
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 12 3987 - 3989

3987

IJRITCC | December 2014, Available @ http://www.ijritcc.org

Survey on Type-Ahead Search

Mr. Salunke Shrikant Dadasaheb

Department of Computer Engineering,

DGOI,FOE,Daund.

Pune Maharashtra India

shrikantsalunke25@gmail.com

Prof. Bere Sachin Sukhadeo

Department of Computer Engineering,

DGOI,FOE,Daund.

Pune Maharashtra India

Mr. Rajpure Amol Subhash

Department of Computer Engineering,

DGOI,FOE,Daund.

Pune Maharashtra India

amolrajpure9@gmail.com

Mr. Tirgul Aniket Nandkumar

Department of Computer Engineering, DGOI,FOE,Daund.

Pune Maharashtra India

anikettirgul333@gmail.com

Abstract - A search-as-you-type system calculates answers on the fly as a user types in a keyword query character by character. We want to

study how to support search as you type on data residing in a relational DBMS. We concentrate on how to support this type of search using the

native database language and SQL. A main task that tests is how to leverage existing database functionalities to meet the high performance

requirement to achieve an interactive speed. We studied how to use auxiliary indexes stored as tables to increase search performance. We

presented solutions for both single keyword queries and multi keyword queries and developed novel techniques for fuzzy search using SQL by

allowing mismatches between query keywords and answers. We extended the techniques to the case of fuzzy queries, and proposed various

techniques to improve query performance. We proposed incremental computation techniques to answer multi keyword queries, and studied how

to support first N queries and incremental updates. Our experimental results on large and real data sets showed that the proposed techniques can

enables DBMS systems to support search as you type on large tables.

Keywords: Fuzzy search, DBMS, SQL, Keyword query, incremental computation.

__*****___

I. INTRODUCTION

Presently information system upgraded with the help of

direct feedback. Auto completion of search queries

promoted by search engines or online search. Search engines

shows answers “on the fly” when user type query character

on the keyboard. The web search interface at Netflix also

support for search. For example if user type partial query “

university “, the system shows name of universities such as

University of Pune, University of Mumbai, University of

Toronto so on. So this quick feedback helps user to

understand data formulate queries such search known a

search-as-you-type or type-ahead search.

Most of the knowledge about search system kept in a

backend relational DBMS. It is prominent aspect to find out

how Type-ahead support data stored in DBMS? Now-a-days

oracle and SQL server are help prefix search, but problem

regarding these servers that not all database provide this

features. So we need ever new system which support all

database. The prominent attempt had been made to develop

separate application layer on the database which help to

generate interces and implement algorithms for solving

queries. Even though this method has high performance but

suffer disadvantage such as duplicating data and indexes,

increased hardware costs. The current approaches such as

DB2, Extenders Informix Data blades, Microsoft SQL

server Common Language Runtime (CLR) integration and

Oracle cartridges use database extenders. These approaches

implement new functionalities to a DBMS. This approach is

nor practicable for databases because this unable to provide

extender interface, such as MySQL. So it is need to use

proprietory interfaces generated by database vendors. Hence

a solution for one database may not be portable to another

thus an extender – based solution implemented with C/C++

could cause serious reliability and security problems to

database engines.

The prominent question arises about this idea is, It is

measurable and feasible? By using interactive search

interface can SQL provide high performance? The research

has proved that each question must be must be answered in

100 milliseconds. DBMS system not only structured for

queries of keyboard but also support Type-ahead search

with join operations but it may be expensive.

When we consider two features of Search- as-you –type

such as multi keyword search and fuzzy search, the

scalability became rather more unclear. In multi keyword

search, it permit a query sting to have multiple keyword, and

search records to match these keywords , even though

keyword s appear at different places. For example If user

type in a query “ Privacy mining rak” so search book by

“Vijay Tendulkar” with title including the keywords “

Privacy” and “Mining ” even though keywords at distinct

places . In fuzzy search, it permit small spelling mistake

such as “Tendakar” instead of “Tendulkar”. So this principle

upgrades search experiences of user and support to do Type-

ahead inside DBMS systems.

In present paper, we focus upon how to help Type-ahead

search by native query language (SQL). It means SQL

search queries when user types in keywords character by

character. Our prime aim is to use the built-in query engine

of the database system as much as possible. So with this we

can minimize programming efforts to help Type-ahead

search. The solution generated on one database using

Standard SQL methods is movable to other databases which

support the same standard. To support this prefix matching

we proposed solutions that use auxiliary tables as index

structures and SQL queries to support Type-ahead search.

We lengthen fuzzy query case and proposed various

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 12 3987 - 3989

3988

IJRITCC | December 2014, Available @ http://www.ijritcc.org

techniques to upgrade query performance we proposed

incremental computation techniques to solve multi-keyboard

queries. We studied how to support first N-queries and

incremental updates. Thus our result proves that DBMS

system support search-as –you-type on large table. The same

observations done by Gravano et al and testes et al which

use SQL to support similarity join in databases.

II. LITERATURE SURVEY

In this section we are presenting the different methods

those are presented to solve keyword search:

• S. Agrawal, K. Chakrabarti, S. Chaudhuri, and V. Ganti,

Scalable Ad-Hoc Entity Extraction from Text Collections

[1]: In this paper, the author introduces the ad-hoc entity

extraction task where entities of interest are constrained to

be from a list of entities that is specific to the task. In such

scenarios, traditional entity extraction techniques that

process all the documents for each ad-hoc entity extraction

task can be significantly expensive. In that paper, they

proposed an efficient approach that leverages the inverted

index on the documents to identify the subset of documents

relevant to the task and processes only those documents.

The author demonstrates the efficiency of their techniques

on real datasets.

• S. Agrawal, S. Chaudhuri, and G. Das, DBXplorer: A

System for Keyword-Based Search over Relational Data

Bases [2]: Internet search engines have popularized the

keyword based search paradigm. While traditional database

management systems offer powerful query languages, they

do not allow keyword-based search. In this paper, we

discuss DBXplorer, a system that enables keyword based

search in relational databases. DBXplorer has been

implemented using a commercial relational database and

web server and allows users to interact via a browser front-

end. We outline the challenges and discuss the

implementation of their system including results of

extensive experimental evaluation.

• Arasu, V. Ganti, and R. Kaushik, Efficient Exact Set-

Similarity Joins [3]: Given two input collections of sets, a

set-similarity join (SSJoin) identifies all pairs of sets, one

from each collection, that have high similarity. Recent work

has identified SSJoin as a useful primitive operator in data

cleaning. In this paper, the author proposes new algorithms

for SSJoin. Their algorithms have two important features:

They are exact, i.e., they always produce the correct answer,

and they carry precise performance guarantees. The author

believes their algorithms are the first to have both features;

previous algorithms with performance guarantees are only

probabilistically approximate. They demonstrate the

effectiveness of their algorithms using a thorough

experimental evaluation over real-life and synthetic data

sets.

• H. Bast, A. Chitea, F.M. Suchanek, and I. Weber,

ESTER: Efficient Search on Text, Entities, and Relations

[4]: The author presents ESTER, a modular and highly

efficient system for combined full-text and ontology search.

ESTER builds on a query engine that supports two basic

operations: prefix search and join. Both of these can be

implemented very efficiently with a compact index, yet in

combination provide powerful querying capabilities. The

author show how ESTER can answer basic SPARQL graph

pattern queries on the ontology by reducing them to a small

number of these two basic operations. ESTER further

supports a natural blend of such semantic queries with

ordinary full text queries. Moreover, the prefix search

operation allows for a fully interactive and proactive user

interface, which after every keystroke suggests to the user

possible semantic interpretations of his or her query, and

speculatively executes the most likely of these

interpretations. As a proof of concept, they applied ESTER

to the English Wikipedia, which contains about 3 million

documents, combined with there cent YAGO ontology,

which contains about 2.5 million facts. For a variety of

complex queries, ESTER achieves worst case query

processing times of a fraction of a second, on a single

machine, with an index size of about 4 GB.

• H. Bast and I. Weber, Type Less, Find More: Fast Auto

completion Search with a Succinct Index [5]: The author

consider the following full-text search auto completion

feature. Imagine a user of a search engine typing a query.

Then with every letter being typed, user would like an

instant display of completions of the last query word which

would lead to good hits. At the same time, thebe shits for

any of these completions should be displayed. Known

indexing data-structures that apply to this problem either

incur large processing times for a substantial class of

queries, or they use a lot of space. They present a new

indexing data-structure that uses no more space than a state-

of-the art compressed inverted index, but that yields an

order of magnitude faster query processing times. Even on

the large TREC Terabyte collection, which comprises over

25 million documents, they achieve on a single machine and

with the index on disk, average response time of one tenth

of a second. They have built a full-edged, interactive search

engine that realizes the proposed auto completion feature

combined with support for proximity search semi-structured

(XML) text, sub word.

III. CONCLUSION

In this paper, we studied the problem of using SQL to

support search-as-you-type in data bases. We focused on the

challenge of how to leverage existing DBMS functionalities

to meet the high-performance requirement to achieve an

interactive speed. To support prefix matching, we proposed

solutions that use auxiliary tables as index structures and

SQL queries to support search-as-you-type. We extended

the techniques to the case of fuzzy queries, and proposed

various techniques to improve query performance.

REFERENCES

[1] S. Agrawal, K. Chakrabarti, S. Chaudhuri, and V. Ganti,

“Scalable Ad-Hoc Entity Extraction from Text Collections,”

Proc. VLDB Endowment, vol. 1, no. 1, pp. 945-957, 2008.

[2] S. Agrawal, S. Chaudhuri, and G. Das, “DBXplorer: A

System for Keyword-Based Search over Relational Data

Bases,” Proc. 18th Int’l Conf. Data Eng. (ICDE ’02), pp. 5-16,

2002.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 12 3987 - 3989

3989

IJRITCC | December 2014, Available @ http://www.ijritcc.org

[3] Arasu, V. Ganti, and R. Kaushik, “Efficient Exact Set-

Similarity Joins,” Proc. 32nd Int’l Conf. Very Large Data

Bases (VLDB ’06), pp. 918-929, 2006.

[4] H. Bast, A. Chitea, F.M. Suchanek, and I. Weber, “ESTER:

Efficient Search on Text, Entities, and Relations,” Proc. 30th

Ann. Int’l ACM SIGIR Conf. Research and Development in

Information Retrieval (SIGIR ’07), pp. 671-678, 2007.

[5] H. Bast and I. Weber, “Type Less, Find More: Fast

Autocompletion Search with a Succinct Index,” Proc. 29th

Ann. Int’l ACM SIGIR Conf. Research and Development in

Information Retrieval (SIGIR ’06), pp. 364-371, 2006.

[6] H. Bast and I. Weber, “The Complete Search Engine:

Interactive, Efficient, and Towards IR & DB Integration,”

Proc. Conf. Innovative Data Systems Research (CIDR), pp.

88-95, 2007.

[7] R.J. Bayardo, Y. Ma, and R. Srikant, “Scaling up all Pairs

Similarity Search,” Proc. 16th Int’l Conf. World Wide Web

(WWW ’07), pp. 131- 140, 2007.

