
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 4 2398 - 2403

2398
IJRITCC | April 2015, Available @ http://www.ijritcc.org

Video Streaming Using Message Accelerator

Luvish Yadav, Prof. A. J. Jadhav, Chaitanya Pol, Akshay Teke, Saurabh Yeramwar

Department Of Information Technology, Savitribai Phule Pune University

luvishyadav@gmail.com, polchaitanya92@gmail.com, saurabhyr@gmail.com

Abstract:- Virtual Network Computing or VNC is a largely used client application for accessing files and applications on remote computers.

When there is high latency between the client and the server, VNC can undergo from major losses in throughput. These losses become obvious

in the case of video, where updates are both large and continuous. Message Accelerator proxy for VNC is simple but highly effective solution

for video performance while maintaining the advantages of a client-pull system. By operating on the server, it sends updates to the client at a rate

corresponding to proxy-server interactions which are quicker than client-server interactions. When testing using video, Message Accelerator’s

results are more superior to VNC under high latency condition. Message Accelerator uses the pipelining system for updating the frames, which

increases its performance to a great extent. Message Accelerator here is not a hardware part but software that we have to jus t apply in our video

streaming program.

Keywords: Clients, VNC, Video, Latency, Networking, Message Accelerator.

__*****___

I. INTRODUCTION

Thin client systems, have ability to connect

multip le users to same computer system. Users can connect

to multip le sessions on the same computer and can share the

data and application or can have many numbers of

connections to the same desktop allowing them to share the

same virtual screen. The functionality to run multiple

desktop sessions on a single sever offers other more system

related advantages having all of the data and processes

running on central server means that a business can update

just software on one computer instead of hundreds or

thousands of computers, a saving money and time on

maintenance. Storing data on a central server p rovides

security from lost PCs of the employees. Using thin clients

electricity cost can be reduced to great extent.

The problem with thin client system is that they may suffer

from poor performance. There can be computational

overhead on the server side of tracking and encoding

updates and of decoding them on client side. The limiting

factor of thin client is bandwidth or how much data can be

sent across the network in given time. The most significant

limit ing factor in thin client system is work latency. Latency

can affect every message, irrespective of its size, sent

between the client and server.

Performance is important to all tasks, it is more important

for videos. Highly interactive task has less update rates as

compared to video. The applications, with their infrequent

screen updates are less impacted by high network latency.

Video application require frame update every 30 to 60

milliseconds and update usually involves change in a large

number of pixels. Due to its frequent updates, video is

impacted by high latency condition.

VNC has been one of the popular systems for thin client

research. Research on VNC has included adapting it for high

resolution displays, to control home appliances and for

optimal viewing on cell phones. VNC is one of the most

ubiquitous thin client systems.

Message accelerator works with VNC to mit igate the effects

of network latency. The message accelerator runs on server

machine and requests the server in client-pull fashion. It

then forwards these updates to clients as soon as possible.

The message accelerator is not affected by high network

latency because it does not wait to get a request from client

before sending. Message accelerator with VNC can be used

for receiving updates in high latency situations.

II. LITERATURE S URVEY

Details of VNC:

The VNC focuses on sending of message between VNC

client and VNC server.

a. VNC CLIENT

The VNC client is simple program, it is not multithreaded

program and it blocks on reads and writes. After the

initialization phase in which VNC exchange setup

informat ion with server, it fa lls into while (1) loop. In this

loop, VNC client waits to receive an update from server.

Then it processes the update and redraws display. Then it

issue request from new update. The client just read the calls

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 4 2398 - 2403

2399
IJRITCC | April 2015, Available @ http://www.ijritcc.org

throughout processing of updates, rather than reading the

entire update after that it will process it.

The update contains general header containing information

about message, series of rectangles and its encoding. There

are times when client has processed as much of update as it

has received, but cannot read more from server. When this

situation happens, client uses idle time to collect user input

and sends proper message to server.

b. VNC S ERVER

VNC server is more complex than client. As server runs, it

notes when the frame buffers each change. It stores internal

representation of area modified and new modifications made

to it; this is called as modified region. Client sends request

to the server, the first request is not incremental and all the

requests afterwards are incremental. If request received by

server is not incremental then the server immediately sends

all of the frame buffer information to the rectangle. If the

request is incremental then server compares the rectangle to

the modified region. If they overlap then server sends update

with modifications.

Figure 1. The VNC Client/Server Architecture[1]

c. VNC AS A CLIENT-PULL S YSTEM

All VNC systems use client-pull, in high latency situations

the inner-update time is dominated by times spent on

network, rather than compute time. Because of this our

results are generalised to any VNC system.

d. AMES FRAMEWORK

AMES cloud framework includes the Adaptive Mobile

Video Streaming and Efficient Social Video Streaming. The

whole video storing and streaming system in the cloud is

called video cloud (VC). In VC, there are video bases which

stores video clips for video service providers. Temporal

video base is used to cache new candidates for the videos.

VC stores the videos into tempVB first. The cloud service

may come across different places or even continents, so in

the case of video delivery between different data centers,

and transmission will be carried out, which is called “copy”.

Because of optimal deployment of data centers, the “copy”

of large video file takes small delay.

Figure 2. An illustration of the AMES-Cloud framework [1]

III. Proposed System

In the proposed system we are going to try to improve the

streaming quality of the video. We have seen that users face

saviour problem while streaming. While desktop streaming

through internet, there we send large amount of data packets

or heavy data. These data are of large size and which takes

more time to send as well as receive the data.

While capturing the data or frame of any video and sending

it we not only send the frames, the data is attached with

additional data and noise. These data are not useful and also

increase the size of the frames.

In our proposed system we are going to remove the noise

and data which are not at all useful. We are going to send

only the actual frame that is the output we required. We also

apply compression technique to reduce the size of the

frames. Due to this it is possible to send and receive the

frames faster than that we used to do previously.

For compression we use CS Video Encoder (CSV)

Figure 3.Block diagram for CS video encoder.[3]

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 4 2398 - 2403

2400
IJRITCC | April 2015, Available @ http://www.ijritcc.org

Figure 4. Block diagram for CS video decoder.[3]

We are going to use the Message Accelerator. Message

Accelerator simply forwards everything sent to it by the

client to the server, and everything sent to it from the server

to the client. This period is where the client sends the server

informat ion such as the user’s password, what encoding the

client would like to use, and other parameters. It is necessary

for the Message Accelerator to simply forward this

informat ion, since there is no way for it to know these

parameters ahead of time.

The Message Accelerator sends requests to the server at the

rate the client is processing them, and quickly receives

updates from the server. This lets the Message Accelerator

adjust for latency between the client and server

Figure 5. VNC with Message Accelerator[8]

As we know in video streaming the most important part is

updating the frames. The quality of the video depends on

how fast the frames are updated. So the Message

Accelerator uses the pipelining system. Due to the pipeline

update, the proxy sends requests to the client at the rate the

client is processing, without wait ing for a request.

Figure 6. Pipelining used in Message Accelerator.[8]

Using VNC system under high latency we get the update

rate up to 2 -3 frames per sec, which is very less and will

make our effect our streaming.

Figure 7. VNC w/o message accelerator in high latency[8]

 Solution to this is using the message accelerator. Message

Accelerator increases the frame update rate which makes the

video streaming more efficient.

Figure 8. VNC w/o message accelerator in high latency[8]

We can improve VNC performance by having a Message

Accelerator mediate the update rate over network latency.

By using the Message Accelerator, we do not have to

modify an existing code, avoiding issues of parallel code

maintenance and source code availability.

III. IMPLEMENTATION

Streaming is mostly referred as a delivery system for media

content or dynamic data where it is beneficial to begin

processing while data is being delivered. In reality, HTTP

was not designed for data streaming. HTTP communications

are stateless, and they take place over TCP/IP where there is

no continuous connection between the ends. Usually, HTTP

responses are buffered rather than streamed. HTTP 1.1

added support for streaming through keep-alive header so

data could be streamed, but yet for performance proposes,

the majority of implementations including ASP.NET tend to

buffer the content, send it, and close the connection. As a

result, there are few real world applications that use HTTP

for streaming data, and normally, an addit ional protocol is

built on top of HTTP for reconnection and error detection.

However, this does not pose a problem because there are

other UDP-based protocols that can be used for streaming

where it is needed.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 4 2398 - 2403

2401
IJRITCC | April 2015, Available @ http://www.ijritcc.org

So, why would we need data streaming over HTTP?

Because, we build our web applications over HTTP. Playing

video clips, displaying RSS fields, and updating time

sensitive data are considered common features of a webpage

nowadays, but yet, we are bounded to HTTP capabilit ies.

Here is where the browsers make use of plug-ins to

overcome these boundaries, and also add new troubles!

Plug-ins are executed outside of your application’s context.

Unlike Hyper Text Markup Language or JavaScript, p lug-

ins are mainly compiled binaries and they are difficult to

customize. This is not to mention security, accessibility,

platform independency, and web standards issues that are

involved in pages that use plug-ins. While using plug-ins

seems to be inevitable for pages with rich contents, AJAX

has created high hopes in my opinion. Even though

JavaScript language, as the version of today (the latest 1.7 in

Firefox 2), is not fully capable of performing the tasks

associated with plug-ins, I believe the future versions can

offer enough browser integration and supporting libraries

which eliminate the need of using complied p lug-ins. I know

this sounds very abstract, that is why I decided to write an

AJAX application that does the most common task

associated with plug-ins: video player. This AJAX video

player is a scripted prototype-based video player that runs in

JavaScript enabled HTML browsers that support Base64

encoded images (almost all modern browsers but IE). The

AJAX video player can broadcast live (using an XML

service) or cached video streams (XML file) to a variety of

users on different platforms and browsers.

a. BACKGROUND

A video is a sequence of framed images that are displayed at

a rate one after another. If we had all frames of a video clip

in our browser, we could display them one after another at a

frame rate and there we had our video playing! This sounds

like a plan, let us see how we can translate this into an actual

web application. From what we p lanned, we div ide our

efforts into smaller steps:

Step 1: Getting the frames, frame rate and other necessary

informat ion fro m a video file or a live stream

Step 2: Transport our frames over HTTP to the client’s

browser.

Step 3: Animate the frames at the client, response to user

interaction and request for more frames if needed.

We have used the JMF API here to show the video

streaming between the 2 computers .In the process we are

giving the user the option to create the session with another

computer directly by a search or by giving the appropriate IP

address followed by PORT number.

 Fig.9 Video Stream creating session.

After joining the session directly or by giving the IP address

we will receive the following output.

Fig 10. Without Message Accelerator

Here we can clearly see that the frame rate is 15 fps

connected over wired LAN.

But our aim is to increase the FPS and the quality of the

video. This can be achieved by adding MESSAGE

ACCELERATOR.

Adding Message Accelerator

We have used the JMF API here to show the video

streaming between the 2 computers .In the process we are

giving the user the option to create the session with another

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 4 2398 - 2403

2402
IJRITCC | April 2015, Available @ http://www.ijritcc.org

computer directly by a search or by giving the appropriate IP

address followed by PORT number.

 Fig. 11. Video Stream creating session.

 Fig 12. With Message Accelerator.

We can clearly see that after adding MESSAGE

ACCELERATOR the FPS and the Quality of the video has

been changed to a great extent.

FPS change - 15 fps to 29.7 fps.

In the same way we can also use our message accelerator to

stream the video in mobile, when the system and the mobile

are connected to the same network.

The message accelerator part of our program is over the

server side that is our system where the video is captured.

The client side contains our mobile phone which will

display our video.

There is no special application required to run the video.

Only requirement here is the java enabled web browser.

 Fig 13. Mobile Video Streaming.

IV. FUTURE WORK

Using an adaptive message-accelerating proxy we can build

other systems. The message modifying program offers a

simple way to improve performance or add additional

features, is easy to deploy, and works with existing binaries.

It does not suffer from problems of parallel code

maintenance, and will continue to work as long as the

message format between the client and server remains the

same. The proxy can even be deployed to a different

machine from the server, and still offer performance

advantages. There are additional ways that a modifying

proxy could be used with thin client systems. The pro xy

could dynamically tightly compress updates when network

speeds were low, and uncompress when the client device

had low batteries or other computational issues. With an

additional client application, the server application could

encrypt updates, and the client application could decrypt

them either on the client machine, or on a machine with a

trusted network connection to the client. The server

application could also perform machine vision tasks such as

object detection or face recognition. Clearly, adding an

adaptive proxy to a client-pull system offers any number of

ways to improve performance or trans - form data. Updates

can be buffered, informat ion can be cached, or messages can

be modified in a wide variety of ways. While some systems

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 4 2398 - 2403

2403
IJRITCC | April 2015, Available @ http://www.ijritcc.org

have taken some of these approaches, we are not aware of

any other system that uses a proxy for message acceleration.

We are also looking forward to use this technique and

implement it efficiently for distributed Bandwidth

allocation. So the users will not suffer from unequal

bandwidth allocation and can stream in ease working in

LAN.

VI. CONCLUS ION

Adding a Message Accelerator proxy to a VNC system is a

very simple but highly effective way of improving video

performance with VNC under high latency conditions. Even

with small amounts of network latency, video performance

is as good as or better than an unmodified VNC system.

Installing is easy, requiring no recompilation of client or

server code. A video displayed using the Message

Accelerator system will look a lmost the same, in terms of

frame rate, with a 300 ms network latency as it does with a 3

ms network latency, while a v ideo playing on an normal

system will take ten times as long to display updates.

REFERENCES

[1] Cynthia Taylor and Joseph Pasquale Department of

Computer Science and Engineering, University of

California, San Diego

{cbtaylor,pasquale}@cs.ucsd.edu “Improving

Video Performance In VNC Under High Latency

Conditions”.

[2] Sergey Smirnov, Atanas Gotchev “A DISPARITY

RANGE ESTIMATION TECHNIQUE FOR

STEREO-VIDEO STREAMING

APPLICATIONS”, IEEE TRANSACTIONS ON

CLOUD COMPUTING, VOL. 9, NO. 3, MARCH

2014.

[3] Xiaofei Wang, Student Member, IEEE, Min Chen,

Senior Member, IEEE, “AMES-Cloud: A

Framework of Adaptive Mobile Video Streaming

and Efficient Social Video Sharing in the Clouds”,

IEEE TRANSACTIONS ON CLOUD

COMPUTING VOL:15 NO:4 YEAR 2013.

[4] Scott Pudlewski, Tommaso Melodia, Arvind

Prasanna “Compressed-Sensing-Enabled Video

Streaming for W ireless Multimedia Sensor

Networks”.

[5] Maxim Claeys, Student Member, IEEE, Filip De

Turck, Senior Member, IEEE “Design and

Evaluation of a Self-Learning HTTP Adaptive

Video St reaming Client”.

[6] Q. Yang, L. Wang, and N. Ahuja, “A constant-

space belief propagation algorithm for stereo

matching,” in Computer Vision and Pattern

Recognition (CVPR), 2010 IEEE Conference on,

June 2010, pp. 1458–1465.

[7] V. Menkovski and A. Liotta, “Intelligent control

for adaptive video streaming,” in 2013 IEEE

International Conference on Consumer Electronics.

[8] Improving Video Performance in VNC under High

Latency Conditions. Cynthia Taylor, Joe Pasquale

University of California, San Diego

[9] http://cseweb.ucsd.edu/~pasquale/Research/Papers/

cts10.pdf

[10] https://occs.oberlin.edu/~ctaylor/cts.pdf

http://www.ijritcc.org/
http://cseweb.ucsd.edu/~pasquale/Research/Papers/cts10.pdf
http://cseweb.ucsd.edu/~pasquale/Research/Papers/cts10.pdf
https://occs.oberlin.edu/~ctaylor/cts.pdf

