
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 8 2390 – 2393

2390
IJRITCC | August 2014, Available @ http://www.ijritcc.org

Concurrent Context-Free Framework for Conceptual Similarity Problem using

Reverse Dictionary

V. Nageena

Computer science Engineering

UCEK-JNTUK

Andhra Pradesh, India

nageena29@gmail.com

Ch. Ratna kumari

Computer science Engineering

UCEK-JNTUK

Andhra Pradesh, India

ratnamala3784@gmail.com

Abstract--Semantic search is one of the most prominent options to search the required and relevant content from the web. But most of them are

doing key word and phrase wise similarity search. It may or may not find the relevant information because they directly search with that phrase.

But, in most of the cases documents may conceptually equal instead of term wise. Reverse dictionary can solve such type of problems. This will

take meaning of the word and it will return related keywords with respective ranks. But main problem here is building such dictionaries is time

and memory consuming. Cost effective solutions are required to reduce search time and in-memory requirements. This paper focuses on such

aspects by utilizing concurrent programming and efficient index structures and builds a framework to Conceptual similarity problem using

reverse dictionary. Simulation results shows that proposed approach can take less time when compared to existing approaches.

Keywords: semantic search, reverse dictionary, concurrent programming, stemming, bloom filters, nlp

___*****___

I. INTRODUCTION

Search and Communication both are dependent

words. Whenever we search for specific topic the system or

other human has to retrieve the relevant information.

Semantic Search and natural language processing is one of

the wing of Artificial Intelligence. Sometimes user may give

input like phrase or event like sentences rather than simple

keywords. It may be wrong due to spelling mistake or

context problem. For example „week‟ is different from

„weak‟. According to his expected context given spelling

may be wrong, But there should be a system in such a way

that the results should be both conceptually and sound wise

similar.

People who work more with natural languages are

affected heavily by this problem. Most of the people are

having a problem to express their feelings in a single word

instead of collection of sentences. In that case Reverse

dictionary is useful. If any user is able to give a sentence as

input then RD gives most prominent and related words with

ranks which reflect the full or partial meaning of the given

input. But building such dictionaries require more language

specific knowledge such as grammar, vocabulary etc.

The CSP is a well-known hard problem [1] which

has been addressed in a number of ways with a limited

degree of success. The real-time, online concept similarity

identification problem we need to tackle is different from

what extent CSP work addresses. In effect, one of the core

contributions of this work is the development and

implementation of a practical and scalable (i.e., capable of

supporting online interactive applications) concept similarity

measurement system. Specifically, the two problems have

key differences that make direct use of existing results

infeasible.

II. PRELIMINARIES

A. OpenNLP Parser:

Parser is a software component that takes input data and

builds a data structure often some kind of parse tree giving a

structural representation of the input, checking for correct

syntax in the process. OpenNLP is a machine learning tool

kit for the processing of natural language text. It supports

tokenization, sentence-segmentation, part-of-speech tagging,

namely entity extraction, chunking, parsing and conference

resolution.

B. Information Retrieval:

Information Retrieval [6] is a process which begins

when an input query is given by the user. In this process, the

query simply does not identify a single object in the

Database. Instead, several objects may match the query,

perhaps with different degrees of relevancy.

Most Information Retrieval systems compute a numeric

score on how well each object in the Database matches the

query, and rank the objects according to this value. The top

ranking objects are then shown to the user. The process may

be iterated if the user wishes to refine the query.

Index is a mechanism for locating a given term in a text.

It is possible to find information without resorting to a page

-by -page search. There are many ways to do indexing like

signature files, bitmaps, inverted file indexing etc. Inverted

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 8 2390 – 2393

2391
IJRITCC | August 2014, Available @ http://www.ijritcc.org

files offer better performance than signature files and

bitmaps in most applications. An Inverted file indexing also

requires a lexicon. A lexicon is a list of all terms that appear

in the database. Lexicon supports a mapping from terms to

their corresponding inverted lists.

C. Context-Free Parsing Algorithm:

Context-Free grammars are extensively used for

describing the syntax of both programming languages and

natural languages. Parsing algorithms for Context-Free

grammars play a major role in the implementation of

programs which understand or translate natural languages.

This is an efficient Context-Free parsing algorithm [7]

which is capable of handling large class of grammars in

linear time. It is similar to both Knuth‟s LR (K) algorithm

and the familiar top-down algorithm. Its time bound is

proportional to n
3
, where n is the length of the text being

parsed; it has n
2
 bound for unambiguous grammars

.

D. Word Net:

Word Net [3] is conceived as a machine readable

dictionary. It is a popular lexical database used in NLP

(Natural Language Processing). It constructs lexical

information in terms of word meanings. Word Net maps

word forms in word senses using the syntactic category as a

parameter. Words of the same syntactic category that can be

used to express the same meaning are grouped into a single

synonym set called synset.

For example, the noun “computer” has a synset:

{computer, data processor, electronic computer, information

processing system}.

E. Query processing:

The simplest type of query is the Boolean query

processing in which terms are combined with the

connectives AND, OR and NOT. Every input query needs to

be processed. It is straight forward to process such a query

using inverted file index. The Lexicon is searched for each

term; each inverted list is retrieved and decoded. Finally the

documents so indexed are retrieved and displayed to the user

as the list of answers.

If the user is not satisfied with the retrieved number

of results, then in order to improve our search process, we

make use of these connectives. With the help of these

connectives we can improve our search process and retrieve

required number of related results. A query can have one or

many results [10] based on the context of our search. We

can choose between them.

III. PROPOSED APPROACH

Motivation

There are some existing approaches to solve the

problem of concept similarity as well as reverse dictionary.

Those approaches build the reverse dictionary from the

forward dictionary as one time task. Later on whenever user

gives the input it searches the conceptually similar words

based on synonyms, hypernyms, hyponyms and antonyms.

Actual problem arises here. For every input phrase one has

to search the related words in different databases which will

increase the search time. Multi phrase or sentence input

cannot be validated in the previous approaches. To reduce

this complexity an efficient framework is required.

Following sections describe the solution of above mentioned

problems

Proposed approach is an extension of work proposed in

[2]. But there are two new features added to that work. First,

rather than searching all the databases which contains

synonyms, antonyms, hypernyms and hyponyms

sequentially, apply concurrent searching. Second, not only

concept similarity but also sound wise similarity is also

considered. First part of the proposed approach is further

divided into two parts. Multi-phrase processing with

concurrent execution and context-selection then search. The

second part of first phase also uses the first part of first

phase. Here is the description of each phase.

A. Multi-phrase processing

In this type, whenever user gives input Word net [3]

sentence detect is used to identify and divide the sentences.

Now these sentences are pipelined to concurrent process. At

this stage one fork join task is created to each phrase and

submitted to multi-core system. Every task has following

responsibilities

 Tokenization of phrase

 Identify and removal of stop words

 Identification of negation words and search the

antonyms of those words

 Fetching of synonyms, hypernyms, hyponyms and

stem words

 Building of Bloom Filter for each term of the given

phrase

 Initialization of parse tree threads to each term to

find the relevance of the terms to given phrase

 Executing the query and generate the results with

rank.

1. Tokenization of phrase:

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 8 2390 – 2393

2392
IJRITCC | August 2014, Available @ http://www.ijritcc.org

Tokenization is a process of dividing the sentence into

smallest individual units called tokens. Each phrase is

dividing into multiple terms with space as a delimiter. These

terms becomes input for further processing.

2. Stop word removal:

In the real time most of the words are occurred

frequently. These words are less significant in searching. So

removal of these words will increase the accuracy of the

search results and reduce the search time.

List of stop words

a, be, person, some,

someone, too, very, who, the,

in, of, and, to, that, for, with,

this, from, which, when,

what, into, these, where,

those, how, during, without,

upon, toward, among,

although, whether, else,

anyone, beside, whom, onto,

anybody, whenever,

whereas.

TABLE 1: Stop Words

3. Replacement of negation words:

Some of the words such as not, none, etc are

treated as negation words. They give different or opposite

meaning when appended with other words next to them. In

this case find the antonyms of the words next to these words

and replace the negation word + next word (neg word) with

antonym changes the sentence into more appropriate phrase

for further processing.

4. Fetching of synonyms, hypernyms, hyponyms

and stem words

Fetching the related words will increase the scope

of the search and concept relevance probability. It will

increase the word density. There is a problem here. Every

word has different senses and different parts of speech. So

we have two possibilities here. One is to fetch the words

with all the senses or take confirmation from the user before

query execution i.e., at the time of submission of input. Next

part is stemming of each term i.e., conversion of the given

word into its general form. Porter Stemming algorithm [4] is

used in the proposed system. This will broaden the search

space.

5. Building of Bloom Filter for each term of the

given phrase

Every word has so many synonyms, hypernyms,

hyponyms and stem words. Handling these words and

searching these words in later process requires so many

probes. Without having proper index structure will again

increase the search space, search time and degrade the

response time. To overcome this problem proposed

approach uses Forest of bloom filters. Those are like a hash

table of string trees. Whenever we want to probe word,

calculate its hash value and extract the synsets, hypernyms,

and hyponyms. Internally this is array of trees based on

linked lists. So it is fully dynamic in nature. Proposed

approach make this data structure as In-memory as well as

auxiliary to handle the memory overflow.

6. Initialization of parse tree threads to each term

to find the relevance of the terms to given

phrase

Every fork join task further creates new threads for

each term to generate parse trees. For parsing purpose

OpenNLP [5] is used. This parser is used to find the

relativity of the two words in the parse tree [9]. The depth of

those words will give the similarity of those words.

7. Executing the query and generate the results

with rank

Execution of the query is three fold. First, expand

query with synonyms, antonyms, hypernyms, hyponyms and

stem words. All these words are separated or merged with

logical operators && and ||.Second, execution of query to

get the results. Finally, sort the results to give ranks based

on the relevance with the concept.

B. Pronunciation based similarity search

This is the second part of the proposed system. In

this soundex like functions are used to find related words

based on the pronunciation i.e., when listening when

pronouncing these words gives same sound.

Final part of the proposed system is to merge all the results

i.e., results for all fork join tasks and sound wise similar

results and give the output to the requested user.

C. Context Selection based Search

In this model first user select the domain of search then

submit the input. This will greatly reduce the search space.

If the user is familiar with the domain what he is searching

then the system only search the documents of dictionaries

which belongs to that domain. But for this case reverse

dictionary has to build for most of the frequently used

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 8 2390 – 2393

2393
IJRITCC | August 2014, Available @ http://www.ijritcc.org

domains or languages prior to the search. But this is not a

considerable problem due to onetime work.

IV. RESULTS

When working with other existing Reverse dictionaries

[8] we come across the problem of getting irrelevant words

as result for the given input query. We can overcome this

with our approach to a great extent. The following results

show the performance our Reverse Dictionary.

Input Phrase Query Result

Present in large Quantity Ample, bigger, larger,

blown-up, enlarged, puffy,

broad, spacious, wide,

bulky, tremendous,

elephantic, giant, jumbo,

extended, huge.

Move fastly Quick, swift, fast-paced,

express, high-speed,

immediate, prompt,

hurrying, scurrying, rapid,

prompt, smart, windy.

TABLE 2: Sample Results

V. CONCLUSION AND FUTURE WORK

The proposed framework is used to assemble the

various parts of the efficient programming models and data

structures to solve the problem of concept similarity using

reverse dictionary. According to proposal effective memory

management and search management is possible in large

scale. Multi-phrase searching with concurrent execution

greatly reduces the time complexity and effective memory

management is achieved through in-memory and auxiliary

data structure utilization.

Future work could be focused on applying of various

data mining techniques to find the more accurate conceptual

similarities.

VI. REFERENCES

[1] D. Lin, “An Information-Theoretic Definition of

Similarity”, Proc.Int‟l Conf. Machine Learning, 1998.

[2] Dictionary.com, LLC, “Reverse Dictionary”,

http://dictionary.reference.com/reverse, 2009.

[3] G. Miller, C. Fellbaum, R. Tengi, P. Wakefield, and H.

Langone, “Word net Lexical Database”,

http://wordnet.princeton.edu/Word net / download /,

2009.

[4] M. Porter, “The Porter Stemming Algorithm”,

http://tartarus.org/martin/porterstemmer/, 2009.

[5] O.S. Project “Open nlp”, http://opennlp.sourceforge.net/

, 2009.

[6] R. Baeza-Yates and B. Ribeiro-Neto, Modern

Information Retrieval ACM Press, 2011.

[7] J. Earley, “An Efficient Context-Free Parsing

Algorithm”, Comm. ACM, vol. 13, no. 2, pp. 94-102,

1970.

[8] OneLook.com, “Onelook.com Reverse Dictionary”,

http://www.onelook.com/ , 2009.

[9] U. of Pennsylvania, “The Penn Treebank Project”,

http://www.cis.upenn.edu/ Treebank /, 2009.

[10] E. Gabrilovich and S. Markovitch, “Wikipedia-Based

Semantic Interpretation for Natural Language

Processing”, J. Artificial Intelligence Research, vol. 34,

no. 1, pp. 443-498, 2009

http://dictionary.reference.com/reverse
http://wordnet.princeton.edu/Word%20net%20/%20download%20/
http://tartarus.org/martin/porterstemmer/
http://opennlp.sourceforge.net/
http://www.onelook.com/

