
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 6 2612 – 2616

2612
IJRITCC | May 2015, Available @ http://www.ijritcc.org

HMI for Interactive 3D Images with Integration of Industrial

Process Control

Gadhia Deep H.

Embedded System Design

GTU PG School

Ahmedabad, India

deepgadhia30@gmail.com

Mr. Chaitannya Mahatme
Zeroes & Ones Technologies

Pune, India

chaitannya@znotech.com

Vaghela Megha N.
Embedded System Design

GTU PG School

Ahemedabad, India

megha.vaghela2012@gmail.com

Abstract—This paper presents interactive 3D image use for HMI in industrial process control application. Visualization

information has a very important role in industrial process. HMI (Human Machine Interface) is a device used in industries for GUI

based display and control of the industrial processes. The goal is user should be able to view simple process through 3D images,

interactive way and utilize touch based GUI to control process and change its behavior at run time. HMI currently implemented

using 2D images to display information about the industrial process. This paper describes approaches for 3D images that are

interactive and uses for controlling industrial process. OpenGL is used to render 3D graphics and QML (Qt Modeling Language)

provide functionality for user interface using the Qt cross platform framework. Qt3D library provides a set of APIs to make 3D

graphics programming easy and declarative. The developed system will be extended to integrate industrial process control

application. Industrial Process communicates with target hardware using Modbus protocol.

Keywords— HMI, QML, OpenGL, Qt3D, Modbus protocol.

__*****___

I. INTRODUCTION

 As there is an increased complexity of industrial plants, it
leads to a growing amount of process information that has to be
monitored and controlled by the operators. HMI is a device
used in industries for GUI based display and control of the
industrial processes. HMI is the part of device which serves the
information exchange between user and machine. HMI consists
of three parts which are operating elements, displays and inner
structure.
 Nowadays 2D representations are common in process data
visualization in Human Machine Interface (HMI) like bar
graphs, line diagrams and tables [1]. With the growing amount
of information, these conventional types of visualization reach
their limits and process visualization gets more confusing. User
interaction is kept minimum in this kind of visualization. 3D
diagrams are rarely used in process control. Classical HMI
applications allow designing process images in 2D and
connecting it with the process values in a simple way. 3D
image integration can benefit the reduced complexity of the
environment as compared with real tasks [10].
 This paper is organized as follows. In section II explains 3D
development process and technology and tool selection.
Section III shows the system architecture in brief. Section IV
includes implementation of communication protocols. Section
V shows experimental results. Finally, Section VI concludes
the paper with future work.

II. 3D DEVELOPMENT PROCESS AND SELECTION OF 3D

DEVELOPING TOOL

 The 3D development process consists of three major steps.

They are building graphics using modeling tools,

programming the application to use the graphics, and finally

compiling and deploying the application [2]. This process is

more generalized and applicable for most 3D development

processes.

 3D image content mainly classified into following three

categories such as geometry, appearance and scene

information.

A. Geometry:

The geometry of a model is defined as a set of vertices.

Each primitive (basic building block) is known as a vertex or

vertices. Thus, it is necessary to define vertices to manipulate

them efficiently. Figure 1 shows a basic sphere with basic

building block of the triangle. Set of triangles creates sphere.

Figure 1 Geometry of Sphere

B. Appearance:

Any material entails applying an image or texture to

surface of the model is known as appearance. Appearance is

related to mapping three dimensional vertex to the related

point to that 2D image. Figure 2 shows example of

appearance.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 6 2612 – 2616

2613
IJRITCC | May 2015, Available @ http://www.ijritcc.org

Figure 2 Sphere with texture

C. Scene:

Scene refers to layout of model with regards to the camera,

shadow, light source and other many 3D models. Radiosity is

a technique that models inter-reflection of light. Figure 3

shows radiosity example compared to ray tracer algorithm.

Figure 3 Scene effect with ray tracer and with technique

radiosity

OpenGL:

 OpenGL stands for Open Graphics Library. It is a software

interface to graphics hardware. For 3D graphics API, OpenGL

is most widely used. As it is highly portable, scalable, cross-

platform specification that defines the interface for graphics

accelerator [3]. OpenGL requires the programmer to tell exact

scene. It requires geometry primitives in 3D space, apply color

and lighting effects and render objects onto the screen. It is

only concerned with rendering into the framebuffer. There is

no support for other peripherals that are associated with

hardware like user input. For that purpose Qt is useful.

 Figure 4 shows OpenGL rendering pipeline that describes

the basic steps of OpenGL takes to render any 3D picture. The

graphics card uses its own memory and a GPU is highly

specialized in processing 3D data like a small powerful

computer. As shown in the figure 4 vertex specification, is

done by the ordered list of vertices that gets streamed. In

vertex shader processes data receives this stream of vertices

along with additional attributes like associating texture

coordinates or color values. The vertex shader can also pass

data to the fragment shader directly. After that the primitive

assembly stage is done by vertices are composed into

primitives. These can be triangles, lines, point sprites, or more

complex entities. During the clipping and culling stage,

primitives that lie beyond the viewing volume are removed

because it is not visible. The rasterization process also called

fragments. These fragments related to pixels on the screen.

Each fragment is then processed by the fragment shader. Stage

of texture mapping and lighting are done here. Per-sample

operations that is deciding which fragments should actually be

written to the framebuffer and the final image is stored in the

framebuffer [3].

Program
OpenGl

API

Qt API

Vertex Specification

Vertex shader

Primitive Assembly

Clipping & Culling

Rasterization

Fragment Shader

Per-sample Operations

Framebuffer

Computer Graphics Card

Figure 4 OpenGL rendering pipeline

Qt:

 Qt is C++ framework which mostly supports cross-

platform GUI application with “write once, compile

anywhere” approach. The reason to use Qt is because it has

excellent cross-platform support 3D graphics. Qt also support

for OpenGL and OpenGL ES to integrate 3D graphics into

applications. With the help of Qt, it is easy to create graphical

user interface applications fast and simple [4].

QML:

 QML stands for Qt declarative Markup Language or Qt

Meta Language or Qt Modeling Language. QML mainly uses

for user interface which is JavaScript base declarative

language. The reason to choose QML is because of its

performance. The interface rendering speed is higher than

HTML 5 [6]. QML also benefits at less memory used by the

runtime. QML has some effective properties like property

bindings, states, animation, Qt signal handlers [9].

Qt3D:

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 6 2612 – 2616

2614
IJRITCC | May 2015, Available @ http://www.ijritcc.org

 The Qt3D module is a set of APIs. The reason to use Qt3D

is for OpenGL and aim to 3D development easier and more

platform independent. Qt3D module includes many features

like asset loading, shapes, texture management and shaders.

Qt3D uses C++ and QtQuick API. With help of Qt3D, a

programmer need not worry about 3D architecture because it

provides abstraction layer. So it is possible to create complex

3D application. Qt3D API included in Qt Quick. So first one

needs to import Qt Quick module to use Qt3D. Mostly include

elements in Qt3D are Viewport, Camera, Item3D, Mesh.

 ARM processors now dominate in most of applications due

to their lower power requirements and they have a very

competitive price. By developing cross-platform applications,

it is possible to use ARM based systems as industrial process

and benefit from the advantages of this platform over

traditional x86 systems. While developing applications, it is

necessary that it can easily be ported to systems. Here in this

paper, processer used for an experiment is an ARM Cortex A8

processor. Another requirement like touch screen interface and

GPU, target hardware is Texas instruments am335x starter kit.

III. SYSTEM ARCHITECTURE

HMI

GPU

Field Devices

QtQuick 3D

Qt3D QML

Qt

OpenGL ES

Linux

Kernel

Modbus

Protocol

RS 485

Industrial Process

Librart to add

3D content

QML bindings to

Qt3D

Qt Modeling Language

for User Interface

Cross-platform

Application Framework

3D Acceleration

Linux Operating

System

User

Figure 5 System architecture

 Figure 5 shows the architecture of the system. The

operating system that used to experiment is Linux based. For

making the application platform independent, Qt framework is

used. Qt includes QML programming for user interface and

one can change system behavior at run time with QML. For

rendering a 3D image Qt3D module used. Qt3D module

includes OpenGL ES APIs. So, it gives basic abstraction layer

to create 3D programming. One does not need to study deep

knowledge of 3D graphics and OpenGL system. QtQuick3D

combines Qt3D and QML bindings and other supporting tools.

So product resulting from Qt3D project is QtQuick3D. It is

made up of new user-defined QML3D items using C++ [7].

The Whole program runs on the GPU because 3D rendering is

a lot heavier on the CPU. Here program use GPU accelerated

rendering means CPU + GPU rendering alongside to speed up

process.

 A complex task is to cross-compile the Qt3D library for

target hardware. After successfully compiled the program,

porting different layer needed. The First thing to port is Qt and

QML library on am335x starter kit. Ti’s forum has lots of

documents to support the development Qt application. Qt3D

library based on GUI for 3D graphics rendering needs to be

ported. Generated 3D image can use to fit any application. It is

up to programmer for which application to use. To

communicate 3D image with a field device, Modbus protocol

is used. Modbus is an application layer protocol and for

physical link can be wired or wireless. Here for experiment

physical layer used is RS 485 serial line. Gateway is used to

communicate in between HMI and field device. For bulb on

and off use case, PLC can be used as an intermediate.

IV. COMMUNICATION PROTOCOL APPLICATION

 There are many kinds of communication protocol exist that
can implement here. In this paper, Modbus RTU protocol
particular used. Modbus is a serial communication protocol
which is mostly used in industry for devices like PLC, HMI.
Here reason to choose a Modbus protocol is because of its
Master slave principle. Modbus protocol can run over RS485
to gain faster speed, longer distances. Master HMI
continuously sends signal to slave devices to check its status
through RTU (remote terminal unit). Master can communicate
with multiple slave devices. When Modbus RTU master wants
information from the device, the master sends a message that
contains the device’s address with data and checksum for error
detection. Every other device on the network can sees
message, but only the device that is addressed responds. Slave
devices can not initiate communication and can only respond
to master [8].

Modbus message frame structure shown in table 1.

Address
Field

Function
Code

Data Error
Check

Table 1 Modbus message frame

Function code for user input is defined for Modbus as table 2.

Function Code Action Description

01 (01 hex) Read Discrete output
coils

05 (05 hex) Write signal Discrete output
coil

15 (0F hex) Write multiple Discrete output
coils

02 (02 hex) Read Discrete output
contacts

04 (04 hex) Read Analog input
contacts

03 (03 hex) Read Analog output
holding registers

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 6 2612 – 2616

2615
IJRITCC | May 2015, Available @ http://www.ijritcc.org

06 (06 hex) Write single Analog output
holding register

16 (10 hex) Write multiple Analog output
holding registers

Table 2 Modbus function code

 QML has the functionality of signals and slots. In QML
code, 3D image has been tagged to a specific ID for
communicating with a field device. So, Modbus message
frame sent using RS 485 serial line and gateway sends it to
other field devices.

V. RESULTS

 3D image for HMI approach needs to be tested on real time

application. For that purpose simple bulb on off demo is used.

First QML and Qt libraries ported on am335x starter kit and

run sample helloworld application. Figure 6 shows Qt and

QML ported libraries demo.

Figure 6 QML test application on am335x starter kit

 Cross-compilation of Qt3D library generates shared library
of Qt3D and Qt3DQuick for ARM. Figure 7 shows generated
3D library for ARM architecture.

Figure 7 3D library after cross-compilation

 Qt3D module is not officially released, but one can
download it from git. Simple bulb demo successfully gives
output on the screen and the program runs on the GPU. Output
of 3D bulb image shown in figure 8.

 Modbus RTU sends a message frame to the gateway using
RS 485 and for serial communication am335x starter kit has 6
uart port. Message sends with providing tag to bulb address on
field device and the device responds to that message in
industry one can implement a whole system in 3D image like
for example, water plant system and can control using touch
based HMI.

Figure 8 3D bulb example using Qt3D

VI. CONCLUSION AND FUTURE WORK

 The goal of this research work is user should able to view

simple process through 3D image and also utilize touchscreen

based GUI to control any industrial process. Experiment result

shows 3D image that runs on the GPU and uses OpenGL ES

APIs. For simple applications, here bulb image renders on

screen and with providing tag to that bulb we can

communicate real time bulb. The user can interact with any 3D

industrial image as they need and with communication

protocol. It can give us output of user defined application at

runtime. 3D image technology for HMI is rarely used in

industry. So in future work one can also test 3D image

approach in big industrial plant like water plant or car

automation industry and many other control application.

REFERENCES

[1] Dorothea Pantförder, Birgit Vogel-Heuser,”Benefit and
evaluation of interactive 3D process data visualization in
operator training of plant manufacturing industry,”IEEE
International Conference on Systems, Man and
Cybernetics, 2009.

[2] Nils Johansson,Filip Williamsson,“ human-machine
interface (HMI) for a Quality Control System produced by
ABB” article on propose concepts on how 3D graphics
could solve some of the issues with this interface.

[3] João Paulo Gois, Harlen C. Batagelo “Interactive
Graphics Applications with OpenGL Shading Language
and Qt,” 25th SIBGRAPI Conference on Graphics,
Patterns and Images Tutorials (SIBGRAPI-T), 2012.

[4] Claudiu Mosneang, Septimiu Mischie, Robert Pazsitka
“Integrating the accelerometer of the AM335x Sitara
Starter kit in a QT application,” 6th European Embedded
Design in Education and Research Conference (EDERC),
2014 .

[5] “Qt3D,”[Online],available:http://qt.developpez.com/doc/5
.0-snapshot/qt3d-reference/

[6] Casper van Donderen,"QCOMPARE(HTML5, QML) A
comparison of UI development technologies,”
Hogeschool Utrecht,2010.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 6 2612 – 2616

2616
IJRITCC | May 2015, Available @ http://www.ijritcc.org

[7] “QtQuick3D,”[Online],available:http://doc.qt.digia.com/qt
-quick3d-snapshot/

[8] “Modbus,”[online],available: //www.modbus.org/

[9] Lauri Paimen, Pietu Pohjalainen, “Case Study: QML for
the Web,” 13th IEEE International Symposium on Web
Systems Evolution (WSE), 2011

[10] Knut Meissner, Prof. Dr. Ing. Hartmut Hensel, “Design of
a Generic 3D Visualization System for Process Control,”
Sixth International Conference on Computational
Intelligence and Multimedia Applications, 2005.

http://www.ijritcc.org/

