A Novel Color Image Watermarking Scheme Based on Arnold Transform and Discrete Wavelet Transform using B Channel

Priyal Desai	Prof. Harshita Kanani
M.E. Scholar, Dept. of CE	Associate Professor, Dept. of CE
LDRP-ITR, Gandhinagar	LDRP-ITR, Gandhinagar

Abstract:- The expansion of Internet has frequently increased the use of digital media publically. Digital media can be in the form such as audio, images, text and videos to the public. In this paper we have presented a Novel color image watermarking technique using two methods Arnold transform and discrete wavelet transform. The binary watermark is processed by using error correcting coding and Arnold Transform. Arnold transform is applied for the best scrambling round and then the watermark is embedded in the Blue color channel into the Cover image. Discrete wavelet transform method is applied on the cover image for further security. The proposed method concludes to give better results compared to the simple DWT method in image sharpening, smoothening, noise tolerance, rotating, cropping, etc aspects of image transformations and enhancement.

Keywords:- Watermarking, Arnold Transform, DWT, B channel, Image transformations and Enhancement

1. Introduction

Watermarking is basically used for the copyright protection, security and authentication of your digital media or record. The basic concept is to embed a security pattern in the cover image. Proper protection is done using watermarking that can be visible or invisible. In this paper we have presented a Novel technique using Arnold transform and discrete wavelet transform for color images. The binary watermark is processed by using error correcting coding and Arnold transform is applied for the best scrambling rounds. The watermark is embedded in the B channel that is the Blue color channel of the cover image. Discrete wavelet transform method is applied on the embedded cover image for further security and more robust results.

2. Arnold Transform

The transformation of point (x, y) in the unit square change to another point (X', Y').

This transformation is called two-dimensional Arnold scrambling. To be specific to digital image, we need to change the two-dimensional Arnold scrambling of mod 1 to:

$$\begin{bmatrix} X'\\ Y' \end{bmatrix} = \begin{bmatrix} 1 & 1\\ 1 & 2 \end{bmatrix} \begin{bmatrix} X\\ Y \end{bmatrix} \pmod{N}$$
[16]

(1.1)

It is mod2 which is Arnold scrambling. For $x, y \in \{0, 1, 2, ..., N-1\}$, N is the order of digital image matrix. The transformation of mod2 is matrix A. (x, y)T in the right is the input,(x', y')T

in the left is the output, considering the feedback, iterative process which can do as the following. Where: n representative of the time of iterations, n = 0, 1, 2... Image information (such as the gray value) with the replacement of the discrete lattice for transplantation, they generated a new image after all of the points of the original image have been traversed.

$$P_{xy}^{n+1} = AP_{xy}^{n} (\text{mod } N)$$
$$P_{xy}^{n} = (x, y)^{T}$$
[16]

(1.2)

3. Discrete Wavelet Transform(DWT)

The basic idea of DWT in which a one dimensional signal is divided in two parts one is high frequency part and another is low frequency part. Then the low frequency part is split into two parts and the similar process will continue until the desired level. The high frequency part of the signal is contained by the edge components of the signal. In each level of the DWT (Discrete Wavelet Transform) decomposition an image separates into four parts these are approximation image (LL) as well as horizontal (HL), vertical (LH) and diagonal (HH) for detail components. In the DWT decomposition input signal must be multiple of 2n. Where, n represents the number of levels.

To analysis and synthesis of the original signal DWT provides the sufficient information and requires less computation time. Watermarks are embedded in these regions that help to increase the robustness of the watermark.

ISSN: 2321-8169 1761 - 1766

4. Comparision of Various methods

Algorithm	Concluded Results
LSB	Does not resist much in attacks like JPEG Compression and Noise
ARNOLD	Robust and more secure against Noise and JPEG Compression
DCT	Resist attacks like filtering
DFT	Not so better results when filtered
DWT	Resist attacks like filtering, sharpening, scaling
SVD	Which gives results in scaling and filtering for gray scale images
Using B channel	filtering, compression, cropping

Table 1 : Comparison of different methods

5. Comparision Table

Paper	Summar Advantag		Disadvantages
Title	У	es	Disadvantages
Digital Image watermarki ng Based on LSB for grayscale image	Aim is to Hide watermar k with any number of bit substituti ons instead of 1-LSB	Watermar k is completel y hidden	Not so robust on all geometrical attacks
Color Image watermarki ng Based on Arnold Transfer	Invisible watermar k generated using a security method and watermar k is embedde d in G channel,b etter results compared to LSB method	Robust against noise and commonly used image processing methods like cropping, Blurring,tr ansformati ons	Less robust compared to when embedded to B channel
Robust	A novel	Ensures	The scheme does
public	method	robustness	not resist

	termarki	based on	of the	geometric attack
-	scheme	DWT is	watermark	completely
	ased on	used for	and	
	DWT	better	protects	
		results.	the	
			copyright of a	
			grayscale	
			image,has	
			better	
			Jpeg	
			compressi	
			on attacks	
			than	
			reference	
			schemes	
			for	
			512*512	
			gray level	
			image	
			size,	
			results	
			resist various	
			attacks	
			like	
			filtering	
			and	
			sharpenin	
			g	
A	secure			
	semi	Works for	Reversible	Works on Gray
	fragile	JPEG	and robust	Scale images
	JPEG	gray scale	upto 80%,	and sensitive to
	Image	images	good	malicious
	thenticat	with	tolerance	attacks as cutting
-	Scheme	secret key	to noise	and pasting
В	ased on DCT	and		
	DCI	RGB		
		image		
		transform		
		ed to		
W	atermark	YCbCr		
	ing of	colour	Resist	
	colour	space,wat	Jpeg	
	nages in	ermark	compressi	_
	ne DCT	embedde	on,	-
	Domain	d to Y	filtering,	
	ising Y	channel	cropping	
С	hannel	by		
		selectivel		
		У		
		modifie		
		modifyin g the very		

New integration scheme for robust and fragile digital watermarki ng	low frequency parts of the DCT transform s. Process the original watermar k and then embed it into blue compone ne of image in robust process.In fragile process red compone nt of image are hashed and then encrypted .Method used is	Can resist noise,crop ping,filter, Jpeg compressi on	
	encrypted		

Table 2 : Analysis and Comparison of Papers

6. Proposed Method

Input : Watermark Image, Color Image Output : Watermarked Color Image

Step 1 : Read watermark image

Step 2 : Watermark is made Secure by first applying error correction method on it i.e. Hamming code.

Step 3 : Apply Arnold Transform method using the equation $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \mod \mathbb{N}$ where x, y $\in \{0, 1, 2, 3, \dots, \mathbb{N}\}$

1} on the Watermark image through scrambling of various rounds.

Step 4 : Read color image I(x, y)

Step 5 : Select B channel of the cover image. Step 6 : Embed the watermark into the B channel

Step 7 : Apply DWT on the cover image for more secure and robust results in the middle and higher level bands i.e. {HL,LH,HH} **Explanation :**

First the watermark image is read and made secure using error correction method that is by using hamming code. On the watermark image again Arnold Transform is applied on it where scrambling of various rounds is performed. Also the Cover image that is a colored image is read. The watermark is embedded into the B channel (that is the Blue color channel, as Blue color is least sensitive to the human eye, so embedding the watermark in the Blue color gives us much robust results). Further for more robustness and security Discrete Wavelet Transform method is applied on the Cover image in the Higher and Middle level Bands.

7. Dataset (Color Images)

Hawk.png color image of size 512X512 is selected as a cover image and coins.jpg color image of size 128X128 is chosen as a watermark color image. Blue channel of the cover image is selected for embedding process, as blue channel is more resistance to changes compared to red and green channels, because Blue color is least sensitive to the human eye so embedding the watermark in the Blue color channel gives us better robust results. Figure 1 shows the original dataset images of Hawk, Mandrill, Lena, Flower, Strawberry and peppers which are used for testing as color cover images and the watermark image of coins.

Dataset

Hawk

Mandrill

Lena

Flower

Strawberry

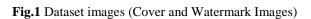
Peppers

International Journal on Recent and Innovation Trends in Computing and Communication Volume: 3 Issue: 4

House

Scene

Peppergreen



Portrait

Image Waterma rk:

Coins

8. Experimental Image Results

Fig. 2 The Cover Image : Peppers

Fig. 3 The Watermark Image : Coins

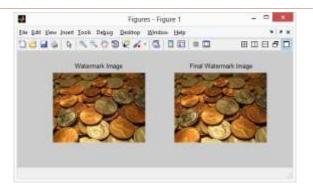
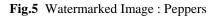
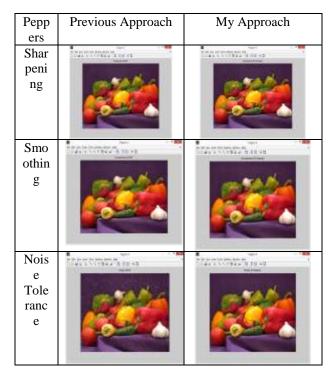




Fig. 4 The Final Watermark Image applying hamming code

Transformation Results of previous approach and My approach for Peppers:

IJRITCC |April 2015, Available @ http://www.ijritcc.org



Fig.6 Experimental Image Results on Image transformation and Image enhancement

Sharpening	Psnr1	Psnr2	% Difference
Hawk	7.630441	7.706201	7.576
Peppers	12.65037	12.732119	8.1749
Mandrill	10.114539	10.205698	9.1159
Lena	9.96816	10.017559	4.9399
Flower	10.610599	10.697135	8.6536
Strawberry	8.255629	8.2977	4.2071

8. Result Analysis

Table 3 : Result Analysis on Sharpening

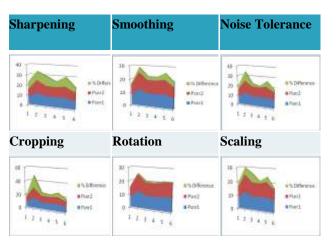
Smoothing	Psnr1	Psnr2	% Difference
Hawk	7.785282	7.794434	0.9152
Peppers	12.761136	12.793787	3.2651
Mandrill	10.080675	10.104763	2.4088
Lena	10.080675	10.103763	2.3088
Flower	10.530224	10.576802	4.6578
Strawberry	8.197976	8.229584	3.1608

Table 4 : Result Analysis on Smoothing

Noise	Psnr1	Psnr2	% Difference
Hawk	7.741746	7.781767	4.0021
Peppers	12.656979	12.747255	9.0276
Mandrill	10.080675	10.106982	2.6307
Lena	9.900565	9.911254	1.0689
Flower	10.581216	10.632251	5.1035
Strawberry	8.233165	8.25369	2.0525

Table 5 : Result Analysis on Noise Tolerance

Cropping	Psnr1	Psnr2	% Difference
Hawk	7.724761	7.752635	2.7874
Peppers	15.438486	15.609903	17.1417
Mandrill	10.080675	10.118325	3.765
Lena	9.900565	9.921254	2.0689
Flower	10.576802	10.627318	5.0516
Strawberry	8.229584	8.249776	2.0192


Table 6 : Result Analysis on Cropping

			%
Rotation	Psnr1	Psnr2	Difference
Hawk	7.728633	7.724138	-0.4495
Peppers	12.785168	12.782324	-0.2844
Mandrill	10.080675	10.075	-0.5675
Lena	9.904038	9.900565	-0.3473
Flower	10.581052	10.576802	-0.425
Strawberry	10.581052	10.580921	-0.0131

Table 7 : Result Analysis on Rotation

			%
Scaling	Psnr1	Psnr2	Difference
Hawk	7.724138	7.758781	3.4643
Peppers	12.747277	12.789943	4.2666
Mandrill	10.080675	10.140528	5.9853
Lena	9.900565	9.91418	1.3615
Flower	10.576802	10.611264	3.4462
Strawberry	8.229584	8.234483	0.4899

Table 8 : Result Analysis on Scaling

9. Result Analysis

Table 8 : Graphical Result Analysis

10. Conclusion

Better results are obtained on image enhancement and image transformations like sharpening, smoothing, noise tolerance, cropping and scaling with my approach when Watermark is embedded in the B Channel compared to the Previous approach.

The Future directions are to improve results in other transformations on zooming and compression of image. When using both Robust methods of Spatial and Frequency Domain and embedding watermark in blue color channel as blue color is least sensitive to the human eye, so embedding the watermark into the blue color gives us better robust results comparatively.

7. Future Work

We will upgrade the method for 3D (3 Dimentional) images instead of using 2D (2 Dimentional) images.

References

- U.V.Chandra Shekhar M.tech (Ph.d), "A Novel security techniques based on watermarking and encryption for LSB digital Images ",International Journal of Application or Innovation in Engineering & Management (IJAIEM), Volume 3, Issue 6, June 2014
- [2] Jitendra Jain, Punit Johari, "Digital Image Watermarking Based on LSB for Gray Scale Image", IJCSNS International Journal of Computer Science and Network Security, Volume.14 No.6, June 2014
- [3] Anita Gupta, Mr. Atul Barve ,"A Review on Image Watermarking and Its Techniques", International Journal of Advanced Research in Computer Science and Software Engineering, Volume 4, Issue 1, January 2014
- [4] Rajni Verm, Archana Tiwari "Copyright Protection for Watermark Image Using LSB Algorithm in Colored Image", Research India Publications, Volume 4, 2014

- [5] Min Li, Ting Liang, Yu-jie, "The Arnold Transform Based Image Scrambling Method", 3rd International Conference on Multimedia Technology (ICMT), 2013
- [6] Radhika V. Totla, K.S.Bapat, "Comparative Analysis of Watermarking in Digital Images Using DCT & DWT ", International Journal of Scientific and Research Publications ,Volume 3, Issue 2, February 2013
- [7] M. Yesilyurt, Y. Yalman, A. T. Ozcerit, "A New DCT Based Watermarking Method Using Luminance Component", International Journal of Electronics engineering, Volume 19, no. 4, 2013
- [8] Prabhishek Singh, R S Chadha, "A Survey of Digital Watermarking Techniques, Applications and Attacks ", International Journal of Engineering and Innovative Technology (IJEIT), Volume 2, Issue 9, March 2013
- [9] Bhonde Nilesh, Shinde Sachin, Nagmode Pradip, D.B. Rane ," Image Compression Using Discrete Wavelet Transform ", International Journal of Computer Technology and Electronics Engineering (IJCTEE), Volume 3, Special Issue, March-April 2013
- [10] Pallavi Patil, D.S. Bormane," DWT Based Invisible Watermarking Technique for Digital Images", International Journal of Engineering and Advanced Technology (IJEAT) ISSN: Volume-2, Issue-4, April 2013
- [11] Nidhi Bisla, Prachi Chaudhary, "Comparative Study of DWT and DWT-SVD Image Watermarking Techniques", International Journal of Advanced Research in Computer Science and Software Engineering, June 2013
- [12] Md. Maklachur Rahman," A DWT, DCT and SVD based watermarking technique to protect the image piracy ", Published in IEEE explore, July 2013
- [13] K. Chaitanya, E. Sreenivasa Reddy & K. Gangadhara Rao," Digital Color Image Watermarking using DWTDCT Coefficients in RGB Planes ", Global Journal of Computer Science and Technology Graphics & Vision, July 2013
- [14] Ghazali Bin Sulong, Harith Hasan, Ali Selamat, Mohammed Ibrahim, Saparudin, "A New Color Image Watermarking Technique Using Hybrid Domain", IJCSI International Journal of Computer Science Issues, Volume. 9, Issue 6, No 1, November 2012
- [15] Saqib Saleem, Qamar-ul-Islam, "On Comparison of DFT-Based and DCT Based Channel Estimation for OFDM System", IJCSI International Journal of Computer Science Issues, Volu

IJCSI International Journal of Computer Science Issues, Volu me. 8, Issue 3, No. 2, May 2011

- [16] WANG Hui-qin, HAO Ji-chao, CUI Fu-ming, "Color Image Watermarking Algorithm Based on the Arnold Transform", IEEE Computer Society, 2011 Baisa L. Gunjal and Suresh N. Mali, "Comparative Performance Analysis of DWT-SVD Based Color Image Watermarking Technique in YUV, RGB and YIQ Color Spaces", International Journal of Computer Theory and Engineering, Volume. 3, No. 6, December 2011
- [17] Chin-Chen Chang, Kuo-Nan Chen, Ming-Huang Hsieh, "A Robust Public Watermarking Scheme Based on DWT", IEEE Computer Society, 2010
- [18] K. Ramani Professor, E.V. Prasad Professor, V. Lokanadham Naidu,D Ganesh, "Color Image Watermarking using Bi-Orthogonal Wavelet Transform", International Journal of Computer Applications, 2010