
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 2 Issue: 8 2377 – 2383

__

2377
IJRITCC | August 2014, Available @ http://www.ijritcc.org

FPGA Implementation of Low Power Serial to High Speed Data Networks

Padmaneela Nallani

M. Tech, Embedded systems, BVRIT

E.C.E Dept, Hyderabad, India

Mr. T. Vasudeva Reddy

M. Tech (PhD), Associate Professor, BVRIT

E.C.E Dept, Hyderabad, India

Abstract— FPGA based solutions become more common in embedded systems these days. These systems need to communicate with external

world. Considering high-speed and popularity of Ethernet communication, developing a reliable real-time Ethernet component inside FPGA is of

special value. To that end, we present a new solution for FPGA Gigabit Ethernet communications with timing analysis. The solution deals with

"Gigabit Media-Independent Interface" in its physical layer. Network protocol is implemented from physical to transport layer which is UDP. In

this Project using LAN connection various data will be captured by FPGA and will be sent on a serial line. Read the data from UART Receive

and transform the data in it. On FPGA logic is implemented to read data from serial port. Write data in to memory location and transmitted data

out put The FPGA module takes data from serial port and sends to PC in Ethernet form. In PC application will be developed to read data from

Ethernet.

Keywords— Gigabit Ethernet; UDP IP Protocol; EMAC

__*****___

1. INTRODUCTION

FPGA (Field Programmable Gate Array) based systems are

playing an increasingly important role in embedded

systems. Ever since FPGA has vastly used in embedded

systems, communication between FPGA and other parts of

system was turned to be an important necessity. Depending

on amounts of data which should be transferred, different

types of connections can be used. Ethernet communication

provides enough bandwidth for most of the high demanded

applications.

The Gigabit Ethernet technology is an extension of the

10/100-Mbps Ethernet standard. Gigabit Ethernet provides a

raw data bandwidth of 1000 Mbps. Gigabit Ethernet

includes both full and half-duplex operating modes. A

Gigabit Ethernet is imperative for two reasons: faster

systems and faster backbones. With the development of

Ethernet systems and the growing capacity of modern

silicon technology, embedded communication networks are

playing an increasingly important role in embedded and

safety critical systems. Advances in VLSI technology have

also pushed integration to the point where it is now possible

to design and implement a microprocessor and network

controller on a single chip, known as System-on-Chip

(SoC). In a network of embedded systems, each system can

communicate with the other systems in the network, sharing

information and sending and responding to requests as

needed. Embedded devices need to be designed to solve

specific problems. It is a challenge to find the right balance

between power and cost. This becomes even more

complicated when adding network capability to a device.

The advent of Field Programmable Gate Arrays (FPGAs)

with thousands of logic gates has made it possible to verify

specific software functions on specific hardware. This

reduces the design cycle and hence the execution cycles

time to make the embedded system respond faster in real-

time. A reconfigurable NIC (Network Interface Card)

allows rapid prototyping of new system architectures for

network interfaces. The architectures can be verified in real

environment, and potential implementation bottlenecks can

be identified. Dynamically reconfigurable platform will also

reduce power consumption of the network device. FPGA

based platforms fulfill the performance requirements and

provide extra flexibility in comparison to ASIC

implementations. Using an FPGA based custom design PCI

platform, we have incorporated a 10/100/1000Mbps MAC

design to build a low cost, high performance embedded

network controller. Figure 1 gives an overview of the IEEE

802.3 Ethernet Standards

 Figure 1.IEEE 802.3 Ethernet Standards overview

2. ETHERNET COMMUNICATION

This section covers OSI (Open System Interconnection) and

Protocols of the layers which are discussed in this paper.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 2 Issue: 8 2377 – 2383

__

2378
IJRITCC | August 2014, Available @ http://www.ijritcc.org

2.1. OSI MODEL

Figure 2: The OSI and generic Ethernet Physical Layer

model

In order to describe the behavior of a network, the OSI

model is used that has seven layers which are Application,

Presentation, Session, Transport, Network, Data link and

Physical layer. Figure.2 shows the O.S.I. model however,

minor specifications may vary from version to version.

2.2. PHYSICAL LAYER

The Physical layer indicates how signals can be transmitted

on a network, gives interfaces for a network and defines the

different types of physical aspects. Relation between

protocols which are implemented in the FPGA and also

protocol hierarchy is shown in figure 3.

Figure 3: Top protocols and networks in the TCP/IP model

In order to have an Ethernet connection physical layer uses

PHY device. For connecting PHY device to the FPGA,

GMII interface is used.

2.2.1. GMII Characteristics

The GMII is intended to be an alternative to the IEEE802.3u

MII and RMII. The principle objective is to increase speed

of communication. In Gigabit operation, the clocks will

operate at 125MHz, and for 10/100 operation, the clocks

will operate at 2.5MHz or 25MHz respectively

The Gigabit Media Independent Interface [GMII] is the

interface between the Media Access Controller [MAC] layer

and Physical Layer and is divided into three sub layers.

Those are PCS, PMA and PMD.

i Physical Coding Sub layer [PCS] is the GMII

sub-layer responsible for the interface to the

Reconciliation layer. The PCS layer uses 8B/10B

encoding and performs auto negotiation.

ii Physical Medium Attachment [PMA] is the

GMII sub-layer responsible for providing a

medium-independent for the PCS to support serial

bit-oriented physical media. This layer serializes

code groups for transmission and deserilizes bits

received from the medium into code groups

Encoding is 8B/10B. It performs PMA framing,

octet synchronization/detection, and x^7+x^6+1

scrambling / descrambling

iii Physical Medium Dependent [PMD] is the GMII

sub-layer responsible for mapping the physical

medium to the PCS. The Medium Dependent

Interface [MDI] is the physical layer interface, and

is part of the PMD

2.2.2. GMII Reception TIMING

In order to receive packets with GMII Interface, there are

some points which should be taken into consideration.

According to figure.4 RX_DV signal is High means that

following bits are valid data, but after that preamble can

start after undefined number of clock cycles. This problem

is solved using one state machine which after CRS signal

waits for 7 bytes of preamble followed by one byte SFD.

While operating in full duplex mode, the behavior of CRS is

not specified by standard, hence it is ignored by the MAC.

Figure 4: GMII Reception timing for packet with no error

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 2 Issue: 8 2377 – 2383

__

2379
IJRITCC | August 2014, Available @ http://www.ijritcc.org

2.2.3. GMII Transmission Timing

In transmission an important point is to change TXEN on

rising edge and TXD on falling edge which is clear in

figure5

Figure 5: GMII Transmission timing for packet with no

error

2.3. Data link layer (MAC)

One of two sub layers of the Data Link layer is the Media

Access Control Layer (MAC). The MAC sub layer uses

Carrier Sense Multiple Access protocol which has Collision

Detection ability (CSMA/CD) to ensure sent signals from

different stations over the same channel do not collide.

Considering that IEEE802.3 which is one of the world's

most used protocols is of the CSMA/CD type, importance of

CSMA/CD class becomes more obvious. The MAC layer is

responsible for delivering data packets over a shared

channel. All MAC fields should be sent by sequence and

their sizes are fixed except data field which could vary from

46 to 1500 bytes.

Figure 6 shows all MAC fields. The important point in the

implementation is that bits are sent from LSB (Least

Significant Bit) to MSB (Most Significant bit). If the size of

data is less than minimum size, then some bytes of zero

should be added to this field to reach to 46 byte.

 Figure 6: MAC Packet format.

MAC protocol has been used in order to have raw packet

communication and to verify solution then it has been

improved to UDP communication.

2.3.1. CRC:

CRC (Cyclic Redundancy Check) is a popular and reliable

technique of error detection in data communication systems.

This can detect a large number of errors. This method is

based on polynomial arithmetic. CRC is used in order to

distinguish damaged frames from correct ones. CRC-32 is

one of common CRC standards used for Ethernet which

defines polynomial function G(x) as a common generator

polynomial.

G(x) = x
32

 + x
26

 + x
23

 + x
22

 + x
16

 + x
12

 + x
11

 + x
10

 + x
8
 +

x
7
 + x

5
 + x

4
 + x

2
 + x

1
 + x

0
.

X represents bit value and superscript of x shows the

position of bit in a bit stream. CRC should be calculated by

both MAC sender and receiver and in a case that they do

not have equal values receiver should discard the packet.

2.4. Network Layer

IP (Internet Protocol) is an important Protocol at this layer

because it introduces a way to deliver messages from

source to destination. Both source and destination use one

fixed address. This protocol should be called by host-to-

host protocols. For example in this project UDP module

calls this protocol to take UDP packet as data and transmit

datagram.

2.5. Transport Layer

Transport Layer has two protocols; the Transmission

Control Protocol (TCP), which provides a communication

with reliable data delivery, and the User Datagram Protocol

(UDP) which gives an unreliable communication. UDP is

such a simple transport protocol that allows applications to

send datagram and handle translation between ports and

sockets. UDP has twofold ports: source and destination;

Also its segments consist of 8-byte header which is shown

in figure 7

Figure 7: The UDP header

The interface of sending the packets by IP is UDP which

Source Port

Number (16 bits)

Destination Port

Number (16 bits)

Length

(UDP Header + Data)

UDP Checksum

(16bits)

Application Data

15 8 7 0

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 2 Issue: 8 2377 – 2383

__

2380
IJRITCC | August 2014, Available @ http://www.ijritcc.org

does not give delivery guarantees due to the lack of error
handling. Moreover, in some applications which TCP is
not suited, UDP can be used. For instance, in applications
which low latency seems more significant compared with
reliable data delivery, UDP is a better choice.

2.6. Application layer

The application layer is the OSI layer closest to the end user,

which means both the OSI application layer and the user

interact directly with the software application. Some

examples of application layer are implementations also

include On OSI stack: FTAM File Transfer and Access

Management Protocol, X.400 Mail and Common

Management Information Protocol (CMIP). On TCP/IP

stack: Hypertext Transfer Protocol (HTTP), File Transfer

Protocol (FTP), Simple Mail Transfer Protocol (SMTP) and

Simple Network Management Protocol (SNMP)

3. STRUCTURE OF CORE

Objective of this section is to provide detailed information

about source code of presented 1000MB Ethernet

communication. A component should be feasible to use in

different projects and different solutions (Re-usability).

Developing components by using different developers

which speed up process would be easy when parts are

independent from each other. For example in presented

architecture UDP communication there are two different

components which are UDP sender and UDP receiver.

Therefore in a project that just sending operation is needed,

it is completely possible to only use UDP sender component

individually. Although in our case both components are

used, In implementation of solution, VERILOG HDL

programming language is used.

3.1. TOP COMPONENT

In the FPGA applications there is a top layer which is

composed of other components and plays the role of a

container and organizer for other components. In presented

design, the top component is responsible to control all other

components, this component provides all necessary inputs to

other components and also handles output signals of them.

Figure 8 shows all internal components in top layer. The

figure indicates that identical components are used in

different places (Re-usability). Clock Maker component is a

prime example of this characteristic which is used in four

different places. Clock Maker and other components are

explained in detail separately.

3.2. SIMPLE_GEMAC_WRAPPER

Initiating Ethernet PHY is the first step in establishing

communication. Based on desired communication type,

inner PHY registers should be manipulated.

Simple_gemac_wrapper component is responsible for

initiating Ethernet PHY. It sends I2C (Inter-Integrated

Circuit) commands to PHY and prepares it for specific

speed and duplex mode. GMII is chosen using these I2C

commands. I2C uses two lines (data and clock) for

manipulating registers that are inside PHY.

Figure 8 shows interior components of simple_gemac

_wrapper.clk_125_tx produces proper clock for

management process. I2C Component needs command,

register address, clock and load input. This component

writes input command and input register address on MDIO

line synchronized with the clock.

Figure 8: Top component and hierarchy of other

components that are inside it.

Figure 9: simple_gemac_wrapper Component consists of
I2C and Clock Maker component.

 When wb_ack input is high, it means that command is read

and after turn around, I2C should release the line and let

PHY write the response, then I2C reads the response. After

input values become ready, load input should be high for at

least one cycle of clock and then it should go low to start

making commands and writing on MDIO line. Output MDC

and MDIO of I2C component are directly connected to the

top layer. MDIO can be input when command is read, so it

should be declared as an inOut signal.

3.3. COMMUNICATION

Communication component takes care of all actions related
to Ethernet communication. Top layer can ask this
component to send UDP Packets which are vary in size. In
order to keep design as simple as possible, packets do not
have dynamic size and they can be in only two types: small

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 2 Issue: 8 2377 – 2383

__

2381
IJRITCC | August 2014, Available @ http://www.ijritcc.org

and large packets. Top layer provides communication
component with data and asks it to send the data. Sending
entire data to communication component is not necessary.
Top component just have to send data faster than the speed
of UDP sender component. Moreover, this component
delivers received data to the top layer. The output of
component could be connected to a memory or other
components. This layer of system for handling Ethernet
communication uses packet_sender and packet_receiver
components which are shown in figure 10 TXD and TXEN
output of packet_sender are directly connected to output of
communication layer as well as RXD and RX_DV inputs
which are directly connected to packet_receiver component.

Figure 10: Ethernet communication Component consists
packet sender and Receiver.

3.3.1. PACKET_SENDER

This component uses three synchronized processes to make

a packet which is sent out by using eight lines of data. One

process is responsible for TXEN output, the other sends bits

out and the last one is a state machine. Different layers of

network protocols are built using this state machine. The

state machine which generates appropriate MAC preamble

after sending preamble, state changes to MAC destination

address. It sends all header data such as MAC header, IP

header and UDP header and in the need of sending data field

sends out a request and the communication layer provides a

byte of data for each request. In the meantime packet_sender

makes CRC and attaches four bytes of CRC to the end of the

packet.

3.3.2. PACKET_RECEIVER

The component is able to receive UDP packets. First process
watches CRS input for catching packets and the other one is
a state machine which receives all fields in different layers.
Whenever RX_DV is high, it starts monitoring input data
and if it is in correct format (all header fields such as
preamble, SFD, MAC header and UDP header are correct),
it receives packet and sends out data field of packet to
communication layer. In-dependent from size, data field is
sent to upper layer byte by byte. Communication layer takes
care of this data and could save it in memory or start

processing and analyzing data. While different fields of
packet are getting received in state machine, CRC is getting
generated. Therefore when CRC field is getting received, it
can be compared with calculated CRC. So with no delay,
packets are validated. Finally when packet is received, a bit
is send to upper layer which indicates whether CRC field is
correct or not.

3.4. UART BLOCK

The UART is a serial interface with a frame format of start

bit of active low „0‟at beginning of frame and 8 bit of

information with a stop bit of active high„1‟ signal at the

end. The operation of UART is controlled by Clock signal

which is fed from external crystal.

3.4.1. UART FUNCTIONS:

In addition to the basic job of converting data from parallel

to serial for transmission and from serial to parallel on

reception, a UART will usually provide additional circuits

for signals that can be used to indicate the state of the

transmission media, and to regulate the flow of data in the

event that the remote device is not prepared to accept more

data.

3.4.2. UART RECEIVER

This module is mainly responsible for data reception and the

Conversion of data. It mainly contains data registers and

receivers. When the valid stop bit is detected, data are sent

into the register. When the size equals to the setting value,

data in the register are transferred into the I/O buffer.

Receive controller mainly includes a counter and a 8 bits

shift-register. It is controlled by the state machines.

3.4.3. UART TRANSMITTER

This module is used to send bus data received from

Ethernet. It consists of transmitter and data registers. When

the command is executed, transfer will send data in serial

form until the send counter is 0, which means over. At last,

the flag bit is set. The transmitter is a 8-bit shift register. As

long as data register is not empty, shift register would

constantly read data, add start and stop bits and send them in

asynchronous frame format. It is also controlled by state

machines. When the send clock is high, if the data register is

full, the data will sent in order. The coordinated

communication of multiple serial ports: in order to allow

ports communicate effectively, there is a need to administer

them.

As we know, the FPGA processing speed is far greater than

peripheral transmit data rate, so once I/O buffer receives

data from any serial port, the data can be read by Ethernet

interface chip directly. So long as the serial data start

address and end address doesn‟t conflict. When the send

clock is high, if the data register is full, the data will sent in

order. As we know, the FPGA processing speed is far

greater than peripheral transmit data rate, so once I/O buffer

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 2 Issue: 8 2377 – 2383

__

2382
IJRITCC | August 2014, Available @ http://www.ijritcc.org

receives data from serial port, the data can be read by

Ethernet interface chip directly. So long as the serial data

UART receiver handles reception of data from RS232 port.

Main functions of receiver block are to convert the serial

data to parallel data, and check the correctness of data from

parity and store the received data. UART receiver state

machine. The receiver is in IDLE state by default. When the

serial data pin goes low, indicating the start bit, the state

machine enters DATA0 state. The data is received, one bit

at a time from LSB to MSB in states DATA0 to DATA7.

If parity is enabled, the state machine checks the parity bit

received against the parity obtained from received data. If

the data received is fine, the (RxD_data_ready) bit is set to

„1‟ and the receiver goes back to IDLE state again.

4. EXPERIMENT CONSTRAINTS

The solution is synthesized and transferred into a FPGA by
Xilinx ISE which is from Xilinx Company. A custom board
is used for testing purpose. Specifications of the board
components are described.

The FPGA which is used in this project is Xilinx
SPARTAN 6 XC6SLX45 CSG324C.

Difference between Xilinx families:

 Spartan-3,

Virtex-4

Virtex-5,

Virtex-6,

Spartan-6

No. of slices per 1

CLB slice

4 2

No. of LUTs per

each slice

2 4

No. of LUT inputs 4 6

Max. single-port

memory size per

LUT

16x1 64x1

Max. shift register

size per LUT

 16 bits 32 bits

 Figure 11: Comparison of different Xilinx Families

Between 25 and 50% of all slices can also use their LUTs
as distributed 64-bit RAM or as 32-bit shift registers
(SRL32) or as two SRL16s. From table 2, we can
summarize that there are only 2 slices per CLB slice in
Spartan-6 each contains 4 6-inputs LUTs while 4 slices per
CLB slice are exist in Spartan-3 families each contains 2 4-
inputs LUTs and from table 5 the results show that Spartan-
6 requires a much smaller number of LUTs for the design
than Spartan-3A which lead to the use of less silicon area in
Spartan-6, built upon 45 nm triple-oxide technology while
Spartan-3 is built upon 90 nm triple-oxide technology.
Spartan-6 consumes less power than Spartan-3A, Virtex-4,
and Virtex-5 and is higher in performance.
The PHY, which is used in the board, is Alaska 88e1111
PHY from Marvell Company. By using this PHY
1000BASE-T 1000BASE-X, 100BASE-TX and 10BASE-T

communication is possible which fulfills project
requirements. Using Gigabit Media Independent Interface
(GMII), this device can connect to MAC layer.

5. FLOW CHARTS

Figure 12: Flow chart of complete system.

6. TEST AND DEBUG

In order to test the presented solution, communication
between FPGA and computer is tested by using a windows
application.
A convenient way for testing solution is connecting FPGA
to a PC and trying to communicate with FPGA using
windows based application. In order to be able to send and
receive packets with any IP addresses, manipulation in
network adapter of windows is necessary. Dock light
application which can send and receive custom packets is
used. Wire shark can also be used to analyze the Packets

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 2 Issue: 8 2377 – 2383

__

2383
IJRITCC | August 2014, Available @ http://www.ijritcc.org

Figure 13: Results in Windows application(Dock light).

Figure 14: Simulated Results

7. SUMMARY AND CONCLUSIONS

In this work, we introduce a new solution for Ethernet

communication in FPGAs. The solution uses GMII interface

in physical layer. The communication between monitor

computer and port devices, improve the efficiency of CPU,

and ensure the processing of system in real time. FPGA‟s

flexible programming features also allow further upgrade

for system. Low cost, as the multicard solution can come in

single FPGA card with small modules around it

communicating local area no of systems transferring the

data on system to anther system Low power in comparison

with multicard solution using Xilinx ISE 12.4 , Lot of scope

for adding additional functionality on FPGA

8. REFERENCES

[1] Davicom datasheet 10/100 mbps fast Ethernet

physical layer tx/fx single chip transceiver. pages 1

{ 41,September 2008.

[2] A. L¨ofgren, L. Lodesten, S. Sj ¨oholm, and H.

Hansson,“An analysis of FPGA-based UDP/IP

stack parallelism forv embedded Ethernet

connectivity,” in Proceedings of the 23
rd

 IEEE

NORCHIP Conference, November 2008, pp. 94–

97.

[3] Ethernet

h10032.www1.hp.com/ctg/Manual/bpe50027.pdf

[4] Shouqian Yu, Lili Yi, Weihai Chen, Zhaojin

Wen,“Implementation of a Multi-channel UART

Controller Based on FIFO Technique and FPGA,”

industrial Electronics and Applications, Harbin,

China, May2007, pp. 2633- 2638. |

[5] N. Alachiotis, S. A. Berger, and A. Stamatakis,

“Efficient PC-FPGA Communication over Gigabit

Ethernet,” in CIT, 2010,pp. 1727–1734.

[6] “User datagram protocol,” RFC 768 (Standard),

Internet Engineering Task Force, August 1980.

[7] Tinoosh Mohsenin , (2004) Rice University,

”Design and Evaluation of FPGA-Based Gigabit-

Ethernet/PCI Network Interface Card Thesis”

[8] Yafang Wang, Cheng Zhang, Yanli Hou,Boning

Hu, (2010) “Implementation of Gigabit Ethernet

Network based on SOPC”, Asia Pacific Conference

on Wearable Computing Systems, pp.341-343.

[9] hearlink.tripod.com/CandCDB/GMII_REPORT.pd

f

[10] C. Kachris, et al., (2008) “Design and performance

evaluation of an adaptive FPGA for network

applications”, Microelectron. J (2008) , doi:

10.1016/ j.mejo. 2008.05.011 .

