaks. In this paper, we explore an alternative approach that combines market-based electricity 

pricing models with on-site renewables and modest energy storage (in the form of batteries) to incentivize DG called Green 

Building. The objectives of green charge is to develop an alternative approach that combines market-based electricity pricing 

models with on-site renewable and modest energy storage (in the form of batteries) to incentivize DG (Distributed Generation). 

We propose a system architecture and optimization algorithm, called Green Building, to efficiently manage the renewable energy 

and storage to reduce a building‘s electric bill. 
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I. INTRODUCTION 

Buildings today consume more energy (41%) than either of 

society‘s other broad sectors of energy consumption 

industry (30%) and transportation (29%) [1]. As a result, 

even small improvements in building energy efficiency, if 

widely adopted, hold the potential for significant impact. 

The vast majority (70%) of building energy usage is in the 

form of electricity, which, due to environmental concerns, is 

generated at ―dirty‖ power plants far from population 

centers. As a result, nearly half (47%) of energy use in 

residential buildings is lost in electricity transmission and 

distribution (T&D) from far-away power plants to distant 

homes. An important way to decrease both T&D losses and 

carbon emissions is through distributed generation (DG) 

from many small on-site renewable energy sources deployed 

at individual buildings and homes. Unfortunately, in 

practice, DG has significant drawbacks that have, thus far, 

prevented its widespread adoption. In particular, DG 

primarily relies on solar panels and wind turbines that 

generate electricity intermittently based onus controllable 

and changing environmental conditions. Since the energy 

consumption density, in kilowatt-hours (kWh) per square 

foot, is higher than the energy generation density of solar 

and wind deployments at most locations, buildings must still 

rely heavily on the electric grid for power. 

Distributed generation (DG) uses many small onsite energy 

harvesting deployments at individual buildings to generate 

electricity. DG has the potential to make generation more 

efficient by reducing transmission and distribution losses, 

carbon emissions, and demand peaks. However, since 

renewables are intermittent and uncontrollable, buildings 

must still rely, in part, on the electric grid for power. While 

DG deployments today use net metering to offset costs  

and balance local supply and demand, scaling net metering 

for intermittent renewables to a large  

fraction of buildings is challenging. In this project, we 

explore an alternative approach that combines market-based 

electricity pricing models with on-site renewables and 

modest energy storage (in the form of batteries) to 

incentivize DG. We propose a system architecture and 

optimization algorithm, called Green building, to efficiently 

manage the renewable energy and storage to reduce a 

building‘s electric bill. To determine when to charge and 

discharge the battery each day, the algorithm leverages 
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prediction models for forecasting both future energy demand 

and future energy harvesting. We evaluate Green building in 

simulation using a collection of real-world data sets, and 

compare with an oracle that has perfect knowledge of future 

energy demand/harvesting and a system that only leverages 

a battery to lower costs (without any renewables). We show 

that Green building‘s savings for a typical home today are 

near 20%, which are greater than the savings from using 

only net metering. 

 

II. GREENCHARGE ARCHITECTURE 

A. Objective of Project 

The objectives of green building is to develop an 

alternative approach that combines market-based electricity 

pricing models with on-site renewable and modest energy 

storage (in the form of batteries) to incentivize DG 

(Distributed Generation). We propose a system architecture 

and optimization algorithm, called Green building, to 

efficiently manage the renewable energy and storage to 

reduce a building‘s electric bill. To determine when to 

charge and discharge the battery each day, the algorithm 

leverages prediction models for forecasting both future 

energy demand and future energy harvesting. 

 

B. Layout and Schematic 

 

 
Fig.1. Green building‘s architecture 

 

Green building‘s architecture, which utilizes a power 

transfer switch that is able to toggle the power source for the 

home‘s electrical panel between the grid and a DC-AC 

inverter connected to a battery array. On-site solar panels or 

wind turbines connect to, and charge, the battery array. A 

smart gateway server continuously monitors 1)electricity 

prices via the Internet, 2) household consumption via an in 

panel energy monitor, 3) renewable generation via current 

transducers, and 4) the battery‘s state of charge via voltage 

sensors. Our SmartCharge system, which we compare 

against in this work, utilizes the same architecture, but does 

not use renewable. Before the start of each day, the server 

solves an optimization problem based on the next day‘s 

expected electricity prices, the home‘s expected 

consumption and generation pattern, and the battery array‘s 

capacity and current state of charge, to determine when to 

switch the home‘s power source between the grid and the 

battery array. The server also determines when to charge the 

battery array when the home uses grid power. 

 

C. Network Communication and Sensing 

One challenge with instantiating Green building‘s 

architecture is transmitting sensor data about energy 

consumption, energy generation, and battery status to Green 

building‘s smart gate way server in real time. The simplest 

way to measure energy consumption and generation is to 

wrap current transducers(CT) around wires in the building‘s 

electrical panel. CTs must be installed in the panel, since 

this is the only place in the building that has the incoming 

grid lines exposed for sensors. Since electrical panels are 

often in remote corners of a building, transmitting readings 

wirelessly is difficult. While wired Ethernet is an attractive 

option, it requires running an Ethernet cable from Green 

building‘s gateway server to the electrical panel. Multiple 

types of power line-based communication protocols exist. 

The most common are X10, Insteon, and HomePlug.X10 is 

by far the oldest protocol, having been developed in1975; it 

is primarily used for controlling applications, which only 

requires sending brief, short control messages. 

Unfortunately,X10 has severe bandwidth limitations (a 

maximum of 20bps) and reliability problems, which make it 

undesirable for continuous real-time sensing. Further, power 

line noise caused by switched mode power supplies results 

in substantial losses with X10 in most buildings. Insteon is 

an improvement to X10 that includes acknowledgements, 

retransmissions, and optimizations to overcome power line 

noise. However, Insteon still has bandwidth limitations that, 

in practice, reduce its maximum rate to near 180bps. While 

useful for controlling devices via the power line, it is still 

insufficient for continuous real-time sensing of multiple data 

sources. Thus, in our own prototype we chose a power meter 

that uses the Home Plug Ethernet-over power line protocol. 

Unlike Insteon and X10, Home plug was initially designed 

to stream high definition audio and video data from the 

Internet to televisions. As a result, it was designed from the 

outset to support high-bandwidth applications. Home Plug 

modems exist that are capable of transmitting up to 

200Mbps. 

 

D. Market-based Electricity Pricing 

Most utilities still use fixed-rate plans for residential 

customers that charge a flat fee per kilowatt-hour (kWh) at 

all times. In the past, market-based pricing plans were not 

possible, since the simple electromechanical meters installed 

at homes had to be read manually. However utilities are in 

the process of replacing these old meters with smart meters 
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that enable them to monitor electricity consumption in real 

time at fine granularities, e.g., every hour or less. To cut 

electricity bills, Green building relies on residential market 

based pricing that varies the price of electricity within each 

day to more accurately reflect its cost. We expect many 

utilities to offer such plans in the future. There are multiple 

variants of market-based pricing. Figure 2 shows rates over 

a single day for both a time-of-use(TOU) pricing plan used 

in Ontario, and a real-time pricing plan used in Illinois. 

TOU plans divide the day into a small number of periods 

with different rates. The price within each period is known 

in advance and reset rarely, typically every month or season. 

For example, the Ontario Electric Board divides the day into 

four periods (7pm-7am, 7am-11am, 11am-5pm, and 5pm-

7pm) and charges either a off-peak-, mid-peak, or on-peak 

rate (6.2¢/kWh, 9.2¢/kWh, or 10.8 ¢/kWh) each period. 

 
Fig.2. Example TOU and hourly market-based rate plans in 

Ontario and Illinois, respectively 

 

E. Markets price fluctuations 

Wholesale energy prices exhibit significant fluctuations 

during each day due to variations in demand and generator 

capacity. Home users are traditionally not exposed to these 

fluctuations but pay a fixed retail energy price, as shown in 

Figure 3 (a).  

 
Fig .3.The wholesale energy price (gray) and various approaches to 

retail pricing (black). 

Economists have long argued to remove the fixed retail 

prices in favor of prices that change during the day. Such 

dynamic pricing reflects the prices of the wholesale market 

and has been predicted to lead to lower demand peaks and 

lower average level and volatility of the wholesale price. 

Dynamic pricing has been enabled by recent smart-grid 

technologies such as smart meters. A first example of 

dynamic  pricing that is being increasingly adopted is time-

of-use pricing (Figure 3(b)). Such schemes typically provide 

two or three price levels (e.g., ‗off-peak‘, ‗mid-peak‘ and 

‗on-peak‘) where the level is determined by the time of day. 

The price levels are determined well in advance and are 

typically not changed more than once or twice per year. A 

second example of dynamic pricing is real-time pricing 

(Figure 3(c)) where the retail energy price changes hourly or 

half-hourly to reflect the price on the wholesale energy 

market. 

Dynamic pricing creates an opportunity for users to reduce 

energy costs by exploiting the price fluctuations. However, 

in practice users show only a minor shift in their demand to 

match the energy prices . A possible remedy is to equip 

homes with a battery that can be used for home energy 

storage. This battery can be charged when the energy price 

is low and the stored energy can then be used to protect 

against high prices. This allows users to benefit from the 

varying energy price without having to adjust their usage 

patterns accordingly. Energy can be stored both by a 

dedicated battery, or by using the battery pack of an electric 

car. In the past such setup was not economically viable due 

to the high cost of batteries, but current developments have 

brought storage applications within reach. 

 

III. LOAD ANALYSIS AND OBSERVATIONS 

To study the extent to which scheduling 

background loads is able to flatten demand, we collect fine-

grained power data from a real home that houses three 

occupants. We have collected the home‘s aggregate power 

for the last 12 months and power at each outlet and switch 

for the past 82 days. Since our monitoring did not affect the 

occupants‘ daily routine, our data reveals realistic home 

power usage patterns over the monitoring period. Our home 

deployment continuously gathers power usage data for the 

entire home every second and 30 individual outlet loads 

every few minutes; our prototype maintains a record of the 

on-off state of 30 of the home‘s wall switches at every 

instant in time. Green Building‘s gateway is also able to 

remotely (and programmatically) control the home‘s outlets 

and wall switches. More details about our home deployment 

are available in prior work. 
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A. Interactive vs. Background Loads 

To quantify the potential benefits of scheduling 

background loads, we separate the power consumption of 

background loads from that of interactive loads. In our 

prototype home, we monitor seven background loads at 

outlets: a refrigerator, a freezer, a dehumidifier, three 

window air conditioning units (A/Cs), and a heat recovery 

ventilation (HRV) system. By contrast, we estimate that the 

home used 85 distinct interactive loads over the past 

year[3]. Thus, Green Buildings does not attempt to 

schedule the vast majority of household loads, since it 

would affect the home‘s occupants. Interactive loads that 

we do not schedule include lights, entertainment appliances 

(e.g., TV, cable box, gaming console), computing 

equipment (e.g., routers, laptops, desktops), kitchen 

appliances (e.g., microwave, toaster oven, espresso maker, 

garbage disposal), and miscellaneous devices (e.g., clocks, 

vacuums, hair dryers). In most cases, disconnecting any of 

these loads from power when in use is readily apparent to 

occupants. We also group clothes dryers, washing 

machines, and dishwashers with interactive loads. While 

we could schedule the start time of these appliances, we do 

not include them because adjusting the start time affects 

occupants. To see why, consider that a scheduler may be 

able to decide when an appliance executes, but occupants 

must ultimately initialize the appliance, e.g., fill it with 

clothes or dishes, before its scheduled start time. Changing 

the start time may force occupants to initialize the 

appliance at an inopportune time. Further, for clothes dryers 

and washing machines, their operation is often pipelined, 

with households washing multiple laundry loads back-to-

back. Observation : While background loads comprise 

7.5% of the total loads over our monitoring period, they 

account for 59% of the average energy consumption. Table 

I shows the peak and average power consumption for each 

background load we monitor during a representative week 

in the summer, as well as the peak and average power 

consumption for all background and interactive loads. 

During this week, background loads consume 209 kWh, 

while interactive load consume 146 kWh. The three 

window A/C units significantly increase the fraction of 

energy consumed by background loads, since each A/C 

draws between 400W and 1kW when the compressor is on. 

On hot days, the compressor may run as much as half the 

day, depending on the comfort level the occupants desire. 

Note that during the winter the A/Cs do not run, since the 

home uses a gas furnace for heat. As a result, background 

load is lower in the winter. In this case, the duct heater for 

the HRV system, which heats incoming air from the 

outside, dominates background energy consumption, 

accounting for 70% of the total, while the refrigerator, 

freezer, and dehumidifier account for the remaining 30%. 

Below, we highlight other observations from our home‘s 

data that influences our approach to scheduling. 

 

Load Peak Average Quantity 

Refrigerator 456W 74W 1 

Frezeer 437W 82W 1 

HRV 1129W 24W 1 

Dehumidifier 505W 371W 1 

Main A/C 1046W 305W 1 

Bedroom1A/C 

1 

571W 280W 1 

Bedroom A/C 

2 

571W 141W 1 

 

Background 4715W 1277W 7 

Interactive 9963W 887W 85 

 

Table I :In the summer, background loads in our home 

account for 59% of the total energy consumption. 

 
Figure 4. The power consumption of interactive loads is highly 

variable throughout the day. As expected, peak power consumption 

occurs around mealtimes in the morning, early afternoon, and early 

evening. 

 

B. Interactive Variability 

The power consumption of interactive loads varies due to 

the actions of occupants throughout the day, and is not 

readily predictable. Figure 4 highlights this point by 

showing the power consumption of the interactive loads in 

isolation on a typical day. Additionally, Figure 5 shows 

consumption patterns for four interactive loads. Notice that 

the power draws of these loads vary considerably 

throughout the day, with the peak periods occurring during 

the morning between 6am and 10am and in the early 

evening between 5pm and 9pm. These periods coincide with 

food preparation and are partially the result of using high-

power kitchen appliances, such as a coffee pot, garbage 

disposal, microwave, dishwasher, or toaster oven. During 

the night, the minimum steady state power consumption is 
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roughly200W, while during the morning and evening it 

frequently rises above 2kW for frequent short periods. The 

kitchen appliances tend to induce peaks by using large 

amounts of power for relatively short time periods, such as 

the coffee pot in Figure 5. Our observation also holds for 

meal preparation at breakfast, lunch, and dinner. Accurately 

predicting the power consumption of interactive loads at 

fine time scales is difficult. While the home‘s occupants 

typically eat dinner between 4pm and 8pm, if and when they 

use a microwave, toaster oven, dishwasher, or garbage 

disposal is highly variable during this four hour time 

window each day. Additionally, the occupants have flexible 

work schedules, and often work from home during the 

day—on this day one of the occupants ate lunch at home, 

which accounts for the spike in power around noon. Since 

interactive loads are not readily predictable, our scheduler 

must be able to react to drastic and sudden changes in their 

power consumption. 

 

C. Background Variability 

The operating period of background loads varies 

due to both environmental conditions and external events, 

and is also not readily predictable. Figure6 highlights the 

point by graphing the power consumption of four of the 

background loads we monitor. Each background load is 

clearly periodic: it alternates between distinct ‗on‘ and ‗off‘ 

states. While it is possible to design these loads with 

variable drive controllers, all the background loads in our 

home use simple on-off controllers that toggle between an 

on and off state . In this case, the on-off periodicity is a 

result of each background load maintaining an 

environmental set point: in this example, the refrigerator and 

freezer maintain their internal temperature within a fixed 

guard band, the dehumidifier maintains a humidity level 

within a fixed guard band, and the HRV heats outside air to 

a pre-specified temperature. The guard band defines the 

acceptable maximum and minimum levels for the load‘s 

target environmental metric. Common household loads use 

simple control loops to stay within the guard band. For 

example, when the load‘s metric reaches a maximum 

allowable value, the load turns on until the metric reaches a 

minimum value, at which point the load turns off. Since 

environmental conditions vary, neither the length nor the 

magnitude of a load‘s on-off period is entirely regular. To 

illustrate, the figure shows that the refrigerator (upper right) 

and freezer (upper-left) exhibit longer on periods in the early 

evening between 5pm and 9pm, along with some transient 

usage spikes. In both cases, the longer on periods are the 

result of the occupants opening the refrigerator and freezer 

doors, which increases the internal temperature and causes 

them to turn on their compressors to lower the temperature. 

Tasks other than maintaining temperature also contribute to 

the transient spikes in power consumption. For example, 

both the refrigerator and freezer power multiple 60W 

incandescent light bulbs when the door is open and also 

periodically make ice; the refrigerator also cools a separate 

freezer compartment. The refrigerator exhibits a much more 

irregular consumption pattern, since it resides in the kitchen 

and the occupants open its door more frequently than the 

basement freezer. The HRV and dehumidifier exhibit 

irregular periods for similar reasons. The dehumidifier‘s 

operating cycle dictates that it runs until it reaches a set 

point humidity—in our case 50%—or until it has run for 

two consecutive hours, at which point it remains off for 2 

hours to cool down. Thus, on hot and humid summer days, 

the dehumidifier will run for 2 hours every 4 hours if it 

cannot reach its set point humidity, and consume a 

significant fraction of power (1.8 kWh). On moderately 

humid days, the dehumidifier will come on and off 

according to its setpoint humidity, causing an irregular on-

off period. On this day, the environmental humidity was 

high, so the dehumidifier ran regularly. Similar to the 

refrigerator/freezer, the window unit A/Cs exhibit irregular 

periods based on changing outdoor temperatures and the 

frequency with which exterior doors open and close. While 

some environmental factors may be partially predictable, 

such as temperature or humidity, interactive events such as 

doors opening and closing also affect the period and power 

consumption of background loads. Thus, scheduling 

background loads must take into account these difficult to 

predict changes in their periodicity. 

 
 

Figure 5.Power data for example interactive loads. Occupant 

behavior,which is not readily predictable, determines when these 

loads draw power. 

 

IV. LOAD SCHEDULER 

Green Building‘s background load scheduler leverages 

the well known concept of slack, which quantifies the extent 

to which a scheduler is able to advance, defer, raise, or 

lower a load‘s power consumption without affecting its 

operational goal. Before detailing the LSF algorithm, we 

first discuss different types of load controllers to understand 

the available dimensions of scheduling freedom. 

 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication                           ISSN: 2321-8169 
Volume: 5 Issue: 4                                              432 – 443 

_______________________________________________________________________________________________ 

437 
IJRITCC | April 2017, Available @ http://www.ijritcc.org 
_______________________________________________________________________________________ 

A. Load Controllers 

Simple on-off controllers encompass the vast 

majorityof controllers found in residential loads, since they 

arecheap and reliable. As discussed earlier, on-off 

controllersoften maintain an environmental metric, e.g., 

temperature or humidity, within a specified guardband. For 

these loads, slack arises from the fact that the load is able to 

remain off until its metric reaches the guard band‘s 

maximum (or minimum) value, at which point the load must 

turn on. In effect, these loads indirectly store power in their 

contained environment by increasing (or decreasing) a target 

metric, which then slowly decreases (or increases) due to 

leakage with the outside environment. On-off controllers are 

also commonly driven by timers, which dictate fixed-length 

on off periods. While a scheduler is able to advance or defer 

when these loads turn on or off, as long as they do not 

violate their guard band or fixed-length on-off period, it is 

not able to raise or lower power consumption when the 

loads are on. Battery chargers are another example of a load 

with slack, since they are capable of raising or lowering 

their power consumption by adjusting the charging rate. 

While most household batteries are small, e.g., phones, 

laptops, and tablets, the emergence of plug-in electric 

vehicles (EVs) is poised to introduce a large load with 

substantial slack to homes. EVs that plug into standard 

120V/15A outlets are able to charge at a rate of up to 

1.8kW, while a dual-pole 240V/30A circuit that uses both 

legs of a home‘s split-phase input power is able to charge at 

a rate of up to 7.2kW. In either case, advanced chargers are 

capable of varying the rate of charge up to these maximums. 

For battery chargers, the primary scheduling constraint is 

fully charging the battery over some duration, or charging to 

an acceptable capacity, While not present in our prototype, 

variable drive controllers are capable of raising and 

lowering their power consumption when on. These 

controllers offer clear benefits over on-off controllers, but 

they are typically not found in household appliances due to 

cost and reliability issues. As a result, our experiments do 

not study their impact. 

 
 

Figure 6. Power signatures for four background loads in our home. 

Theon-off period varies with environmental conditions, and is not 

regular. 

 

 
Figure 7. A depiction of slack in our refrigerator‘s simple on-off 

controlloop. The compressor turns on once the internal temperature 

reaches an upper threshold, and turns off once it reaches a lower 

threshold. 

 

B. Scheduler 

We define a load‘s slack at any time t as the remaining 

length of time the load can be off, i.e., disconnected from 

power, without assuring that it will violate its objective[3]. 

For a load that maintains an environmental condition with 

an on-off controller, it must turn on when its environmental 

metric reaches a guard band boundary. For a battery charger, 

it must turn on when only the maximum charging rate over 

the remaining plug-in duration is sufficient to fully charge 

the battery, or to charge it to an acceptable capacity. We 

define slack in units of time, rather than energy as in, only 

for ease of exposition—slack time is proportional to slack 

energy for stable load and environmental conditions. We 

assume each load is able to maintain an estimate of its 

remaining slack time based on its current power state and by 

monitoring the state of its internal and external environment. 

As shown in Figure 7, slack estimates may change over time 

based on both the load‘s power state—when the load is off 

slack increases—and environmental conditions, such as a 

refrigerator door opening or the humidity increasing. Since 

these changes in slack may be unpredictable, our scheduler 

is reactive and online, continually adjusting which loads 

receive power based on their available slack. Finally, we 

assume that our gateway is able to query the slack of each 

load at any time using simple models as in. Before 

describing our scheduler, we first illustrate a simple example 

using ideal background loads with well-defined on and off 

periods in isolation, and without uncontrollable interactive 

loads. The illustration demonstrates how shifting power 

usage is able to flatten demand. Figure 8(a) depicts an 

extreme example, where the slack for three window A/C 

units that draw 1kW when on dictates that they must turn on 

for 15 minutes anytime within each hour to maintain their 

respective setpoint temperatures. In the worst case, without 

any scheduling, these units may be nearly synchronized and 

cause power usage to reach 3kW for close to 15 minutes 
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over the hour, while drawing 0W for the remaining 45 

minutes. In the best case, with appropriate scheduling, it is 

possible to shift the on periods such that only a single A/C is 

on at any given time, resulting in a peak usage of only 1kW 

(Figure 8(b)); since the on periods of the A/Cs interleave 

with room to spare, we are able to perfectly flatten demand. 

To quantify flattening over an interval, we use the average 

absolute deviation from the mean power, which is an 

average of the absolute difference between power at every 

time t and the average power. We use this metric instead of 

the standard deviation simply because it is more intuitive; 

standard deviation exhibits the same trends but is greater 

than or equal to our metric. The magnitude of the deviation 

quantifies how much demand varies; a lower deviation 

indicates flatter demand and a better schedule. In our 

example, the worst case no scheduling scenario has a 

deviation of 1125W from the mean power, while the best-

case scenario has a deviation of 375W due to 15 minutes of 

no power consumption at the end of the period. In this 

scenario, interleaving the A/Cs results in a 3x reduction in 

the deviation and, thus, a significantly flatter demand 

profile. The scheduling problem for ideal background loads 

with regular known on-off periods distills to a simple offline 

optimization problem in the absence of interactive loads. 

Figure 8(c) demonstrates how interactive loads alter 

scheduling by inserting into our previous example four 5 to 

15 minute peaks of 1000W during the hour-long period, as 

could be expected from heating up food in a microwave. 

Even though A/Cs have enough slack within the hour to 

defer their power consumption whenever the microwave 

turns on (Figure 8(d)), an algorithm that determines the 

schedule in advance will not know about these microwave 

events. While this is a simple idealized example, it 

illustrates that load scheduling in the presence of 

unpredictable interactive loads is an online, and hence 

heuristic, process. Sudden and unpredictable changes to a 

load‘s slack, such as from opening doors or changes in 

weather, introduce similar issues that warrant an online 

approach. As we discuss in Section VI, and in contrast to 

Figure 8(a) and (b), we find that scheduling background 

loads is most advantageous during ―peaky‖ periods with 

many short, but high power, interactive loads. SmartCap‘s 

scheduler executes every interval T to de-termine which 

background loads receive power (and howmuch for the 

battery charger). In our simulator and testbed, we choose T‘s 

length to be significantly less (one minute) than the typical 

on-off periods of our background loads; the setting also 

ensures that background loads are not quickly turned on and 

off, which may degrade their reliability. We assume that 

once a load‘s slack reaches zero, the scheduler must provide 

it the necessary power regardless of the increase in peak 

usage. We call our basic load scheduling policy Least Slack 

First (LSF), since it supplies power to loads in ascending 

order of their current slack value. Thus, loads with a lower 

slack have a higher priority. LSF is a direct adaption of the 

Earliest Deadline First (EDF) scheduling policy common in 

real-time operating systems. We combine LSF with a target 

capacity threshold to determine how many loads to power, 

and how much power to supply to battery chargers. Once the 

sum of the background loads‘ power usage reaches the 

capacity threshold, the scheduler stops powering additional 

background loads. Figure7 depicts how LSF scheduling 

flattens demand for a real power signal, assuming three 

A/Cs turn on near each other as in Figure 6. As in our 

example, LSF flattens the demand profile by interleaving the 

on periods. Our experiments use an adaptive threshold based 

on an exponentially weighted moving average of the home‘s 

power consumption over the previous hour. Setting the 

capacity threshold presents a trade-off. A threshold too low 

causes the scheduler to defer too many loads, resulting in 

their slack values approaching zero in tandem. This induces 

large peaks by ultimately forcing the scheduler into 

simultaneously powering many loads with zero slack. A 

threshold too high causes the scheduler to power too many 

background load sat a time, resulting in a peak that is higher 

than necessary. 

 
Figure 8. A background load scheduler is capable of flattening 

demand, but must account unpredictable interactive and 

background loads. 
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Figure 9. Example of how LSF flattens demand. 

 

V. Experimental evaluation 

To illustrate Green building‘s potential for savings, we use 

the home to evaluate the savings using Ontario‘s TOU rate 

plans . While our home is not located in Ontario, it lies at 

the same latitude and experiences a similar climate. Thus, 

the prices are not entirely mismatched to our home‘s 

consumption and generation profile. In our experiments, we 

vary the pricing plans and battery characteristics to see how 

future price trends and battery apply EWMA to each interval 

independently on a daily basis. As might be expected, since 

home consumption patterns vary largely around mealtimes, 

we found that predicting consumption based on the 

preceding interval to be highly inaccurate. To predict next-

day usage, we use the SVM-Polynomial model. Finally, to 

quantify the optimal savings, we compare with an oracle 

that has perfect knowledge of next-day consumption and 

generation. Unless otherwise noted, our experiments use 

home power data from the same 40 day period in late 

summer as the previous section, and generation data from 

our own solar panel installation scaled up to generate equal 

to the home‘s average power consumption. We use CPLEX, 

a popular integer and linear programming solver, to encode 

and solve Green building‘s(and SmartCharge‘s) 

optimization problem, given next-day prices and expected 

consumption levels. Note that we consider only usable 

storage capacity in kWh in this section, which is distinct 

from (and typically much less than) battery capacity. In the 

next section, we discuss the battery capacity necessary to 

attain a given storage capacity. We use an energy 

conversion efficiency of 80% for the battery and a C/4 

charging rate for the usable storage capacity. 

 

A. Household Savings:- 

Figure10 shows the average savings per day in USD for 

the  TOU rate plan over the 40 day period, as a function of 

storage capacity, while Figure 8 shows the savings as a 

percentage of the total electricity bill. The graphs show that 

a storage capacity beyond 30kWh does not significantly 

increase savings. Further, smaller storage capacities, such 

as12kWh, are also capable of reducing costs, near 10% for 

SmartCharge[6] and 20% for Green building. If we 

extrapolate the savings over an entire year, we estimate that 

Green Charge with 24kWh of storage is capable of saving 

$200, while SmartCharge is capable of saving $100. 

 
Figure10. Average dollar savings per day for both SmartCharge 

and Green- building in our case study home. 

 

Finally, the graphs show that Green building‘s performance 

is close to that of an oracle with perfect knowledge of future 

consumption and generation miss predictions only cost a 

few dollars each year with 24kWh storage capacity, or under 

10% of the total savings. 

 

 
Fig.11. Average percentage savings for both SmartCharge and 

Green building in our case study home. 

The experiments above assume that we use today‘s battery 

characteristics and price levels. Of course, a more efficient 

battery and inverter would increase the usable storage 

capacity in a battery array[4]. As the experiments above 

indicate, increasing storage capacity increases the savings 

up to a 30kWh capacity. We evaluate the effect of maximum 

battery charging rate on home savings using TOU pricing 

plan over 40 day traces in presence of 24kWh battery 

capacity. Figure 12 demonstrates that the maximum 
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charging rate has a minimal effect on savings, since the 

TOU rate plan offers a long period of relatively low rates 

during the night for charging. The charging rate need only 

be high enough, e.g., a C/10 rate, to charge the battery over 

these periods. Figures 13(a) and (b) show how the savings 

change if we vary either the average price(while keeping 

price ratios constant) or the peak-to-off-peak price ratio 

(while keeping the average price constant) for a24kWh 

capacity, assuming C/4 charging rate for the usable storage 

capacity, for both Green building and SmartCharge[6]. The 

graphs demonstrate that, as expected, rising prices or ratios 

significantly impact the savings. In the former case, the 

relationship is linear, with a doubling of today‘s average 

price resulting in a doubling of the savings for both Green 

building and SmartCharge[6]. Thus, if average electricity 

prices continue  to rise 5% per year, as in the past, the 

expected savings for both systems should also increase at 

5% per year. Finally, Figure14 shows the additional savings 

homes are able to realize by sharing battery capacity with 

neighbors. Sharing is beneficial when homes exhibit peaks 

at different times by allowing them to share the available 

storage capacity. For the experiment, we use power data for 

a single day from a pool of 353 additional homes we 

monitor (described below),such that each point is an average 

of twenty runs with a set of k randomly chosen homes. We 

report both the additional dollar and percentage savings per 

home. We include 90%confidence intervals for the dollar 

savings. The experiment shows that sharing a battery array 

between homes results in additional savings as we increase 

the number of homes. 

 

 
Figure12.SmartCharge‘s and Green building‘s savings as a 

function of the charging rate for a 24kWh storage capacity. 

 

 
 

Figure.13. Varying the average electricity price (a) and the peak-to-

off-peak price ratio (b) impacts savings. 

 

As expected, more homes require more storage capacity to 

reap additional benefits. With 10 homes sharing 24kWh per 

home, the additional savings is 25%. However, with 12kWh 

per home the percentage savings does not increase beyond 

15% when sharing  with more than four homes. 

 

B. Grid Peak Reduction 

The purpose of market-based rate plans is to lower peak 

electricity usage across the entire grid. We evaluate the 

potential grid-scale effect of Green building using power 

data from a large sampling of homes[6]. We gather power 

data at scale from thousands of in-panel energy meters that 

anonymously publish their data to the web. Power 

consumption trace for each home is at the granularity of one 

hour. Since we do not know if the meters are installed in 

commercial, industrial, or residential buildings, we filter out 

sources that do not have typical household power levels and 

profiles, i.e., peak powerless than 10kW and average power 

less than 3kW. We also filter out sources with large gaps in 

their data. After filtering, we select 435 homes from the 

available sources. 

 
Figure.14. Additional savings (in % and $) from sharing 12kWh 

and 24 kWh between homes. 
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Figure14 plots the peak power over all the homes as a 

function of the fraction of homes using Green building and 

SmartCharge with energy storage. For these experiments we 

assume that each home has available energy storage equal to 

half the home‘s average daily consumption. Charging rate of 

C/4 for the usable storage capacity is assumed. The figure 

shows that Green building and SmartCharge[6]are capable 

of reducing peak power by roughly 20% when little more 

than 20% of homes use the system, as long as the homes 

randomize when they begin overnight charging. 

 

 
 

 
Figure15. With 25% of homes using Green building, the peak 

demand decreases by 22.5% (a) and demand flattens significantly 

(b). 

If everyone begins charging at the same time, e.g., at 12am 

at night, the peak reduction decreases to a maximum of only 

8%. Even using randomized charging, if more than 22% of 

consumers install Green building or Smart Charge, then the 

peak reduction benefits begin to decrease, due to a nighttime 

―rebound peak‖. Once 45% of consumers use the system the 

evening rebound peak actually becomes larger than the 

original peak. The same point occurs when only 25% of 

homes use the system without randomized charging. ‘Net 

Metering‘ represents those homes which have on-site 

renewable deployments, however, they don‘t have on-site 

battery installations for storing this energy. Hence, the 

renewable energy is consumed as soon as it is generated. In 

contrast to Green building and Smart Charge the peak 

savings from ‘Net Metering‘ increase from 0% to 5.75%and 

then flattens out. The reason being, net metering does not 

use any on-site battery storage, it simply uses the renewable 

energy whenever it is available else the power is drawn from 

the grid. Also, as can be seen from figure12 net metering 

effectively flattens out the mid day peaks between 11am 

and2pm, however, it does poorly to shave the evening peak 

which occurs after 5pm. This is because solar energy harvest 

reduces significantly towards sunset. 

Discussion on Green building‘s and SmartCharge‘s 

economics at scale further . Figure15 (b) shows grid power 

usage over time, with 0% and 22% of the homes using 

Green building and SmartCharge with randomized charging, 

and demonstrates how both approaches cause demand to 

―flatten‖ significantly. Such a peak reduction would have a 

profound effect on generation costs, likely lowering them by 

more than 20% . Finally, with 20% of homes using Green 

building or Smart Charge, the increase in total energy usage 

is only2%. The result demonstrates that the benefits of 

flattening likely outweigh the increased energy consumption 

due to battery/inverter inefficiencies. 

 

VI. Cost-benefit analysis 

A.  Return-on-Investment 

In many instances, homes already have the necessary 

infrastructure to implement Green building. For example, 

many homes in developing countries already utilize UPSs 

because of instability in the power grid. In addition, homes 

with photovoltaic (PV) systems require on-site energy 

storage to balance an intermittent supply with demand 

without the aid of net metering. Batteries in electric vehicles 

(EVs) could also serve as energy storage. In each case, the 

homes already include the required infrastructure and 

battery capacity to implement Green building. Since the 

homes would not need new infrastructure, the ROI is 

positive in these cases. Below, we discuss the ROI for 

homes that do not already have the necessary infrastructure. 

Green building‘s largest expenses are its battery array and 

solar panel installation. 

Sealed VRLA/AGM lead-acid batteries are the dominant 

battery technology for stationary home UPSs and PV 

installations, due to their combination of low price, high 

efficiency, and low self-discharge rate. By contrast, lithium 

ion batteries, while lighter and more appropriate for EVs, 

are much more expensive. We use, as an example, the Sun 

Xtender PVX-2580L with a 3kWh rated capacity (at a C/20 

discharge rate), which costs $570  and is designed for deep-

cycle use in home PV systems. The battery‘s manual 

specifies its life time as a function of its number of charge-

discharge cycles and the DOD each cycle. We use the data 

to estimate the yearly cost of batteries—in $/kWh of usable 

storage capacity—as a function of the depth of discharge 

(Fig.13) amortized over their lifetime, assuming Green 

building‘s typical single charge discharge cycle per day. The 
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usable storage capacity takes DOD into account: a battery 

rated for 10kWh operated at50% depth of discharge has a 

usable capacity of only 5kWh. Fig.16 demonstrates that cost 

begins to increase rapidly after a 45% DOD, with an 

estimated cost of $118/kWh of usable capacity. 

 
Figure.16. Amortized cost per kWh as a function of depth of 

discharge 

 

B.  Comparison of batteries 

Recent advancements in battery technology promise to 

dramatically reduce battery costs in the near future[11]. 

Lead-carbon batteries have an expected lifetime 10 times 

longer than today‘s sealed lead-acid batteries at roughly the 

same cost. Figure 17 shows the extended lifetime using data 

from recent tests conducted at Sandia National Labs 

comparing today‘s sealed lead-acid battery and a new lead 

carbon battery (the Ultra Battery). In addition, solar panel 

prices per installed watt are predicted to drop to $1 per watt 

over the next decade. Lead-carbon batteries combined with 

modest and expected price increases (25%) and peak-to-off-

peak ratios (25%), as well as a decrease in solar panel 

prices, would produce a positive ROI for Green building in a 

few years. 

 
Figure.17. Comparison of sealed lead-acid and lead-carbon battery 

lifetime  

 

C. Distributed vs. Centralized 

Utilities have already begun to deploy large, 

centralized battery arrays to reduce peak usage and integrate 

more wind and solar farms, which require substantial energy 

storage to match an intermittent supply with variable 

demand. However, distributing battery storage and energy 

harvesting throughout the grid has a number of inherent 

advantages over a centralized approach[12]. In particular, 

local energy storage and generation serves as backup power 

during extended blackouts, lessening the economic impact 

of power outages and promoting a more stable grid. A 

centralized system also introduces a single point of failure. 

Further, substantial home energy storage and generation 

may be a catalyst for implementing micro grids, where 

matching supply and demand is difficult without an energy 

buffer. Storing and generating energy at its point-of-use also 

reduces transmission losses by eliminating losses incurred 

from generator to battery array. Finally, perhaps the most 

important argument for installing many distributed battery 

arrays and energy harvesting deployments in homes, rather 

than large centralized arrays, is to encourage distributed 

generation without relying on net metering. While today‘s 

PV installations typically use net metering to offset costs by 

selling energy back to the grid,it is not a scalable long-term 

solution. Injecting significant  quantities of power into the 

grid from unpredictable and intermittent renewables has the 

potential to destabilize the grid by making it difficult to 

balance supply and demand. Green building provides an 

alternative to net metering to offset costs in home PV 

systems that use batteries instead of net metering. 

 

VII. CONCLUSION 

In this paper, we explore how to lower electric bills using 

Green building by storing low-cost energy for use during 

high cost periods. We show that typical savings today are 

near 20% per home with the potential for significant grid 

peak reduction (20% with our data). Finally, we analyze 

Green building‘s costs, and show that recent battery 

advancements combined with an expected rise in electricity 

prices and decrease in solar panel prices may make Green 

building‘s return on investment positive for the average 

home within the next few years. 

Both, RES and micro grids are tend to be solutions for 

improving existing grids in a future. Smart grids are able to 

transform the quality of whole distribution system thanks to 

dispersed RES. Variable character of these sources 

implicates a necessity to manage the load. Local micro grids 

will gain a better quality of energy, a stability of supply and 

energy independence. That is why a development of RES 

should be perceived at a local, commune level. RES can 

enhance power quality and reliability and potentially reduce 

the need for traditional grid expansion. The difficult RES‘ 

management process can be improved with an 
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implementation of smart, local micro grids and – in a next 

phase – popularization of electric vehicles and their storage 

possibilities V2G. 
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