
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 4 2225 – 2229

2225

IJRITCC | April 2015, Available @ http://www.ijritcc.org

TCP Concurrent Echo Program using Fork and Thread

Ms.Rupilaa V.M., Ms.Sangeetha M., Mr.Sathya Seelan K., Mr.Vadivel R.
Assistant Professor

Adithya Institute of Technology

Abstract – In networking, client-server model plays a vital role in exchanging information between processes. Client-server model

predominantly relies on socket programming. Sockets allow communication between processes on same or different machines. Servers in the

client-server model are of two types- Iterative and Concurrent. This paper describes about the elementary socket function for TCP client/server.

An implementation of TCP Echo program for concurrent server using fork and thread is also given.

Keywords – Socket, TCP, Concurrent server, fork, thread

__*****___

I. INTRODUCTION

Rapid growth of Internet leads to the ultimate

development of many net applications which use the client-

server model. Fig. 1 shows the client-server model. Client-

server model allows communication between processes or

applications to exchange some information. The client

process always initiates a connection to the server, while the

server process always waits for requests from any client.

Fig. 1 Client-Server Model

 Socket is used in client-server application

framework. Sockets are of four types – Stream sockets,

datagram sockets, raw sockets and sequenced-packet sockets

[1]. A stream socket uses TCP as end-to-end protocol and of

type SOCK_STREAM. Datagram socket uses UDP as end-

to-end protocol and of type SOCK_DGRAM. A raw socket

is of type SOCK_RAW and provides raw network protocol

access. A sequenced-packet socket is similar to stream

socket, with the exception that record boundaries are

preserved and of type SOCK_SEQPACKET.

 Servers are of two types in client-server model –

Iterative server and concurrent server. Iterative server

handles single request at a time and are easy to implement.

Concurrent server handles multiple requests at a time but

difficult to design and build.

Concurrent Server

 Concurrent servers are designed using three basic

mechanisms.

a. Process-based using fork

b. Event-based using I/O Multiplexing

c. Threads

a. Process-based using fork

 Spawn one server process to handle each client

connection

 Kernel automatically interleaves multiple server

processes

 Each server process has its own private address

space

Fig. 2 shows the concurrent server implemented using

fork(). In Fig. 2, client A has already established a

connection with the server, which has created a child server

process to handle the transaction. This allows the server to

process client B request, without waiting for client A to

complete

Fig. 2 Fork Execution Model

b. Event-based using I/O Multiplexing

 One process, one thread, but programmer manually

interleaves multiple connections

 Relies on lower-level system abstractions

c. Threads

 Create one server thread to handle each client

connection

 Kernel automatically interleaves multiple server

threads

 All threads share the same address space

Client A

Client B

TCP/IP

Concurrent

Child server

process

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 4 2225 – 2229

2226

IJRITCC | April 2015, Available @ http://www.ijritcc.org

Fig. 3 Thread Execution Model

 Fig. 3 shows the thread execution model. The main

thread creates peer thread and handles multiple client

requests.

 This paper describes about the socket functions and

thread functions used in TCP client-server communication

in section 2. In section 3, the client-server model using

socket function is given. Implementation of concurrent

server using fork and thread is given in subsequent sections.

II. SOCKET AND THREAD FUNCTIONS

A. SOCKET FUNCTIONS

 All the functions used in TCP client/server

communication is defined in the header file

#include<sys/socket.h>.

socket function – this function specifies the type of

communication protocol. This function is used by both

client and server.

Syntax: int socket(int family, int type, int protocol);

connect function – used by a TCP client to establish a

connection with a TCP server.

Syntax: int connect(int sockfd, const struct sockaddr

*servaddr, socklen_t addrlen);

bind function – assigns a local protocol address to a socket.

Syntax: int bind(int sockfd, const struct sockaddr *myaddr,

socklen_t addrlen);

listen function – converts an unconnected socket into a

passive socket and specifies the maximum number of

connections the kernel should queue for this socket. This

function is called only by TCP server. Syntax: int listen(int

sockfd, int backlog);

accept function – return the next completed connection

from the front of the completed connection queue.

Syntax: int accept(int sockfd, struct sockaddr *cliaddr,

socklen_t *addrlen);

send function – send a message on a socket.

Syntax: ssize_t send(int socket, const void *buffer, size_t

length, int flags);

recv function – receive data from a connected socket.

Syntax: ssize_t recv(int socket, void *buffer, size_t length,

int flags);

close function – used to close a socket and terminate a TCP

connection and included in the header file

#include<unistd.h>

Syntax: int close(int sockfd);

B. THREAD FUNCTIONS

 All the functions are defined in the header file

#include<pthread.h>.

pthread_create – create a new thread.

Syntax: int pthread_create(pthread_t *restrict thread, const

pthread_attr_t *restrict attr, void *(*start_routine)(void*),

void *restrict arg);

pthread_self – obtain ID of the calling thread.

Syntax: pthread_t pthread_self(void);

pthread_detach – detach a thread.

Syntax: int pthread_detach(pthread_t thread);

pthread_exit – thread termination

Syntax: void pthread_exit(void *value_ptr);

III. ELEMENTARY TCP SOCKETS

Fig. 4 shows a timeline of the typical scenario that

takes place between a TCP client and server. First, the

server is started, and sometime later, the client is started and

connects to the server. The client sends a request to the

server, the server processes the request, and the server sends

a reply back to the client. This continues until the client

closes its end of the connection. The server then closes its

end of the connection and either terminates or waits for a

new client connection [3].

Fig. 4 Socket functions for elementary TCP client/server

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 4 2225 – 2229

2227

IJRITCC | April 2015, Available @ http://www.ijritcc.org

IV. TCP ECHO CLIENT/SERVER

Fig. 5 Echo client/server

Fig. 5 depicts the echo client/server along with the

functions used for input and output. An echo client/server

program performs the following steps:

 The client reads a line of text from the standard input

and writes the line to the server.

 The server reads the line from the network input and

echoes the line back to the client.

 The client reads the echoed line and prints it on its

standard output.

V. IMPLEMENTATION OF ECHO PROGRAM

FOR CLIENT

#include<stdio.h>

#include<sys/socket.h>

#include<sys/types.h>

#include<netinet/in.h>

void str_echo(int s)

{

 char buf[50],buf1[50];

 puts("Enter the Message...");

 fgets(buf,50,stdin);

 send(s,buf,50,0); //sending data to server

 //receiving data from server

 recv(s,buf1,50,0);

 puts("Message from Server...");

 fputs(buf1,stdout);

}

int main()

{

 int ls;

 struct sockaddr_in cli;

 puts("I am Client...");

 /*creating socket*/

 ls=socket(AF_INET,SOCK_STREAM,0);

 puts("Socket Created Successfully...");

 /*socket address structure*/

 cli.sin_family=AF_INET;

 cli.sin_addr.s_addr=inet_addr("127.0.0.1");

 cli.sin_port=htons(5000);

 /*connecting to server*/

 connect(ls,(struct sockaddr*)&cli,sizeof(cli));

 puts("Connected with Server...");

 str_echo(ls);

 close(ls);

 return 0;

}

VI. IMPLEMENTATION OF ECHO PROGRAM

FOR CONCURRENT SERVER USING FORK

#include<stdio.h>

#include<sys/socket.h>

#include<sys/types.h>

#include<netinet/in.h>

#include<stdlib.h>

void str_echo(int s)

{

 char buf[50];

 //receiving data from client

 recv(s,buf,50,0);

 puts("Message from Client...");

 fputs(buf,stdout);

 send(s,buf,50,0);

}

int main()

{

 int ls,cs,len;

 struct sockaddr_in serv,cli;

 pid_t pid;

 puts("I am Server...");

 //creating socket

 ls=socket(AF_INET,SOCK_STREAM,0);

 puts("Socket Created Successfully...");

 //socket address structure

 serv.sin_family=AF_INET;

 serv.sin_addr.s_addr=INADDR_ANY;

 serv.sin_port=htons(5000);

 bind(ls,(struct sockaddr*)&serv,sizeof(serv));

 puts("Binding Done...");

 listen(ls,3);

 puts("Listening for Client...");

 for(; ;)

 {

 len=sizeof(cli);

 //accepting client connection

 cs=accept(ls,(struct sockaddr*)&cli,&len);

 puts("\nConnected to Client...");

 //creating child process

 if((pid=fork()) == 0)

 {

stdin

stdout

fgets

fputs

send

 send

recv

TCP

client

recv

TCP

server

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 4 2225 – 2229

2228

IJRITCC | April 2015, Available @ http://www.ijritcc.org

 puts("Child process created...");

 close(ls);

 str_echo(cs);

 close(cs);

 exit(0);

 }

 close(cs);

 }

 return 0;

}

Fig. 6 Execution of Echo Client 1

Fig. 7 Execution of Echo Client 2

Fig. 8 Execution of Concurrent Echo Server

 Fig. 6 shows the data read from client 1. Fig. 7

shows the data read from client 2. Fig.8 shows the data

processed by concurrent server from client 1 and client 2.

VII. IMPLEMENTATION OF ECHO PROGRAM

FOR CONCURRENT SERVER USING

THREAD

#include<stdio.h>

#include<sys/socket.h>

#include<sys/types.h>

#include<netinet/in.h>

#include<pthread.h>

void str_echo(int s)

{

 char buf[20];

 recv(s,buf,20,0);

 puts("Message from Client...");

 fputs(buf,stdout);

 send(s,buf,20,0);

}

static void *doit(void *arg)

{

 pthread_detach(pthread_self());

 str_echo((int)arg);

 close((int)arg);

 pthread_exit(0);

 return NULL;

}

int main()

{

 int ls,cs,len;

 struct sockaddr_in serv,cli;

 pid_t pid;

 pthread_t th;

 puts("I am Server...");

 //creating socket

 ls=socket(AF_INET,SOCK_STREAM,0);

 puts("Socket Created Successfully...");

 //socket address structure

 serv.sin_family=AF_INET;

 serv.sin_addr.s_addr=INADDR_ANY;

 serv.sin_port=htons(5000);

 bind(ls,(struct sockaddr*)&serv,sizeof(serv));

 puts("Binding Done...");

 listen(ls,3);

 puts("Listening for Client...");

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 4 2225 – 2229

2229

IJRITCC | April 2015, Available @ http://www.ijritcc.org

 for(; ;)

 {

 len=sizeof(cli);

 cs=accept(ls,(struct sockaddr*)&cli,&len);

 puts("Connected to Client...");

 //creating thread

 pthread_create(&th,NULL,&doit,(void *)cs);

 }

 return 0;

}

Fig. 9 Execution of Echo Client 1

Fig. 10 Execution of Echo Client 2

Fig. 11 Execution of Concurrent Echo Server

VIII. CONCLUSION

This paper describes about the elementary socket

and thread functions needed for the implementation of

concurrent server. Echo client/server program for concurrent

server using fork and thread is implemented and shown

along with the execution. Synchronization problem exist

with threads which can be overcome by using mutex and

condition variables. To expand the echo client/server into

any application, change what the server does with the input

it receives from its clients.

 REFERENCES

[1] W. Richard Stevens, “Unix Network Programming

Vol-I”, Second Edition, Pearson Education, 1998.

[2] D.E. Comer, “Internetworking with TCP/IP Vol -

III”, (BSD Sockets Version), Second Edition,

Pearson Education, 200 UNIT III

[3] Michael J. Donahoo and Kenneth L. Calvert,

"TCP/IP Sockets in C: Practical Guide for

Programmers", Second Edition, Morgan

Kaufmann, 2001.

[4] Stefan Bocking,‖Socket++: A Uniform Application

Programming Interface for Basic-Level

Communication Services, IEEE Communication

Magazine December 1996.

[5] Mattew Cook and Syed(shawon)M. Rahman, Java

and C/C++ language feature in terms of Network

Programming,‖ 2005.

[6] https://computing.llnl.gov/tutorials/pthreads/

[7] http://pubs.opengroup.org/onlinepubs/7908799/xsh

/pthread.h.html

http://www.ijritcc.org/

