
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 4 143 – 147

143
IJRITCC | April 2017, Available @ http://www.ijritcc.org

Event Transformation for Browser Based Web Devices

Dilip Prajapati

M Tech,

SEC Sikar

prajapati.dilip@gmail.com

Dr.Sudhir Rathi

Professor,

SEC Sikar

rathisudhir@gmail.com

Deepika Gupta

Assistant Professor,

CET Bikaner

deepika.gupta1218@gmail.com

Mrs. Manju Kumari
Lecturer, Computer

Engineering

Govt. Polytechnic College,

Bikaner

manjusunita08@gmail.com

Abstract—Today a smartphone or tablet supports seven to eight ways by which user can interact with it. These interaction methods are touch,

mouse, keyboard, voice, gestures, hover & stylus. Future is going towards IoE (Internet of everything) but if we really want to realize this vision

then we need someone who can deal with these various existing and upcoming device interaction methods.

This paper talks about a custom JavaScript library, which is accountable for registering native events coming from different event sources and

maps it with the user defined key map to form a proper gesture. It is not a plain mapping because it takes care of many parameters like event

state, occurrence, time interval of key press etc. If the events are coming from touch screen device then complexity increases many folds because

forming a touch gesture involves all mathematical steps related to identification of swipe direction. Also in order to support the acceleration, its

required to know till how long key was pressed and when it was released else no gesture will be formed and all events will be discarded. Based

on device capability supported events could be discarded to completely knock off a device interaction method. It could be touch, mouse or key

anything. This paper investigates heterogeneity of device interaction method events to form uniform gestures so that application developer need

not to write code for each and every device interaction method.

Keywords—Gestures, Event transformation, Event simulation

__*****___

I. INTRODUCTION

Form the introduction of the touch screen devices many

companies followed suit and started to introduce touch screen

inputs for their mobile device. Mobile & Tablet touch screen

devices are becoming more and more common in our daily

lives. Within the domain of human computer interaction, touch

has been considered an interaction medium for modern

generation. Until recently however, it was limited to

recognizing single touch interactions such as selecting menu

options or entering numbers in systems in banks, stores, etc.

Touch was basically treated as a replacement of mouse.

Recent past innovations in multi-touch devices, have

initiated new opportunities for computer interaction that are

fundamentally intuitive and natural. Comparatively, multi-

touch is a newer interaction technique, where different types of

touches including more than one fingers, hands or arbitrary

objects, can be used to interact with a system. While research

to find the most suitable multi-touch technology is in progress,

a number of devices are available that use different approaches

to support this form of interaction. One of the majorchallenges

of handheld devices is that they have to be tiny so they are

limited to a smaller screen. Even though high resolution

displays built into digital gadgets enable a larger workspace for

applications, only some limited amount of information is

displayed on a screen at any given time.The simple method to

display high volume of information on the screen is to display

the content in full resolution and let the user zoom and tap to

the area of interest. It has become a very common activity to

perform zoom gesture to check or search information of the

interest.

In current world mouse and keyboard provide the means of

virtually all input. Use of other options than keyboard or

mouse which is grasping virtual objects, head, hand or body

gesture, eye fixation tracking are getting popular with

popularity of ubiquitous and ambient devices. We will see

more elderly and fewer younger people as a process of huge

demographic change. This population will continue to increase

significantly in the future. It is widely accepted that we need to

address this issue through more research work
[1]

. This paper

reviews some studies regarding device interaction

methodologies. From the days of microprocessors and

controllers we have been interacting with switches. With the

growing phase of embedded systems these switches have been

taken a standard form keyboard. Its one of the mostly used way

of device interaction and still almost many of our household

digital gadgets supports it. For the developer community

writing code in C/C++ to handle each state of keyboard key

was not easy. It used to require proper code design, thanks to

hierarchical state charts
[2]

. It gave a new direction to developer

community so that they can write maintainable code
 [3]

.

Introduction to computer systems introduced us to new

device interaction method “Mouse”, from the initial days of its

usages; it has become such a popular device interaction

method. Not only it provides the ease to select small objects on

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 4 143 – 147

144
IJRITCC | April 2017, Available @ http://www.ijritcc.org

screen but at the same time introduces to gestures for various

user operations. Due to mouse only DoS based 2D games got

huge popularity. In current digital edge the king of device

interaction method is touch. Touch has changed the entire way

human used to interact with devices. Touch has given new

dimension to device interaction. It’s fast easy convenient and

more intuitive that is attracting its usages in all segments of

digital devices. It is not in scope of this paper to conduct a

detailed survey of the history of touch based interactions.

Rather, I would like to highlight two important changes of

gesture based interactions in the history. First is the shift from

pen gestures to finger gestures and the second is the change

from stroke gestures to multi-touch gestures. Stylus was the

first medium for drawing stroke gestures on touch screens,

before this stroke gesture research

focused on the digital pen as the drawing device and most

stroke gesture HCI research work published to date, such as
[4,

5, 6]
 has been based on data collected from gestures produced

with high quality inductive digital styli. However, recent

commercial product design avoids the use of the pen for user

convenience and simplicity. Hence, a major recent focus in

gesture design refers to finger gesture design, as well as the

combinational use of finger and pen gestures. This kind of shift

raises several research questions regarding gesture-based

interactions.

Past surface gesture studies focused on stroke gestures,

which are usually drawn by a pen or a finger. Advances in

touch screen allow users to draw touch gestures with multi

fingers or combinational input styles with pens and fingers.

Higher degree of freedom enables the user to easily perform

some gestures, such as using zooming gesture to enlarge

targets. Using multi fingers to perform such gestures is

consistent with user experiences in real world situations. This

input attribute meets the requirement of NUI. Therefore, multi

touch gestures are becoming more and more widely used in

commercial products. Also, the research of touch based gesture

interactions became interested in multi-touch/sketch gestures.

The above two changes indicate that gesture interactions, as a

natural and convenient interaction style, are gaining popularity

in interactive device design. Sketching and writing are natural

activities in many cases. Using pen and paper, a person can

quickly write ideas and draw pictures and diagrams, deferring

details until later. The informal nature of pens allows user to

focus on their task without having to worry about precision.

However, more computing devices are coming facilitated with

pens, there are few useful pen-based applications out there that

take benefit of the fact that pens are nice for sketching. Most

applications use pens only for dragging, tapping, and selecting.

These applications simply consider the pen as another pointing

device.

Increasingly our surroundings is populated with a variety of

intelligent devices, each groomed in a particular function. The

modern drawing room, for example, typically have a HD

television, amplifier, DVD player, lights, and so on. In the

future, we can look forward to these gadgets becoming more

interconnected, more types and more specialized as part of an

increasingly sophisticated and integrated intelligent

environment. This presents a challenge in designing good user

experience & interfaces. For example, today’s drawing room

coffee table is typically cluttered with many user interfaces in

the form of infrared remote controls, each equipped with many

buttons. Seldom each of these interfaces controls a single

device, and requires the user to pay attention to finding the

right button rather than attending to the device under control.

Future’s intelligent eco system environment presents the

chance to present a single intelligent user interface to control

many such gadgets when they are networked. Web applications

are fundamentally reactive. Code in a web page runs in

reaction to events, which are triggered either by external

interaction or by other events. The DOM, which defines these

behaviors, is therefore central to the behavior of web

applications. Modern web applications are fluid collections of

script, styles and markup that react and adapt to user

interaction. Because their programming model differs from

traditional desktop applications. To date, most efforts have

directed on individual portions in isolation, notable progress

has been made in clarifying the semantics of JavaScript, in

modeling the tree structure of HTML, and in understanding the

overall behavior of the web browser as a runtime environment.

Web programming is basically event driven, and employs a

powerful mechanism for event propagation. Perhaps counter

intuitively, the script loaded in web applications is largely

inactive, and only run when triggered by events dispatching

through the HTML structure in which it resides. Events

dispatching through the HTML structure in which it resides.

Web apps are large codebases in languages with (currently)

poor support for modularity. An intuitive but not complete

model for program web pages is that of an asynchronous event

loop. In this model, events will be triggered by user interaction,

and event callbacks have access to an object graph representing

the HTML, known as the Document Object Model (DOM).

II. PROPOSED METHODOLOGY

Event Manager is a very lightweight, simple, highly

configurable and thought out script for handling browser

events. In order to address the heterogeneity of device

interaction methods, we have a solution and its Event

Transformer. Event Transformer works like a translator

between application and platform. Based on interaction

methods supported by device’s platform, event transformer can

be configured and ready to use. Now applications just need to

rely on event transformer events, so no need to include code in

your application for various event/interaction sources. The best

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 4 143 – 147

145
IJRITCC | April 2017, Available @ http://www.ijritcc.org

part is it’s written in Java script so compatible with all

browsers so all internet enabled devices can make use of it.

Fig. 1. Basic concept of Event Transformer

In order to perform event transformation in actions, it passes

through many modules of event transformer. Some of them are

described below. If a developer wants to handle both raw as

well as actions delivered via event transformer, it is possible. It

makes event transformation design compatible with old codes

and libraries.

A. Event Observer

Event observer has collection of event listeners for various

event sources enabled via event transformation configuration

files. Always event observer listen all events in event

propagation phase.

B. Type Detector

After the event observation, it will be passed to type detector.

Type detector analyzes and parse event object to identify the

event type. In browser event detection is really important as

different browser sends different event details as part of event

object.

C. Event Mapper

Based on event type, event mapper maps the current event

with the configured action type and action code. In case of

event sources other than touch events gestures simulated by

gesture manager will be mapped with actions as per configured

in action map.

D. Gesture Manager

In case of touch, mouse and hover series of event will be

observed and detected to form best possible gesture. Gesture

manager performs all such mathematics like angle and

direction calculations to form best possible gesture. All gesture

formation will be based on gesture confirmation done by

application developer.

E. Event Delegator

Once event will be mapped against action then event

delegator creates new action event and embeds some pre

computed information. It helps developers to handle complex

UI scenarios in coding.

There are several configuration maps are available as part of

event transformer. With the help of these maps developers can

define and control various features of event transformer. To

make it compatible with latest technology, format of

configuration is JavaScript object notation. In case developer

misses anything in configuration maps then event transformer

performs all calculations based on default settings.

A. Action Map

It maps key codes with actions. In case of touch events it

maps gestures with actions. Action map is also useful in case

of making a key as hot key. Long key press event can also be

configured with a particular action. Grouping of events to an

action can be done as part of action map.

B. System Map

It maps platform notifications with action notifications. In

case there is any change at web kit level, related to any

platform notification structure then this map is really useful

because by just making some changes to system

mapapplication can run (no need to make any code level

changes).

C. Source Map

It helps in enabling and disabling a particular event source. In

order to get event transformer actions at least one event source

should be enabled. As of now five event sources keyboard,

mouse, touch, system and orientation are enabled. In future

more event sources could be added to event transformer and

same can be enabled or disabled via the source map.

D. Constants Map

All kind of configuration related to gesture tuning could be

part of constants map. As of now long key press interval,

minimum swipe length, velocity levels, tap & hold interval and

swipe interval are part of constants map. Under the constants

map we do have option to enable DOM events as well.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 4 143 – 147

146
IJRITCC | April 2017, Available @ http://www.ijritcc.org

Fig. 2. Architecture of Event Transformer

III. RESULTS

As per comparative study proposed in previous chapter

event transformer is not a kind of event library but it enables

developers to get rid-off heterogeneity introduced by various

events sources like touch, mouse, hover, keyboard etc. None of

the event library is providing this unique quality which allows

developers to write applications, agnostic of event sources.

The above plotted graph provides a fair idea that what benefit

we are getting out of event transformer over native java script.

Consider a web application supporting three event sources

keyboard, mouse and touch. When we use event transformer

then approximately we need to write 100 lines of code to

handle all the normal use cases were as if we use native java

script then it goes minimum 300 lines of code to suffice same

set of use cases. With these results we can say that if

complexity increases some more folds then definitely

developer will end up in writing puzzled and messy code.

When we use event transformer then DOM event processing

happens two times. First all event captured by event

transformer lib and then it will be captured by application.

Event transformer takes less than 50 milliseconds to form an

action event and then its matter of application to consume it.

Same will be the case when we use native java script as event

will be captured directly by the application and proper

interpretation will happen to take appropriate action so

introducing event transformer in web application doesn’t cause

any kind of increment in time complexity of the application

responsiveness.

IV. CONCLUSION

The paper investigated transformation of events generated by

different event sources in actions and its uniform handling at

application level. An action also contains dynamic information

to implement animations as part of user interface.Application

developers need to write code only for actions. Different event

sources can be integrated with event transformation library.

Currently keyboard, remote, mouse and touch event sources

are integrated with it. In case of touch events only basic actions

are supported but in order to suffice requirement of recent user

interface trends, it’s possible to plug-inany third party touch

library for rapid application development.The best part is event

transformation action follows W3C DOM3 event

specifications, so web application developer need not to learn

anything about actions provided by event transformation.

Animations have become integral part for almost all user

interface paradigms so in order to provide ease to implement

animations, event transformation is very useful as it calculates

and adds animation related information with all actions.

Miscellaneous use case related to keyboard and remote control

are also handled gracefully by event transformation library are

event grouping, hot keys handing, long key press, hot key’s

long key press, WAC notifications, event map and key code

variations. Key codes for remotes keys could be different from

platform to platform but event transformation configuration

helps to deliver uniform key codes. Overall event

transformation looks promising in resolving heterogeneity of

handling events coming from various event sources.

V. FUTURE WORK

We only explored the possibility of efficient event

transformation of touch, mouse & keyboard events in actions

Event
Transformer

Native JS

Line of Code 100 300

1

3

0
1
2
3
4
5

H
u

n
d

re
d

s

Line of Code

Line of Code Linear (Line of Code)

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 4 143 – 147

147
IJRITCC | April 2017, Available @ http://www.ijritcc.org

so that application views should be agnostic of device

interaction methods. In near future many new device

interaction methods are coming some of them are finger hover

and stylus hover, voice recognition, air & eye gestures. It

would be good and challenging to understand event provided

by these event sources and their integration with event

transformation library. If it goes fine then application

developer will love it as they need not to write code for such

device interaction methods and at the same time application

footprint and complexity will also be less. It also need to be

analyzed further that with various event sources till what level,

we can resolve the heterogeneity of event handling mechanism,

for example some actions between keyboard events and touch

events are common but a wide range of actions generated by

touch events will be completely different from keyboard events

like pinch & zoom. Many open sources libraries are available

for specific event sources to form gestures and evolving day by

day and getting popularity as well. It would be also interesting

to see how easy it would be to integrate those libraries with

event transformation library to benefit wide range of developer

community.

REFERENCES

[1] M. Bhuiyan and R. Picking, "A Gesture Controlled User

Interface for Inclusive Design and Evaluative Study of Its

Usability," Journal of Software Engineering and

Applications, Vol. 4 No. 9, 2011, Doi:

10.4236/jsea.2011.49059, pp. 513-521.

[2] Harel, David, "State charts: A Visual Formalism for

Complex Systems", Science of Computer Programming,

8, 1987, Elsevier North-Holland, Inc, Doi: 10.1016/0167-

6423(87)90035-9, pp. 231-274.

[3] Samek, Miro, Practical State charts in C/C++: Quantum

Programming for Embedded Systems, CMP Books, 2002,

ISBN: 1-57820-110-1.

[4] Andersen and Zhai “Writing with music: exploring the use

of auditory feedback in gesture interfaces”, ACM TAP

Volume 7, Issue 3 (June 2010) Article No. 17, doi:

10.1145/1773965.1773968, pp. 1-24.

[5] Appert and Zhai, “Using strokes as command shortcuts:

cognitive benefits and toolkit support”, In Proc. CHI 2009

of the SIGCHI Conference on Human Factors in

Computing Systems, ACM Press (2009), ISBN: 978-1-

60558-246-7, Doi: 10.1145/1518701.1519052, pp. 2289-

2298.

[6] Bau and Mackay, “A dynamic guide for learning gesture-

based command sets”, In Proc. UIST 2008, ACM Press

(2008), ISBN: 978-1-59593-975-3, Doi:

10.1145/1449715.1449724, pp. 37-46.

