
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 5 2558 - 2561

2558
IJRITCC | May 2015, Available @ http://www.ijritcc.org

Implementation of MPU for a Safe FreeRTOS Frame-work

Bhavesh Shah

Embedded System Design

GTU PG School, Gujarat Technological University

Ahmedabad, India.

bhaveshshah2310@gmail.com

Babu Krishnamurthy

Teaching faculty Embedded System Design

CDAC - ACTS

Pune, India

 babu_krishnamurthy@yahoo.com

Abstract - In the embedded world, there are some types of applications which needed to perform with higher accuracy, with safety

of data and application, robustness, with a very small footprint and very high performance. This all features are mostly preferred

in most of Real Time Operating System (RTOS). But in RTOS itself, there are some problems like data corruption due to some

bugs in some part of the code. Due to any illegal access to any part/peripherals/data could cause crash of the whole system. For

such kind of applications like safety critical applications in which such things needed to be taken for not letting the system to

crash there is a need of having OS, which will provide all the features which we have just discussed. Here in this paper, we

propose a way of getting our desired performance from an open source OS FreeRTOS with its IO framework and running those in

MPU mode. With the help of some Memory Protection Unit isolation for user space and system specs, different tasks from each

other and system space can be achieved. It can achieve by providing MPU functionality in port layer and isolating different tasks

data. And provide a protection to FreeRTOS.

Keywords- FreeROTS, Safety critical application, Memory Protection Unit (MPU).

__*****___

I. INTRODUCTION

Certain embedded applications can be called as safety
critical application like flight critical aircraft control, aerospace,
nuclear, automotive, medical areas. These applications can be
explained as that while in the process it is not allowed to have
any kind of error, latency more than a particular limit. It is such
a critical application that if any kind of problem comes in any
stages of its running time it could cause a lot of damage to lives
and money. Such kind of faults comes in cases like a very small
fault can create some error or delay and then that leads to
failure. Due to the failure of such a small part of the system can
cause faults in another part of systems which depend on that
part. It leads to the failure of that part of the system too, then
could be whole system failure [1].

FreeRTOS [2] is an open source RTOS, but for applying
this OS for such safety critical applications, it is not suitable
because its functional model, subjected to a full HAZOP, it has
weakness within the functional modal and API, and not having
safety requirements. [3]. Now, as we see earlier that system
failure starts from the failure of a small part of a system can
cause avalanches of faults and failure in the system. To avoid
that we can provide some permission to access amount of
memory for certain part of the code. Which can be provided
using Memory Protection Unit (MPU).

The MPU is a part of the processor, which defines which
part of memory to access and which part to not. If MPU is used
in such application running on FreeRTOS. It would provide
safety from those cascaded fault-error-failure as parts of
systems would be isolated with each other.

Yamada et al. [8] say that Memory Protection using
Memory Management Unit (MMU) can have more latency due
to more number of page tables and the low level bit protection.
And for the Real time application they suggest MPU should be
used.

SafeRTOS is the safety critical OS, which is licensed and
not open source. Which also provide software of different

Safety Integrity Levels to co-exist a Single Build of code
without unwanted mutual interface with the use of MPU [4].

Stecklina et al. [9] say that with the use of MPU it enforces
a secure isolation of individual activates. And also MPU
support is suitable number of activities and memory segments
and can handle an access control without a performance loss in
most of the cases.

Khan et al. [10] talk about MPU in the automotive
industries in electronic control unit (ECU). As in the ECU there
plenty numbers of electronically controlled unit which are
produced sparely and brought together to create a complete
system. And at the time of adding some extra add-on software
with the main ECU application. It can be easily added if MPU
is properly implemented in those applications.

Greiner et al. [11] propose that multiple native software
stacks are thus bound to share the resources without protection
between them. NoC-MPU is a Memory Protection Unit
allowing supporting the secure and flexible co-hosting of
multiple native software stacks running in multiple protection
domains, on any shared memory MP-SoC using a NoC.

In such cases and implementation done till now we can
make a conclusion that for the safety of the application
isolation of different parts of the system. And that can be
providing memory protection to those parts. So making,
creating a safe FreeRTOS framework we need to create it in
Memory Protection Unit mode.

II. FREERTOS+IO FRAMW WORK

FreeRTOS+IO framework is used for accessing peripheral.
Figure 1 shows the layered architecture of the FreeRTOS+IO
framework. When an application asks for any access to any
peripheral while using FreeRTOS APIs then the first it goes the
FreeRTOS+IO layer where they identify the which peripheral
is being asked by the application layer to be accessed. Then it
goes to peripheral driver library which would have specific
access functions like open, read, write and ioctl with the help of
FreeRTOS kernel. In those functions, it uses the CMSIS
Driver’s functionality for accessing particular functionality of

http://www.ijritcc.org/
mailto:bhaveshshah2310@gmail.com

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 5 2558 - 2561

2559
IJRITCC | May 2015, Available @ http://www.ijritcc.org

that peripheral. [6] Which directly goes to Devices available on
the microcontroller and access those devices. On other side
FreeRTOS kernel interfaces the Processor Peripheral with the
help of a FreeRTOS HAL+BSP layer with CMSIS Library with
its core peripheral functionality.

Figure 1: FreeRTOS+IO Framework

With the help of an IO layer FreeRTOS kernel creates a

handler which is the object of structure Peripheral_Control_t
which would have pointers to functions of reading, writing,
ioctl and other peripheral related members. This object is being
created dynamically and stored in the heap memory area.
FreeRTOS+IO APIs with the help of such handler of the
peripherals they can communicate with peripheral devices.
Here we use LPC 1769 Embedded Artist Baseboard for
implementations of safe FreeRTOS implementation.

III. MEMORY PROTECTION UNIT (MPU)

Processor who has MPU here in our case Cortex M3 works

normally if the MPU is not being activated. But if MPU is

activated, then the processor can access only those memory

regions which are mentioned in MPU registers as per its

access permissions. If the memory access violates any access

permission, then the Memory Management faults will be

called. Here in Cortex M3 only 8 regions are allowed to create.

Regions are allowed to modify at run time. And if a part of

memory is there in two different regions, then the memory

access permission would be as per the latest memory region’s

access permissions [5].

IV. FREERTOS IN MPU MODE

FreeRTOS distribute its workload in different tasks.

FreeRTOS in MPU mode at the time of starting the scheduler

the basic MPU regions are being set up. 4 regions out of 8 will

be set up at the time of starting of the scheduler. And those are

privileged function region, the code reads only region,

privileged data region, and full accessed peripheral region.

Those regions will be the permanent region after this point of

time, because it would be same for all the tasks. Then

remaining 4 regions would be like the configurable MPU

regions for tasks. When a particular task is being taken from

the ready queue to run the TCB would be loaded in

pxCurrentTCB and at the time of context switch the 4 regions

from xMPUSettings including 1 stack region and 3 memories

accessed regions for that task would be loaded in those 4

configurable regions of MPU registers. When another task is

scheduled than same process take in place and that task’s 4

regions would take place in those last 4 MPU configurable

regions.

After enabling the MPU rest of the memory space which is

not being included in any memory region is known as

background memory regions. MPU provides two access

permission over here that all the background region could be

privileged access only that could be no access allowed [5].

Figure 2 and Figure 3 shows the memory regions created at

starting of the scheduler, and when different tasks are being

scheduled.

Background region is important in that way the task which

is scheduled at a time will be bound to those 8 regions only. In

the case of privileged background the task is in unprivileged

mode, so it would not allow to access memory region except

then those 8 regions. While talking about no background

access the background region would not be allowed to access

anything except 8 regions. Figure 3 has been discussed further.

Figure 2: Memory map for background privileged access only

Here MPURNR indicate the number of the memory region

stored in MPU registers.

V. FREERTOS+IO IN MPU MODE

We will talk for the both background cases separately. First,

we will talk about background privileged access only then we

will talk about background access not allowed. In the

FreeRTOS+IO framework most of the hardware setup is being

done in the main() area only. Now at this time MPU is not

being enabled. Over here handler for particular peripheral is

being created with the use of FreeRTOS+IO APIs. Then after

creating a number of tasks in restricted mode using

xTaskCreateRestricted().

 With appropriate priority and required handlers of the

peripherals as task’s parameters and memory regions to be

allowed to be accessed by that task. These all tasks are created

to run in unprivileged mode only or sometime after getting

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 5 2558 - 2561

2560
IJRITCC | May 2015, Available @ http://www.ijritcc.org

some global data needed for the task the switch to

unprivileged mode.

Figure 3: Memory map for background access not allowed

At the point when the task is brought to the unprivileged

mode its start, its real work they start communicating with the

peripherals. This is the time when tasks are running after start

of the scheduler and after setting up those default four memory

region and enabling MPU with a background region in

privileged access only permits. Here the handler memory

regions which are taken from heap pool. That part of memory

is now in privileged access mode if there is not included in any

region. In our case it is not. In this case, that task would not

allowed to access that handler of peripheral. This is happening

because FreeRTOS+IO APIs are not jumping into the system

space to do its functionality.

To solve this we include FreeRTOS+IO’s APIs in

mpu_wrappers.h and make sure that those APIs functionalities

execute in privileged mode only. By doing this we are adding

FreeRTOS+IO’s APIs as a part of FreeRTOS kernel. This can

be explained nicely as shown in the Figure 4.

So here we would able to douse FreeRTOS+IO framework

in MPU mode with a background region in privileged access

only case.

Figure 4: FreeRTOS_write in MPU mode

 Now in the case of background region access not allowed

everything in main() is same as in above case. But at the time

of starting scheduler when the MPU is being set up and

enabled over there background regions is given permissions as

access not allowed. Now, after this point region excluded from

those four basic regions would not be allowed to access. Only

those regions which are being modified after this would have

the access as per their permissions. At this point the problem

comes that Main Stack Pointer (MSP) is now in no access

permission and with that all the data and the handlers for

devices distributed on whole SRAM would be now in no

access area. So neither privileged nor unprivileged code area

can access that part. And the data would be in very large

amount so it is not possible to create a separate memory region

for those data. So for the solution of this problem here we

create whole SRAM in privileged access permission in stand

of a region of privileged data’s region. As whole SRAM

would become memory space with privileged access only

normal task in our case which all are in unprivileged mode

would not be allowed to access those memory regions unless

that particular data’s regions as one of the memory region of

the 3 memory region allowed to be accessed by that task.

 Till now we are able to create system space which would

include the processor peripheral, and data stored in SRAM.

This all part would be accessed by the function or code which

would be in privileged mode. And another part is in user space

which is doing communication work and our required

functionality which is distributed in the form of different tasks.

These all tasks have their own memory regions to access. And

they cannot access anything else than that. As shown in figure

2 and 3 we can have an idea, how would be those memory

regions for tasks. There is no fixed that there would be 8

regions of memory every time for every task. It can be less

than that as per the requirements of the task. First four regions

would be there every time, but last 4 regions would be

changing as per the requirement of current task or any handler

is running at that time. And talking about the peripheral usage,

all the peripheral handlers would be in the area of privileged

access only. So any task just can’t access those handlers as

they all are in unprivileged mode, unless if we don’t give the

handler to be accessed by that particular task. If a task is

designed to do certain functionality so with the help of the

handler object created at the time of opening that peripheral is

passed to that task. That handler is itself is the address of the

object created for that peripheral. Now if a task is not passed

to that particular handler which that task want to access during

its execution. If a task is allowed to access a handler of a

particular peripheral so it mean it is allowed to access that

particular drivers of that peripheral. If a developer tries to

access peripheral in a task which is not allowed at the time of

development. It would not be possible. Thus, this system

would become more robust. The isolation for a particular task

from another task and with peripheral drivers it can be

explained from the Figure 5. Here a task 1 is allowed to access

a particular peripheral so it can access it with the mode

switching mechanism as explained earlier.

 So after such implementation if any part of system fails due

to error in any of faults. They will not make any kind of effect

on other part of systems as all the part of systems would be

isolated from each other. It also provide the safety at the

development level of the system. As by the mistake of the

coder some data is been tried to be used by some part of the

system which that part is not allowed to access then the system

would create Memory Management fault at the debugging

time. So it also provides robustness to the system. Here we

provide the rules to different parts of the system by giving

them access permission and provide them isolation from each

other and create an environment where different safety

integrity levels to co-exist on a single build of code without

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 5 2558 - 2561

2561
IJRITCC | May 2015, Available @ http://www.ijritcc.org

unwanted mutual interface the use of MPU as we talked in

introduction part.

Figure 5: task 1's Isolation for IO

VI. CONCLUSION

This latter describe Memory Protection Unit alone itself, it

gives protection from using unwanted memory access. But

now after using MPU in FreeRTOS+IO framework with MPU

mode, we can say that we can have protection for not just

unwonted memory access but also we can have protection in

using peripherals also. Devices connected to the

microcontroller can also be protected from unwanted access.

FreeRTOS is freely available, easy to use RTOS. For using

this OS for some safety critical application the approach

mention in this latter can be helpful. For more safety this OS

can also be scaled down as per the requirement of the

application and can be made safer as per the application.

VII. REFERENCES

[1] “Architecture of safety-critical systems”,

http://www.embedded.com/design/prototyping-and-

development/4006464/Architecture-of-safety-critical-systems

[2] "FreeRTOS official site", http://www.freertos.org

[3] “SafeRTOS officail site”,

http://www.highintegritysystems.com/safertos/upgrade-from-

freertos-to-safertos/

[4] SafeRTOS_Datasheet,

Upgrading_from_FreeRTOS_to0_SafeRTOS_v3 Cortex-

M3Technical Reference Manual.

[5] LPC176x/5x User manual

[6] “ CMSIS introduction by ARM ”,

http://www.arm.com/products/processors/cortex-m/cortex-

microcontroller-software-interface-standard.php

[7] Shimpei Yamada, YukikazuNakamoto, “Protection Mechanism

in Privileged Memory Space for Embedded Systems, Real-Time

OS” Distributed Computing Systems Workshops (ICDCSW),

2014 IEEE 34th International Conference onJune 30 2014-July 3

2014. Pages: 161 – 166.

[8] Oliver Stecklina, Peter Langendoerfer, Hannes Menzel, “Design

of a tailor-made Memory Protection Unit for Low Power

Microcontrollers”.Industrial Embedded Systems (SIES), 2013

8th IEEE International Symposium. 19-21 June 2013.Pages :

225-231

[9] Akram Khan,AchimSchäfer, and MarkusZetlmeisl “Efficient

Memory-Protected Integration of Add-On Software Subsystems

in Small Embedded Automotive Applications”. Industrial

Informatics, IEEE Transactions on (Volume: 3, Issue: 1), 12

February 2007, Pages: 45-50.

[10] JoelPorquet, Alain Greiner, and ChristianSchwarz “NoC-MPU:

a secure architecture for flexible co-hosting on shared memory

MPSoCs”. Design, Automation and Test in Europe Conference

and Exhibition ,2011, 14-18 March 2011, Pages: 1-4.

http://www.ijritcc.org/

