
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 4 1755 - 1758

__

1755
IJRITCC | April 2015, Available @ http://www.ijritcc.org

__

A Survey Paper on OpenGL ES

Ms. Warsha M.Choudhari

Professor, Information Technology

Datta Meghe Institute of Engineering, Technology &

Research, Wardha, India

warshaswaradhni@gmail.com

Ms. Rinku Rajankar

Professor, Computer Science & Engineering

ITM College of Engineering, Nagpur, India

rinkurajankar@gmail.com

Abstract—In this survey paper introduce the OpenGL (Graphics Library) Es graphics system, which is very useful for embedded system. It

means that software interface to graphics hardware. It allows you to create interactive programs that produce color images of moving, three

dimensional objects. Using OpenGL, we can control computer graphics technology to produce realistic pictures, or ones that depart from reality

in imaginative ways.

Keywords: Embedded System, OpenGL Es

__*****___

1. INTRODUCTION

OpenGL ES is an application programming

interface (API) for advanced 3D graphics targeted at

handheld and embedded devices such as cell phones,

personal digital assistants (PDAs), consoles, appliances,

vehicles, and avionics.

There are two standard 3D APIs, DirectX and

OpenGL.

DirectX is the de facto standard 3D API for any

system running the Microsoft Windows operating system and

is used by the majority of 3D games on that platform.

OpenGL is a cross-platform standard 3D API for

desktop systems running Linux, various flavors of UNIX,

Mac OS X, and Microsoft Windows. The API is used by user

interfaces as in Mac OS X, workstation computer-aided

design (CAD) applications like CATIA, and digital content

creation applications such as Maya and Soft Image XSI.

It is mostly used for games such as the Doom and Quake

series. Due to the widespread adoption of OpenGL as a 3D

API, it made sense to start with the desktop OpenGL API in

developing an open standard 3D API for handheld and

embedded devices and modifying it to meet the needs and

constraints of the handheld and embedded device space. The

device constraints that OpenGL ES addresses are:

 very limited processing capabilities and memory

availability

 low memory bandwidth, sensitivity to power

consumption, and

 lack of floating-point hardware.

The working group used the following criteria in the

definition of the OpenGL ES specification: [1]

• The OpenGL API is very large and complex and

the goal of the OpenGL ES working group was to create an

API suitable for constrained devices. To achieve this goal,

the working group removed any redundancy from the

OpenGL API. In any case where there was more than one

way of performing the same operation, the most useful

method was taken and the redundant techniques were

removed. Example is specifying geometry, where in OpenGL

an application can use immediate mode, display lists, or

vertex arrays. In OpenGL ES, only vertex arrays exist and

immediate mode and display lists were removed.

• Removing redundancy was an important goal, but

maintaining compatibility with OpenGL was also important.

As much as possible, OpenGL ES was designed such that

applications that were written to the embedded subset of

functionality in OpenGL would also run on OpenGL ES. The

reason this was an important goal is it allows developers to

leverage both APIs and develop applications and tools that

use the common subset of functionality. Although this was an

important goal, there are cases where it has deviated,

especially with OpenGL ES 2.0.

• New features were introduced to address specific

constraints of handheld and embedded devices. For example,

to reduce the power consumption and increase the

performance of shaders, precision qualifiers were introduced

to the shading language.

• The designers of OpenGL ES aimed to ensure a

minimum set of features for image quality. Most handheld

devices have limited screen sizes, making it essential that the

quality of the pixels drawn on the screen is as good as

possible.

• The OpenGL ES working group wanted to ensure

that any OpenGL ES implementation would meet certain

acceptable and agreed-on standards for image quality,

correctness, and robustness. This is done by developing

appropriate conformance tests that an OpenGL ES

implementation must pass to be considered compliant.

2. OPEN GL ES 1.0 vs OpenGL ES 2.0

OpenGL ES 1.0 uses a fixed pipeline, which is a fancy

way of saying we use built-in functions to set lights, vertexes,

colors, cameras, and more.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 4 1755 - 1758

__

1756
IJRITCC | April 2015, Available @ http://www.ijritcc.org

__

OpenGL ES 2.0 uses a programmable pipeline, which is

a fancy way of saying all those built-in functions go away,

and we have to write everything yourself.

3. OpenGL ES 2.0

OpenGL ES 2.0 implements a graphics pipeline

with programmable shading and consists of two

specifications:

There are two types of shaders:

(i) OpenGL ES 2.0 API specification

(ii) OpenGL ES Shading Language Specification

(OpenGL ES SL).

Figure shows the OpenGL ES 2.0 graphics pipeline.

The shaded boxes in Figure indicate the programmable stages

of the pipeline in OpenGL ES

Fig 3.1 OpenGL ES 2.0 graphics pipeline

3.1 Vertex Shader

Vertex shaders are programs that get called once per

vertex in your scene. So if you are rendering a simple scene

with a single square, with one vertex at each corner, this

would be called four times. Its job is to perform some

calculations such as lighting, geometry transforms, etc.,

figure out the final position of the vertex, and also pass on

some data to the fragment shader.

The inputs to the vertex shader consist of the following:

• Attributes—Per-vertex data supplied using vertex

arrays.

• Uniforms—Constant data used by the vertex shader.

• Samplers—A specific type of uniforms that represent

textures used by the vertex shader.

• Shader program—Vertex shader program source code

or executable that describes the operations that will be

performed on the vertex.

The outputs of the vertex shader are called varying

variables. In the primitive rasterization stage, the varying

values are calculated for each generated fragment and are

passed in as inputs to the fragment shader. The mechanism

used to generate a varying value for each fragment from the

varying values assigned to each vertex of the primitive is

called interpolation. The outputs of the vertex shader are

called varying variables. In the primitive rasterization stage,

the varying values are calculated for each generated fragment

and are passed in as inputs to the fragment shader. The inputs

and outputs of the vertex shader are shown in Figure.

Fig 3.2 Inputs and outputs of the vertex shader

Vertex shaders can be used for traditional vertex-

based operations such as transforming the position by a

matrix, computing the lighting equation to generate a per-

vertex color, and generating or transforming texture

coordinates. Alternately, because the vertex shader is

specified by the application, vertex shaders can be used to do

custom vertex transformations.

Primitive Assembly

After the vertex shader, the next stage in the

pipeline is primitive assembly. A primitive is a geometric

object that can be drawn using appropriate drawing

commands in OpenGL ES. These drawing commands specify

a set of vertex attributes that describes the primitive’s

geometry and a primitive type. Each vertex is described with

a set of vertex attributes. These vertex attributes contain

information that the vertex shader uses to calculate a position

and other information that can be passed to the fragment

shader such as its color and texture coordinates.

In the primitive assembly stage, the shaded vertices

are assembled into individual geometric primitives that can

be drawn such as a triangle, line, or point-sprite. For each

primitive, it must be determined whether the primitive lies

within the view frustum (the region of 3D space that is

visible on the screen). If the primitive is not completely

inside the view frustum, the primitive might need to be

clipped to the view frustum. If the primitive is completely

outside, it is discarded. After clipping, the vertex position is

converted to screen coordinates. A culling operation can also

be performed that discards primitives based on whether they

face forward or backward. After clipping and culling, the

primitive is ready to be passed to the next stage of the

pipeline, which is the rasterization stage.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 4 1755 - 1758

__

1757
IJRITCC | April 2015, Available @ http://www.ijritcc.org

__

Rasterization

The next stage, shown in Figure is the rasterization

phase where the appropriate primitive (point-sprite, line, or

triangle) is drawn. Rasterization is the process that converts

primitives into a set of two dimensional fragments, which are

processed by the fragment shader. These two-dimensional

fragment represent pixel s that can be drawn on the screen.

 To fragment

 Shader Stage

Fig 3.3 Rasterization phase

3.2 Fragment Shader

Fragment shaders are programs that get called once

per pixel in your scene. So if you’re rendering that same

simple scene with a single square, it will be called once for

each pixel that the square covers. Fragment shaders can also

perform lighting calculations, etc, but their most important

job is to set the final color for the pixel.

The fragment shader implements a general-purpose

programmable method for operating on fragments. The

fragment shader, as shown in Figure is executed for each

generated fragment by the rasterization stage and takes the

following inputs: Varying variables—Outputs of the vertex

shader that are generated by the rasterization unit for each

fragment using interpolation.

 Uniforms—Constant data used by the fragment

shader.

 Samplers—A specific type of uniforms that

represent textures used by

 the fragment shader.

 Shader program—Fragment shader program source

code or executable that describes the operations that

will be performed on the fragment. The fragment

shader can either discard the fragment or generate a

color value referred to as gl_FragColor. The color,

depth, stencil, and screen coordinate location (xw,

yw) generated by the rasterization stage become

inputs to the per-fragment operations stage of the

OpenGL ES 2.0 pipeline.[1]

Fig 3.4 Fragment shader

Per-Fragment Operations

After the fragment shader, the next stage is per-

fragment operations. A fragment produced by rasterization

with (xw, yw) screen coordinates can only modify the pixel

at location (xw, yw) in the frame buffer. Figure describes the

OpenGL ES 2.0 per-fragment operations stage.

3.5 Per-fragment operations

The per-fragment operations stage performs the

following functions (and tests) on each fragment:

• Pixel ownership test—This test determines if the

pixel at location (xw, yw) in the frame buffer is currently

owned by OpenGL ES. This test allows the window system

to control which pixels in the frame buffer belong to the

current OpenGL ES context. For example, if a window

displaying the OpenGL ES frame buffer window is obscured

by another window, the windowing system may determine

that the obscured pixels are not owned by the OpenGL ES

context and therefore might not be displayed at all.

• Scissor test—The scissor test determines if (xw,

yw) lies within the scissor rectangle defined as part of the

OpenGL ES state. If the fragment is outside the scissor

region, the fragment is discarded.

• Stencil and depth tests—These perform tests on

the stencil and depth value of the incoming fragment to

determine if the fragment should be rejected or not.

Point-Sprite

Rasterization

Line

Rasterization

Triangle

Rasterization

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 4 1755 - 1758

__

1758
IJRITCC | April 2015, Available @ http://www.ijritcc.org

__

• Blending—Blending combines the newly

generated fragment color value with the color values stored

in the frame buffer at location (xw, yw).

• Dithering—Dithering can be used to minimize the

artifacts that can occur from using limited precision to store

color values in the frame buffer.

At the end of the per-fragment stage, either the

fragment is rejected or a fragment color, depth, or stencil

value is written to the frame buffer at location (xw, yw). The

fragment color, depth, and stencil values are written

depending on whether the appropriate write masks are

enabled or not. Write masks allow finer control over the

color, depth, and stencil values written into the appropriate

buffers. For example, the write mask for the color buffer

could be set such that no red values get written into the color

buffer.

In addition, OpenGL ES 2.0 also provides an

interface to read back the pixels from the frame buffer. Only

pixels can be read back from the color buffer. The depth and

stencil values cannot be read back.

4. CONCLUSION

It allows you to create interactive programs that

produce color images of moving, three dimensional objects.

The iPhone 3GS brings OpenGL ES 2.0–

programmable hardware into millions of consumer’s hands.

5. REFERENCES

[1] Aftab Munshi, DanGinsburg, Dave Shreiner,”OpenGl Es

2.0 Programming Guide”, ISBN-13: 978-0-321-50279-7.
[2] Nakhoon Baek and KwanHee Yoo” Providing Direct3D

Features over the Desktop OpenGL”, International Journal

of Smart Home Vol. 5, No. 4, October, 2011

http://www.ijritcc.org/

