
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 5 2569 - 2573

2569
IJRITCC | May 2015, Available @ http://www.ijritcc.org

Implementation of IPv6 in Embedded Device using LWIP TCP/IP Stack

Mohsin Kesarani

VLSI & Embedded Systems Design

Gujarat Technological University PG School

Ahmedabad, India

mfkesarani@gmail.com

Mr. Vikas Shirvastava

Project Leader

L&T Technology Services Ltd

Mumbai, India

vikasetc@gmail.com

Abstract—It is becoming trend of making every embedded devices connected wirelessly with each other. Due to large scale of deployment of

IPv4 throughout internet, address spaces allowed by IPv4 is saturating and thus there is a strong need for implementing IPv6 into embedded

devices. Despite the fact that there are numerous TCP/IP implementations for embedded and minimal systems, little research has been conducted

in the area. Also currently, Allen Bradley’s Power Flex Drives based on Bacnet card implements TCP/IP stack that do not support IPv6. Thus,

IPv6 using LWIP Stack has been implemented and tested on Bacnet card (Renesas H8S/2556 microcontroller). This paper covers brief overview

of LWIP TCP/IP Stack. It also presents a design method to implement IPv6 in embedded device. Furthermore it presents LWIP stack flow,

Tx/Rx packet process in Ethernet controller and actual implementation results of IPv6 in Bacnet card based Power flex drive.

Keywords- TCP/IP, IPv6, Renesas H8S, LWIP, Embedded Systems, Bacnet.

__*****___

I. INTRODUCTION

Internet Protocol (IP) is the basic building block on which

all Internet protocols are built. Applications that we take for

granted today, such as Web browsers and e-mail, all use TCP

and UDP, which in turn are built on top of IP. Because of new

IoT concept, almost all the embedded devices are getting

connected wirelessly with each other. In the last decade, the

vast spread of network devices exhausted the IPv4 addresses,

which consists of only 32 bits for one IP address. Therefore,

IPv6 is designed as the solution. However, due to the large

scale of IPv4 deployment, it is no doubt that the transition will

take a long time. IETF IPng transition working group

proposed three main approaches so as to ensure a smooth

transition: dual stack, translation and tunneling [1]. Among

them, dual stack is considered as most straight-forward way

[2]. Therefore, it is widely adopted for embedded systems to

support IPv4 and IPv6.

Currently there have been a number of TCP/IP stacks

designed for embedded systems. Especially, LwIP [3] is

considered as one of the most popular TCP/IP stack for

embedded systems. It focuses on reducing the resource usage,

while trying to preserve a full set of functions of TCP.

Normally, it just takes up 40KB of ROM and less than 10KB

of RAM during execution. Besides, LwIP can be deployed

independent of operating systems. However, current

implementation of LWIP on Bacnet card is just IPv4 based

despite of some code for IPv6 which is commented [4].

This paper proposes an implementation of LWIP TCP/IP

Stack supporting dual IPv4-IPv6 feature simultaneously on

Bacnet card which incorporates Renesas H8S/2556

microcontroller in its core. Our contribution can be

summarized as follows:

 First added platform specific IPv6 features into the

stack preserving IPv4 at the same time.

 Proprietary RTOS has been used and interfaced with

LWIP Stack for multiple threads handling into the

stack.

 Porting has been done onto H8S/2556 microcontroller

along with LAN9221 Ethernet controller.

 Finally, both TCP and UDP based webserver has

been implemented over IPv6.

Experimental results show that this implementation takes

up about 2591 bytes of Stack and 113942 bytes of Heap

Memory during execution. It proves that it can effectively

satisfy most embedded applications with limited resource.

The rest of this paper is organized as follows: Section II

gives a brief description of LWIP TCP/IP Stack. Section III

gives the implementation details of the stack on Bacnet card.

Experimental results are shown in Section IV followed by

conclusion in Section V.

II. LWIP TCP/IP STACK OVERVIEW

The lightweight Internet Protocol (lwIP) is a small

independent implementation of the network protocol suite that

has been initially developed by Adam Dunkels [3]. The focus

of the lwIP network stack implementation is to reduce memory

resource usage while still having a full scale TCP. This makes

lwIP suitable for use in embedded systems with tens of

kilobytes of free RAM and room for around 40 kilobytes of

code ROM. lwIP supports the following protocols:

ARP, IPv4 and IPv6, TCP, UDP, DNS, DHCP, ICMP, IGMP,

SNMP, PPP and PPPoE.

LwIP offers three different APIs designed for different

purposes [5]:

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 5 2569 - 2573

2570
IJRITCC | May 2015, Available @ http://www.ijritcc.org

 Raw API is the core API of lwIP. This API aims at

providing the best performances while using a

minimal code size. One drawback of this API is that

it handles asynchronous events using callbacks which

complexify the application design.

 Netconn API is a sequential API built on top of the

Raw API. It allows multi-threaded operation and

therefore requires an operating system. It is easier to

use than the Raw API at the expense of lower

performances and increased memory footprint.

 BSD Socket API is a Berkeley like Socket

implementation (Posix/BSD) built on top of the

Netconn API. Its interest is portability. It shares

the same drawback than the Netconn API.

Socket API

Netconn API

RAW API

Figure 1. LWIP API Structure [5]

III. IMPLEMENTATION DETAILS

First of all for lwIP stack implementation, lwipopts.h must

be defined in the project’s root folder by user that will contain

various stack related options. Options not configured in

lwipopts.h will be taken care by opt.h file of the stack. To

enable IPv6 feature, LWIP_IPV6 must be set in these header

files. Also, since lan9221 ethernet controller has been used, its

MAC control registers must be set to pass all multicast

packets in order to allow IPv6 packets. To initialize the lwIP

stack, the user application has to perform two functions calls

from the main program loop:

 lan9221_if_input() to treat incoming packets

(function defined in the network interface LAN9221

driver)

 sys_timers() to refresh and trigger the lwIP timers

(defined in the user application)

A. BSD Socket API

The lwIP socket API is built on top of the Netconn API and

offers portability for BSD socket based applications. In our

implementation, we have used BSD Socket API. So, we will

discuss BSD socket flow in lwIP. To enable BSD style socket

support; the lwIP configuration file must define

LWIP_SOCKET and LWIP_COMPAT_SOCKETS.

Fig. 2 gives an overview of an input packet processing

while using the Socket API (Netconn based). Depending on

the thread priorities, a minimum of 4 context switches is

required to process one single TCP packet. If the user

application requires maximum performances Raw API should

be considered instead of the Netconn API [3].

As opposed to the Raw API approach, the LAN9221 driver

does not process the TCP packet directly. Instead by calling

the tcpip_input() function it notifies the lwIP core thread using

the tcpip “mbox” mailbox that a packet is ready for

processing. Then the lwIP core thread wakes up, reads the

tcpip “mbox” message and starts the packet processing using

the Raw API (calling ethernet_input() function, as shown in

Figure 3). When a valid TCP packet is found, the lwIP core

thread notifies the corresponding Netconn socket using the

“recvmbox” mailbox.

LAN9221 ISR
release RX Semaphores

lan9221_if_input

low_level_input

tcp_ip_input
(create mbox msg)

TCPIP_MSG_ETHINPUT

(received mbox)

tcpip

mbox
tcpip_thread

tcp_input

EVENT_RECV
recv_tcp

Msg:

received pbuf

User Application

(ESTABLISHED)

do_recv

tcp_recvd

adjust recv window

send ACK

call netconn callback

conn->callback(RECV+)

netconn

recv mbox

tcpip

mbox

TCPIP_MSG_API:

do_recv

call netconn callback

conn->callback(RECV-)

netconn_recv

convert pbuf to netbuf

done

User App

Thread

LWIP

Thread

LWIP

Thread

LAN9221

Thread

Figure 2. Input Packet Processing using Socket API [5]

From the user application point of view, when calling the

netconn_recv() function, the user application thread waits for a

message in the recvmbox to know if a TCP input packet has

arrived. The user application can wait forever or for the

specified amount of time if LWIP_SO_RCVTIMEO has been

defined in the configuration file. When the “recvmbox”

message is available, the user application thread wakes up and

sends a notification message to the tcpip “mbox” to give a

chance to acknowledge the packet and to adjust the receive

window if necessary. During that time the user application

thread waits for a notification semaphore only released by the

lwIP core thread when the operation is completed. Finally, the

netconn_recv() function returns the netbuf structure

containing the TCP packet data to the user application.

The following mailbox sizes must be defined in the lwIP

configuration file when using the Socket/Netconn API:

 TCPIP_MBOX_SIZE: size of the core tcpip mailbox.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 5 2569 - 2573

2571
IJRITCC | May 2015, Available @ http://www.ijritcc.org

 DEFAULT_ACCEPTMBOX_SIZE: size of the

accept mailbox.

 DEFAULT_TCP_RECVMBOX_SIZE: size of the

TCP recv mailbox.

B. LWIP Receive Stream

Fig. 3 shows the lwIP receive flow from the

lan9221_if_input() function to the appropriate input protocol

function in the lwIP core. The lan9221_if_input() function

should typically be called from the main program loop.

ethernet__input()

ip__input() ip6__input()

raw__input() raw__input()

icmp__input() igmp__input() icmp6__input()

udp__input()

lan9221_if__input() low_level_input()

ethernet__input() ethernet__input()

ethernet__input()

ip6__input()
send Echo Reply

nd6__input()
process ND msg

drop drop

ARP? IP?

IPv4?
IPv6?

ICMP IGMP
TCP TCP

UDP UDPelse else

ICMPv6

Echo req?
ND6

query?

ip__input()
send Echo Reply

Echo req?

tcp_input()

(allocate pbuf & store

incoming packets into pbuf)

LAN9211Begin

PacketReceive()

Figure 3. LWIP Receive Stream

Initially, ethernet_input() function is called from lan9221

driver for processing incoming ethernet packets. If received

Ethernet frame is ARP then etharp_arp_input() is called and if

frame is of IP type then etharp_ip_input() is called. Based on

IPv4 or IPv6, corresponding input functions, ip_input() or

ip6_input() checks for a valid IP checksum and ensures that

the packet is addressed to the device. The raw_input() function

tries to find a raw protocol control block (PCB) to handle the

incoming packet. Raw PCBs are used to implement custom

network protocols. If there is no raw PCB to be used, the

appropriate input protocol function (ICMP, IGMP, TCP, UDP

and ICMPv6) is called using the protocol field from the IP

header.

C. LWIP TCP Input Flow

Once the received Ethernet frame is properly parsed and

validated, tcp_input() function is called if protocol field in IP

header is of TCP type. Then after processing of TCP segment

is done. As shown in Fig. 4, the tcp_input() function tries to

find the PCB keeping track of the connection used by the

incoming packet (using IP and port numbers). The TCP

checksum is verified, then depending on the incoming packet,

the tcp_input() function will eventually inform the user

application on specific events (like data sent, data received,

etc) using the previously registered callbacks.

tcp_process()

tcp_active_pcbs?

tcp_tw_pcbs?

tcp_timewait_input()

tcp_ack_now()

tcp_listen_pcbs?

tcp_ack_now()

If (ACK sent)

EVENT_RST

If (data avail)

EVENT_RECV(data)

tcp_rst()
tcp_output()

(send SYN/ACK)

If (FIN)

EVENT_RECV(NULL)
drop

tcp_input()

Figure 4. TCP Input flow of LWIP [5]

D. LWIP TCP Output Flow

The lwIP network stack provides the tcp_write() function

for sending data to a remote host, as shown in Fig. 5.

ip_output()

ip_output_if()

etharp_output()

tcp_output_segment()

tcp_output()
read pcb unsent queue

etharp_send_ip()

ip6_output()

ip6_output_if()

ethip6_output()

ethip6_send_ip()

tcp_write()

low_level_output()

done

IPv4 IPv6

add tcp segments to

pcb unsent queue

LAN9211Begin

PacketSend()

(Send pbuf data to netif, one

pbuf at a time)

Figure 5. TCP Output flow of LWIP

It takes a pointer to the PCB structure (representing the

active connection to write to), data buffer, data size and API

flags as parameters. This function attempts to build TCP

segments from the user data buffer. The TCP segments are

then added to the PCB’s unsent queue. Alternatively, the user

data can be directly prepended to the last enqueued TCP

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 5 2569 - 2573

2572
IJRITCC | May 2015, Available @ http://www.ijritcc.org

segment if its remaining size does not exceed the TCP_MSS

value.

The TCP segments are only sent when a call to the

tcp_output() function is made, as shown in Fig. 5. This

function is also automatically triggered by lwIP in the

following cases:

 Inside the tcp_input() function (when TCP

acknowledgement has to be sent right away)

 Inside the slow and fast timers (where retransmitting

TCP segments can be required)

At this stage, the TCP segment gets encapsulated with the

IPv4 or IPv6 header (ip_output() and ip6_output() function)

and Ethernet header (etharp_output() and ethip6_output()

function). Finally, the Ethernet frame is sent to the LAN9221

via the low_level_output() function located in the lwIP netif

driver.

IV. IMPLEMENTATION RESULTS

Fig. 6 shows the proposed design structure which includes

Power Flex drive. For IPv6 support in this drive, LWIP stack

has been implemented and finally this Dual Stack supported

device will be able to communicate with either only IPv4

enabled host or only IPv6 enabled.

Figure 6. Proposed Design Structure.

A. Ping Test

LWIP Stack already has a function for creating link-local

IPv6 address. But for configuring manual IPv6 address in

Bacnet card, “netif_add_ip6_address()” function has been

defined which verifies available index in netif and adds the

manual address. Thus, the IP address assigned to the device

are:

IPv4 address of drive: 10.9.208.210

Link-local IPv6 address of drive: fe80::200:21ff:fe12:3224

Manual IPv6 address assigned: fda8:6c3:ce53:a890::8

In order to test IPv6 connectivity, drive has been connected

with Windows-7 based PC and “ping” test was carried for both

IPv4 and IPv6 simultaneously. The ping test results obtained

are shown in Fig. 7 and Fig. 8 below:

Figure 7. IPv6 ping test of PF Drive (Bacnet card).

Figure 8. IPv4 ping test of PF Drive (Bacnet card).

B. Webserver Results over IPv6

As mentioned earlier, webserver has also been

implemented using BSD Socket API of LWIP Stack. But

currently at a time only one IP version works for webserver

(TCP based). However ICMP is working for both IPv4 and

IPv6. Webpages obtained using IPv6 address of drive is shown

in the Fig. 9 below:

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 5 2569 - 2573

2573
IJRITCC | May 2015, Available @ http://www.ijritcc.org

Figure 9. Snapshot of Webserver on Bacnet over IPv6

C. Code Memory Results

In order to analyse the memory consumed by the Stack, we

are continuously monitoring the Stack memory and Heap

memory obtained through UART logs. Thus the memory

results obtained during Stack execution is show in Fig. 10

below:

Figure 10. Memory consumed during Stack execution

This output shows that out of total 5120 bytes of Stack

Memory, only 2591 bytes are used whereas in case of Heap

memory, just 113942 bytes are consumed.

V. CONCLUSION

This paper proposes design and implementation of LWIP

TCP/IP Stack in embedded device especially Bacnet card. The

Stack together with port and application codes is compiled and

run under Bacnet card which is configured by Renesas

H8S/2556 core [6] with built-in Ethernet support. Current

implementation supports at a time any one of the IP version

for webserver. However ICMP works concurrently for both

IPv4 and IPv6 as shown in Fig. 8 and Fig. 9 of the ping test

results.

Our future work includes support for dual version of IP in

webserver so that webserver can be operated by both IPv4 and

IPv6 simultaneously. Also, tunneling mechanism will be

implemented using same LWIP Stack for IPv4 mapped IPv6

address [7] compatibility.

REFERENCES

[1] Ioan Raicu, Sheraili Zeadally, “Evaluating IPv4 to IPv6

transition mechanisms”, in 10th ICT, Tahiti, Papeete, French

Polynesia,2003.

[2] Jiann-Liang Chen, Yao-Chung Chang and Chien-Hsiu Lin,

“Performance investigation of IPv4/IPv6 transition

mechanisms”, ICACT, Jan 2003,Gangwon-Do, Korea.

[3] A lightweight TCP/IP stack, Jan 2015. [Online] Available:

http://savannah.nongnu.org/projects/ lwip/.

[4] Rockwell Automation, PowerFlex 753 Drives Manual revision

1.011. [Online] Available:

http://www.rockwellautomation.com/support.

[5] Atmel Corporation, “AT04055: Using the lwIP Network Stack

[APPLICATION NOTE]”, Initial document release, 42233A,

March 2014.

[6] Renesas Technology Corp., “Renesas 16-Bit Single-Chip

Microcomputer Hardware Manual H8S/2556 Group, H8S/2552

Group, H8S/2506 Group”, 1st Edition, March, 2003 Rev.5.00,

September 27, 2007.

[7] Marc E. Fiuczynski, Vincent K. Lam, Brian N. Bershad, “The

design and implementation of an IPv6/IPv4 network address and

protocol translator”, in the Proceedings of USENIX Annual

Technical Conference, Jun 1998, New Orleans, Louisiana

http://www.ijritcc.org/
http://www.rockwellautomation.com/support

