

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 11 3389 - 3397

3389

IJRITCC | November 2014, Available @ http://www.ijritcc.org

__

A Flexible Framework For Implementing Multi-Nested Software Transaction

Memory

1
Dominic Damoah,

2
Roy Villafane,

 3
Edward Ansong,

4
James B. Hayfron-Acquah

5
Henry Quarshie,

6
Lewis Selby

Maxwell Jnr.,
7
Shamo Sebastian

13567
Department of Computer Science

Valley View University

Oyibi, Ghana
4
Department of Computer Science

KNUST, Kumasi

 Ghana
2
Department of Computer Science and Engineering

Andrews University

Berrien Springs, Michigan, United States

Corresponding author: kwddamoah@yahoo.com

Abstract: Programming with locks is very difficult in multi-threaded programmes. Concurrency control of access to shared data limits scalable

locking strategies otherwise provided for in software transaction memory. This work addresses the subject of creating dependable software in the

face of eminent failures. In the past, programmers who used lock-based synchronization to implement concurrent access to shared data had to

grapple with problems with conventional locking techniques such as deadlocks, convoying, and priority inversion. This paper proposes another

advanced feature for Dynamic Software Transactional Memory intended to extend the concepts of transaction processing to provide a nesting

mechanism and efficient lock-free synchronization, recoverability and restorability. In addition, the code for implementation has also been

researched, coded, tested, and implemented to achieve the desired objectives.

Keywords: Transaction Processing, Nested software transaction memory, Multi-Database Concepts, Concurrency Control, Two Phase Commit

Protocol, Distributed Systems.

__*****___

I. THE PROBLEM

The problem is to design a transactional framework that

supports nested transactions in a single processing or

multiprocessing environment and promotes concurrency,

recoverability, and liveliness of the program, making sure

that there are no deadlocks, indeterminate waiting, priority

inversion, and obstructions, which are difficult to detect and

solve and badly affect the excellent performance of

transaction execution. Coupled with these problems that are

normally difficult to achieve are militant problems such as

larger storage overheads, synchronizing asynchronous

transaction, and managing contention. This paper work

explores efficient techniques to solving these problems

without exacerbating them. It also explores the creation of a

new framework that supports an advanced feature, such as

nesting transactions. Among other things it is intended that

this advanced transaction model for transaction execution

will ensure correctness in multiple autonomous nested

subsystems, enhance operational semantics on multilevel

transactions and concurrency or parallelism, and improve

user-defined or system-defined intra-transaction rollback,

otherwise known as partial rollback for full recovery from

failed situations.

This is to evaluate how advanced features of Software

Transaction Memories (STM) out-perform the conventional

programming with locks and how important properties

pertaining to transaction processing in databases are

implemented in software engineering mechanisms to

maximize performance and fault tolerance.

This work is a continuation of earlier results reported on

DSTM2 by [10]. It provides ample theoretical bases to

justify the applicability of multilevel nested transactions in

DSTM2.

This paper makes the following contributions: It

explains why multilevel nested transactions are correct and

efficient, and how nested transactions are dealt with in this

environment. It develops a realistic framework model for

nested transactional processing and execution on top of

DSTM2 or other STMs.

Significant landmarks achieved here is that STMs can

support such advanced feature as nesting. This is a giant

contribution to the quest to optimize multiple processing

cores in shared environments or distributed systems in

nested transaction fashion with or without using locks and

significantly affect how object-oriented-based STMs are

implemented.

BASIC CONCEPTS OF SOFTWARE TRANSACTION

MEMORY

I. SOFTWARE TRANSACTION PROCESSING

 This sections discusses the fundamental concepts

and theories of software transactional memory as a new

paradigm especially in single and multiprocessing cores,

what are transactions, how they provide correctness

guarantees or fault tolerance and what practical limitations

they have. This is followed by a segment that sets up the

environment that no operation can take place without the

call to atomicity. The next section talks about the intent and

purpose of STMs and how they are used to achieve

atomicity, concurrency, and recovery. It goes on to describe

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 11 3389 - 3397

3390

IJRITCC | November 2014, Available @ http://www.ijritcc.org

__

the DSTM2 Library. This section provides the necessary

fundamental issues not only for the rest of the material but

also for design, development, and operations of the STMs.

 Software Transaction Memory is a model for

executing processes atomically and exactly once to

synchronize processes that were otherwise asynchronous.

There are no overhead costs in terms of memory access.

Transactions can run concurrently and commit concurrently

mostly when they have nothing in common or share the

same memory locations. Transactions can easily update

shared memory locations and instantiate objects.

 Consider the normal conventional procedural

method of executing the instruction:

Void foo () { x(): y(): }.It will be impossible to roll back

changes made by x(), if y() fails in the cause of execution or

throws an exception. The fact that x() has made an

irreversible change poses difficult challenges. But if

transactions were employed under this circumstance, the

difficulty and overheads will be greatly reduced. At the

failure of y(), it is aborted and x() is rolled back because it

has not been committed. Hence restoring foo() to its original

state is guaranteed and can be re-executed until it commits.

The concept of transactions holds a powerful solution to

software engineering problems with shared memory

updates.

A recent study by [2] explains that a transaction is

an atomic unit of work that is either completed in its entirety

or not done at all in its scope and ensuring that all its shared

resources are protected from multiple users. A transaction is

a dynamic execution of a sequenceof operations, which

should appear to execute instantaneously with respect to

other concurrent transactions. For recovery purposes,

systems need to keep track of when the transaction starts,

terminates, and commits or aborts. Therefore a recovery

manager keeps track of the following operations:

begin_transaction, read or write, end_transaction,

commit_transaction, and rollback or abort.

The state transition in a typical transaction

execution describes how a transaction goes into activestate

(BEGIN_TRANSACTION) immediately after it starts

execution, where it can perform READ or WRITE

operations. When the transaction ends

(END_TRANSACTION), it moves to the partially

committed state. At this point some recovery protocols need

to ensure that a system failure will not result in an inability

to permanently record the changes of the transaction. Once

this check is successful, the transaction is said to have

reached its commit point and enters the committed state

(COMMIT_TRANSACTION). Optimistic concurrency

control technique, known as validation or certification,

requires that certain checks are made at this point to ensure

that the transaction did not interfere with other executing

transactions while the transaction was executing. Two

transactions conflict if they issue operations that conflict.

Transaction systems impose concurrency control to prevent

conflicting transaction executions. Once a transaction is

committed, it has concluded its execution successfully, and

all its changes must be recorded permanently. However, a

transaction can go to the failed state if one of the checks

fails or if the transaction is aborted during the active state.

The transaction may have to be rolled back to undo the

effect of the changes made (ROLLBACK OR ABORT). The

terminated state corresponds to the transaction leaving the

system. The transaction information that is maintained in the

system tables while the transaction has been running is

removed when the transaction terminates. Failed or aborted

transactions may be restarted later, either automatically or

after being resubmitted by the user as brand-new

transactions.

II. PROPERTIES OF STMS

STMs have a lot of properties enforced by the

principles of concurrency and recoverability, representing

Atomicity, Consistency, Isolation, and Durability (ACID).

Atomicity and Isolation properties will be discussed in detail

because they hold important issues for this project.

Reference [10] states the other characteristics as given

briefly below:

1. In transactional programming the code that accesses

shared memory is divided into transactions, and

executed atomically.

2. Operations of two different transactions are not

interleaved.

3. A transaction may commit or abort.

4. If two transactions conflict, then one must wait for

the other either to commit or abort.

5. Aborted transaction may be typically retried until it

commits when contention has been resolved [19].

6. A transaction must be consistent and preserving.

7. Changes applied after commit must persist to ensure

recoverability.

III. ATOMICITY

A transaction is said to be atomic if it completes all

its set of activities successfully (that is, commit) or if it fails

(that is, abort) when all of its effects executed are undone.

Atomicity features prominently in this project. Therefore,

much time will be devoted to establish what it is and how

much it brings to bear on the entire process.

The concept of atomicity is not original with this

work, having been used extensively in database applications

projects by [3] and [4]. These properties are borrowed from

database concepts and adopted for software engineering

purposes.

The quest to guarantee atomicity is a fundamental

concept underpinning this application programming

interface (API).

Two properties distinguish an activity as being

atomic: indivisibility and recoverability. The usual method

of providing indivisibility in the presence of concurrency

and the one adopted is to guarantee serializability [3].

Reference [14] explains that actions are scheduled

in such a way that their overall effect is as if they had been

run sequentially in some order. To prevent one action from

observing or interfering with the intermediate states of

another action, we need to synchronize access to shared

objects. In addition, to implement the recoverability

property, we need to be able to undo the changes made to

objects by aborted actions.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 11 3389 - 3397

3391

IJRITCC | November 2014, Available @ http://www.ijritcc.org

__

A. Consistency

The main purpose of running transactions on shared

memory or data is to ensure constancy, reliability, and

stability. If problems such as dirty read and non-repeatable

reads are to be avoided, then consistency becomes an

important issue to receive so much attention. According to

[2], a transaction is consistency preserving, if its complete

execution takes the database or the shared object from one

consistent state to another (p. 620).

Ensuring consistency in concurrent programming is

very hard to achieve, but that is the only way to reach the

target of efficiency and improving response time. According

to [15] consistency embraces reliability issues while

coordinating concurrent transactions. The indivisibility of

transactions ensures that consistent results are obtained even

when requests are processed concurrently or failures occur

during a request. Consistency improves stability, constancy,

dependability, and reliability issues of transaction

processing. The transactions must maintain the semantic and

physical integrity of the data.

B. Isolation

Transactions are prone to dirty read, non-repeatable

read, and a host of others if the isolation level is set so low.

Put differently, transaction must execute independently to

avoid unnecessary interferences from competing

transactions running concurrently. Partial results are to be

prevented from being altered or seen by other concurrent

transactions. Lower levels of isolation allow other

concurrent transactions to gain access to dirty reads, which

make it very unsuitable for distributed systems where strict

isolation ensures data integrity.

C. Durability

Durability ensures that nothing can cause updates to be

lost once a transaction is committed. Changes made after the

transaction is committed must persist to ensure that

recoverability is possible. Committed changes must not be

lost because of system failure and failed transactions.

IV. WHY SOFTWARE TRANSACTIONAL

MEMORIES?

Parallel or concurrent execution of programs holds the

prospects of optimization and efficiency but the question

remains, how can consistency be maintained? How possible

is it that we can consistently run two or more programs or

threads to manipulate shared data without resorting to locks?

An outstanding technique that provides an unprecedented

solution is transaction memories. Transaction memories

have incredibly wonderful solutions in both hardware and

software applications [10]. Software transactional memory

is an approach to solving this problem using software

techniques. In transactional programming, the code that

accesses shared memory can be grouped into transactions

that are intended to be executed atomically: Operations of

different transactions should not appear to be interleaved. A

transaction is a single unit of work that can contain several

programming steps that must execute collectively and

successfully to ensure data integrity. Software transactional

memory promotes liveliness of the program ensuring no

deadlocks, indeterminate waiting or convoying, priority

inversion, and obstruction so that there is the guarantee that

there will be no performance issues rearing their ugly heads,

which are extremely difficult to find and correct.

According to [4] conventional programming languages

do not understand transactions and there is no easy way to

fix that. When using transactions with savepoints it is

important to understand that savepoints, like transactions

themselves, provide the control and therefore the means for

state restoration for only those components that understand

transactions including savepoints. For example, if an

application invokes a ROLLBACK function, its state will

only partially be reestablished. Some components, such as

database manager, may cooperate and fully support the

protocol, but the memory manager and the run-time system

of a conventional programming language ignore both

transaction and savepoint completely. In other words, the

database contents will return to the state as of the specified

savepoint, but the local programming language variables

will not. The reason for this is that conventional

programming languages lack durability and persistence.

Reference [10] and [13],[17] have asserted that fine-

grained locking has been used by programmers in

multiprocessing programming environment instead of

coarse-grained lock, which has poor concurrency and

scalability. Also, if the locking protocol is not deadlock-free,

deadlock detection of the locks must be considered to be

part of lock maintenance overhead.

When executing in the shared environment, if the

program crashes while in its critical section, an

indeterminate waiting will keep other processes from

acquiring locks and making progress. This situation is

usually difficult to detect and solve easily. It is, therefore, a

step in the right direction to avoid this condition by

employing transaction semantics to ensure recoverability

and avoid starvation of other processes. Transaction

semantics guarantees that programs executing in their

critical sections are obstruction free and will commit, with

the net effect of making successful memory changes or

rollback leaving memory intact. By extension, transactional

semantics has an inherent recovery mechanism to revert to

the original state when the process crashes and aborting the

transaction becomes inevitable.This approach of getting

over the problem of indeterminate waiting gives software

transactional memories competitive urge over conventional

programming with locks.

In multicore processing environments, where there is

excessive use of locks on blocks of shared memory due to

operations in critical sections. It is impossible to have share

data run parallel as well as independently. They risk

becoming serialized instead and introduce scalability

concerns [13].

Programs become vulnerable to error as a result of

sharing data or memory resources. Any undetected corrupt

data that slip through tend to wreak havoc and more often

than not they are extremely difficult to debug. Dirty-read

problems are also present in transactions depending on the

level ofisolation. Transactions possess an inherent advantage

if the strict isolation is kept.

Conventional locking provides poor support for code

composition and reuse. That is, if two or more tables

methods synchronize internally, then there is no way to

acquire and hold both locks simultaneously. Exporting

tables locks, then, compromises modularity and safety [10].

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 11 3389 - 3397

3392

IJRITCC | November 2014, Available @ http://www.ijritcc.org

__

Finally, basic issues, such as the mapping from locks to

data, that is, which locks protect which data, and the order in

which locks must be acquired and released, are based on

convention, and violations are notoriously difficult to detect

[13].

In summary, lock-based synchronization can lead to

deadlock, makes fine-grained synchronization error-prone,

precludes composition of atomic primitives, and provides no

support for error recovery. Reference [22] explains that

applications that use coarse-grained monitors may see

limited scalability, since the execution of lock-protected

monitors is inherently serialized. Application that use fine-

grained locks, in contrast, generally provide good

scalability, but see increased overheads and sometimes

contain subtle bugs Transactional programming addresses

these problems and provides a viable alternative

synchronization [7] and [11]. For these reasons the

transactional paradigm has evolved over the years to provide

a viable alternative to conversional locking which is heavily

laden with inherent problems extremely difficult to solve

without necessarily aggravating them.

CONCEPTS OF NESTED SOFTWARE TRANSACTION

FRAMEWORK

I. MULTILEVEL NESTED TRANSACTIONS

A transaction is said to be nested if and only if new

transactions are commenced by instructions that are already

inside an existing transaction. These new transactions or

sub-transactions are said to be nested within existing

transactions, which means they have multiple successors.

This is in sharp contrast to the classical model called the flat

transaction that has no internal structure or allows

transactions to be embedded within other transactions. In the

nested transaction model, transactions at the inner levels

must commit before the outer ones can commit. This model

transaction may contain any number of sub-transactions

resulting in arbitrary deep hierarchy of nested transactions.

Nested transaction hierarchies are a collection of nested

spheres of control where the outermost sphere is formed by

the top level transaction which incorporates the interface of

the outside world [6]. The atomicity and isolation properties

of transactions make it possible for the root or host

transaction (the node without a predecessor) to register

changes only when the nested transactions have committed.

Nested transactions have the ability to roll back without any

side effects. Innermost transactions are rolled back first,

followed by the next nearest inner ones until the outermost

one is reached. Transaction properties such as Atomicity,

Isolation, Consistency, and Durability as mentioned earlier

remain valid for nested transactions. That is, nested

transactions which are atomic in nature with properly

isolated execution are guaranteed to make meaningful

progress to the point where they will be committed. In the

event of failed transactions, a rollback is invoked to restore

modified data in shared memory. Otherwise the transactions

are committed and persistent updates in the shared memory

are registered. Also transactions may terminate when root or

top level transaction is committed or aborted. Though sub-

transactions may commit independently because they appear

isolated to other competing transactions, their success

depends on parent transactions. They may abort with no side

effects on surrounding transactions. Aborting any parent

transaction will undo the effects committed by child

transactions. The concept of nested and multilevel

transactions is simplified when looked at as a general tree

that can be traversed sequentially or concurrently as

indicated in Figure 1.

This tree structure shows multilevel for parallel

execution with nested transactions. For the root transaction

TR to commit, all sub-transactions on the various nodes and

at different levels must commit successfully. Likewise,

transaction TR1 can only commit when transaction TR11,

transaction TR12, and transaction TR13 have succeeded

sequentially or concurrently as a result of their subsequent

sub-transaction such as TR121 and TR31 successfully

committing respectively. Transactions at the same level

follow the isolation property and are obstruction-free. They

can run concurrently on different servers. It follows that

consistency as applied in this distributed fashion is not as

required as atomicity and isolation.

Figure 1 A general tree structure showing multilevel

A closed nested transaction proposed by [15] is viewed

as the tree described in Figure 1 where the root transaction

can nest descendant transactions any number of levels deep.

Transaction nodes in the tree structure lend themselves to

strict adherence to the ACID properties, the two-phase

commit protocol, and the serializability paradigm. These

transactions are well suited for short-lived transactions

which are interdependent on one another and are

synchronized in execution to produce consistent outcome. In

this model, parent transaction inherits all locks of a

committing child transaction. However, on conflict a child

transaction can be aborted without aborting the parent,

reducing the overall cost of an abort. It is important to note

here that under no circumstances in closed nested models

will a child’s operations conflict with the operations of its

parent or any of its ancestors.

On the other hand is the open nested transactions

proposed by [15] and [1] usually used in long-lived

transactions where the strict compliance to isolation at the

global level, serializability and atomicity rules are relaxed

to increased concurrency. Open-nested transactions offer

higher concurrency than closed-nested or non-nested

transactions and that allow child transactions to release

locks early to avoid denial of service to other transactions.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 11 3389 - 3397

3393

IJRITCC | November 2014, Available @ http://www.ijritcc.org

__

Other nesting paradigms such as binary andlinear

nesting have special restrictions on ancestor-descendant

relationships for various reasons. Linear nested transaction

describes strictly a single-parent single-child relationship,

and binary-nested transactions allow a maximum of two

children per parent. The policies of either closed or open

nesting could be imposed on these other restrictive nesting

paradigms. These sharply contrast the general tree structure

depicted by the open-nested or closed-nested transactions

where parent transactions are allowed to have an unlimited

number of children. Reference [8] and [9] proposed sagas to

use semantics knowledge to allow a transaction to release

locks early and fully blend both short-lived and long-lived

transactions.

II. GENERAL CHARACTERISTICS OF NESTED

TRANSACTIONS

The term nested as used here suggests that a root or

parent transaction can recursively be decomposed into sub-

transactions. It follows that the root or parent transaction

may have multiple children or sub-transactions. The root or

parent transaction is successfully completed and

permanently updated when the sub-transactions are

committed because all other descendant transactions are also

committed. This implies that if a child transaction fails, the

parent is free to retry or try an alternative task,

compensating transactions, to rescue the overall process or

abort and override the failed transactions if they are not

critical to the general success of that section of the

transaction.

Nested transactions as we know are a concurrency

scheme [15]. Needless to say they support top-level

transactions with all of the ACID properties, in addition to

supporting concurrent execution of independent actions

within these transactions. They allow a topmost-level

transaction to be the root of the tree for nested transactions.

A transaction is serializable with respect to its siblings, that

is, accesses to shared resources by sibling transactions have

to obey the read-write and write-write synchronization rules.

A transaction is a unit of recovery, that is, it can be aborted

independently of its siblings. Nested transaction evolved

from the requirement to allow transaction designers to

design complex functionality decomposable transaction

from the top down. A nested transaction model allows

transaction services to be built independently and later

combined into applications. Each service can determine the

scope of its transaction boundaries. The application or

service that orchestrates the combination of services controls

the scope of the top-level transaction. It occurs when a new

transaction is started on a session that is already inside the

scope of an existing transaction. This new sub-transaction is

said to be nested within or below the level of the existing

transaction. Nested transaction allows an application to

create a transaction that is embedded in an existing

transaction [16].

III. ADDITIONAL PROPERTIES OF DESCENDANT

TRANSACTIONS

A nested transaction's child actions are not considered

to conflict with its parent's actions. Thus, it can lock a

resource locked by its parent as long as none of its siblings

have locked it. A nested transaction can lock a datum in

some mode only if its parent has locked the datum in the

same mode. A parent transaction's actions are considered

not to conflict with its child's actions but not vice versa.

Thus, it cannot access a resource if a child's lock prohibits

the access. Thus, the child's lock wins. An abort by a child

transaction does not automatically abort the parent

transaction. The parent is free to try alternative

compensating transactions or override it and try other nested

transactions. A commit by a child transaction releases the

locks held by it to its parent and makes its actions part of the

action set of its parent transaction. Thus, when the parent

commits, it commits not only those actions it performed

directly but also those performed by its descendants.

IV. CONDITIONS FOR MULTILEVEL

TRANSACTIONS

As noted by [5], the principles of multilevel

transactions can be stated in three rules.

1. Abstraction hierarchy: objects of layer N are

completely implemented by using operations of layer

N − 1.

2. Discipline: there are no shortcuts from layer N to

layers lower than N − 1.

3. Multilevel transactions rely on the existence of a

compensation for each operation on any layer.

Moreover, the compensations on layer N −1 are

scheduled by layer N or higher, which introduces a

recovery dependency across layers.

V. SEMANTICS OF NESTED TRANSACTIONS

In summary, [12] state the following:

1. A parent can create children sequentially

so that one child finishes before the next one starts.

Alternatively, the parent can specify that some of its

children can run concurrently. The transaction tree structure

shown in Figure 1 does not distinguish between children that

run concurrently or sequentially. A parent node does not

execute concurrently with its children. It waits until all

children in the same level are complete and then resumes

execution. It may then decide to spawn additional children.

2. A sub-transaction and all of its

descendants appear to execute as a single isolated unit with

respect to its concurrent siblings. For instance, if TR1 and

TR3 run concurrently, TR3 views the sub-tree TR1, TR11,

and TR12 as a single unit of isolated transaction and does

not observe its internal structure or interfere with its

execution. The same applies to TR1 and the sub-trees TR3

and T31. Siblings are thus serializable, and the effect of

their concurrent execution is the same as if they had

executed sequentially in some serial order.

3. Sub-transactions are atomic. Each sub-

transaction can commit or abort independently. The

commitment and the durability of the effects of sub-

transactions are dependent on the commitment of its parent.

A sub-transaction commits and is made durable when all of

its ancestors including the root transaction commit. At this

point the entire nested transaction is said to have committed.

If an ancestor aborts, then all of its descendants are aborted.

4. If a sub-transaction aborts, its operations

have no effect. Control is returned to its parent, which may

take appropriate action. In this way, an aborted sub-

transaction may have an impact on the state of the shared

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 11 3389 - 3397

3394

IJRITCC | November 2014, Available @ http://www.ijritcc.org

__

data as it may influence its parents to alter its execution

path. This situation can be contrasted with flat transactions

where an aborted transaction cannot alter the transaction

path of the transaction coordinator.

5. A sub-transaction is not necessarily

consistent. However, the nested transaction is consistent as a

whole.

Table 1 gives a summary of activities demonstrating the

semantics in the coordinator of the nested transactions.

VI. JUSTIFICATION FOR THE MULTILEVEL NESTED

TRANSACTIONS

To set up the theoretical bases for the multilevel

transactions it is imperative to throw more light on flat

transactions implemented by DSTM2 supported by

obstruction-free and shadow factories to establish the

distinguishing factors.

When a flat transaction reaches the COMMIT point, its

consistency rules put it beyond the reach of the system so

that it cannot review its consistency constraints. In other

words, the transaction is said to be consistent if it reaches

the COMMIT and hence the outcome can be guaranteed.

For flat transactions, inconsistencies in the data shared at

COMMIT mean nothing can be done about it. This is largely

true in flat transactions because control does not go beyond

transaction boundaries. The flat transaction model of the

DSTM2 is necessary in order to write reliable applications

which share or require persistent or consistent data.

On the other hand, multilevel nested transaction is able

to overcome this limitation because it is hierarchical. As

shown in Figure 1, the levels in a nested transaction ensure

that inconsistencies or dirty reads are not grossed over. The

ACID property guarantees that if a sub-transaction fails,

either it is resubmitted by a compensating transaction or

entirely aborted to ensure consistency. The ability to roll

back in this model to get the option of stepping back to an

earlier start inside that same transaction gives it the

competitive urge over the flat transactions. This implies that

if one does not want to implement nested transactions, there

must be alternative ways of informing the system about a

state of the application program, for recovery purposes, so

that the application can return to it later on if the transaction

is aborted. This is what the proposed nested transactions

model seeks to accomplish.

Thenested transactions model does not necessarily

abort the whole transaction, as it is in the case of flat

transactions, depending on how deep the failed transaction is

nested. Support for nesting of transactions is essential for

realizing the full potential of transactions.Other rescue

policies, such as parent transactions overruling or

superseding child transactions or running a compensating

transaction by resubmitting the failed transaction, may be

adopted to prevent a premature cessation of the entire

process. The case of flat transaction cannot be guaranteed

because it is simply impossible to integrate rescue policies

in any way.

Table 1: The Summary of activities of the coordinator in the

Nested Transaction

VII. IMPLEMENTATION OF THE NESTED

TRANSACTIONS FRAMEWORK

Briefly this is how the implementation works. The user

or client requests the framework to create a user object or

transaction, usually the root transaction. The framework

starts and populates the constructor with user inputs. It waits

on the user to request more user objects to be created or

added. This call can be repeated as many times as the user

may require transactions for a specific or the intended

application. After all the required objects are created and

nested appropriately, the framework will request the result

of the processing from the user objects so far created. The

user objects return provisional ready to commit or abort

signals to the framework. The resulting tree structure created

from the nesting process is traversed depth first with control

shifting from children transactions to parent transactions.

All results are reported to the root transaction who informs

the coordinator or the transaction manager to enter the

second phase of the Two-Phase Commit Protocol to commit

changes and move them to stable storage. It must be noted

that this application allows descendant transactions to do

dirty reads from ancestor transactions.

VIII. DETAIL SEMANTICS OF THE NESTED

TRANSACTIONS FRAMEWORK

In this model for nested transactions the user starts off

by creating instances of the NestedTransactionInterceptor()

and the root transaction objects and sends the

runRootTransaction() method with the root transaction

object as a parameter to invoke the transactionCode()

operations. The transactionCode() method in turn fires off

the interceptorExecutor() method to embedd sub-

transactions whose arguments specify the parent and child

relationship. This helps to establish relationships between

transactions and each transaction at this juncture executes its

operations and returns a boolean result to the framework. If

it returns true, it indicates that the internal operations of the

transaction were successful and for that matter they have

provisionally committed. On the other hand, if it returns

false, it shows that the transaction failed and was

provisionally aborted. It must be noted that if the aborted

transactions were parents then all of their children or

descendant transactions will be forced to abort. But where

the sub-transactions are ready to commit they must wait for

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 11 3389 - 3397

3395

IJRITCC | November 2014, Available @ http://www.ijritcc.org

__

the entire duration for the examination of the coordinator

and for the root transaction to be committed before they are

actually committed. See Figure 2.

New transactions are created which extend

TransactionBase() and implement TransactionWrapper().

These transactions will also implement transactionCode

behavior and if they return true, they are ready to commit,

else they are ready to be aborted. The transaction

programmer creates as many transactions as may be needed

or is applicable under the peculiar circumstances of the

application. Transactions are nested when an instance of the

transaction InterceptorExecutor() is created and a message

of the new transaction is passed to it to invoke its

transactioncode() member function. It returns with a vote of

whether it intends to commit or abort. A constraint worth

noting is that the nestedTransactionInterceptor() cannot be

used to create more than one tree structure of nested

transactions.

class NestedTransactionInterceptor {

interceptorExecutor(TransactionWrapper tparent, TransactionWrapper

tchild) {
Start transaction; Status = Active;

if (tparent is not the root) {

Set parent child relationship
}

Get childStatus from transaction code

if (childStatus == true) {//Ready to commit
Change the status from Active to ready to commit

} else {

 Set ChildStatus to ABORTED

/*An ancestral transaction failed to Commit. Hence descendant

transactions are provisionally forced to abort by traversing the
tree preorder Depth First Search;*/

}

interceptorStatus = childStatus;
End of transaction

return interceptorStatus;

}

Figure 2. The nested transaction interceptor coordinates transactions

Room is available for other business logic to be

provided as compensation or as additional requirements for

transactions to show willingness to commit or otherwise.

Figure 3 shows a typical transactioncode() method for

inserting a value into a list data structure. This is where the

operations of the transactions are coded by the transaction

programmer.

public class RootTransaction extends TransactionBase implements

TransactionWrapper {

public boolean transactionCode(NestedTransactionInterceptor c) {
boolean result = false;

final int value = 79;

result = Thread.doIt(new Callable<Boolean>() {
public Boolean call() {

return GlobalList.inSet.insert(value);

}
});

return result;

}

}

Figure 3. A typical transaction code method.

The runRootTransaction() checks to see if the root

is ready to commit and if so calls the

transactionCoordinator() method passing the root transaction

as a parameter to it to execute the globalGroupCommit() to

complete a group commit of the second phase of the 2PCP.

The justification for the group commit is that when changes

are made to protected resources, there must be a guarantee

that the changes are made correctly. For instance, if a bank

customer attempts to transfer money from a savings account

to a checking account, there must be a guarantee that when

the money is deducted from the savings account it is added

to the checking account simultaneously. Partial completion

of this transaction will have money deducted from the

savings account but not added to checking account. This

transfer transaction may involve several nested transactions

that may be required if the transfer is to be made possible. If

there are problems with descendant transactions required in

order to successfully complete the overall transaction, then it

is unwise to commit the root transactions. Rolling back all

the nested transactions will undo changes before the root

transaction can commit. This problem must be avoided,

hence the need to do global or group commit to fully

coordinate and manage nested transactions that are ready to

be committed in transactional fashion. See Figure 4.

runRootTransaction(TransactionWrapper rootTransaction) {

Set rootStatus to false; // root transaction states its intention
Set treeStatus to false; // transaction tree was committed or aborted

get the status of the root transaction from the interceptor Executor

Execute rootStatus = interceptorExecutor(null, rootTransaction);
if (rootStatus == true) {

Call the transactions Coordinator to do global Commit

// if all goes well; but this might be false sometimes
treeStatus = true; // the tree was committed

//The second phase was successfully committed

//The tree was committed.
} else { treeStatus = false; // the tree was aborted

//The entire tree was aborted.

}
return treeStatus;

}

Figure 4. The second phase of the Two-Phase Commit Protocol.

The all-or-nothing principle is implemented on the

second phase of the 2PCP. What is the implementation

strategy? The implementation strategy adopted in this

application is that, instead of committing the individual

transactions and updating their status updaters, we create a

global status updater and point each of the local status

updaters to the global one and perform the group commit on

it. Finally, point the status updater of the individual

transactions to the local status updaters and change their

values to commit. The strategy is illustrated in Figure 5.

transactionsCoordinator(TransactionWrapper

processedTransactions) {

if (childStatus = = true) {

//Transactions can be committed permanently"

Point Status Updater To StatusUpdateGlobalCommit

Perform a global Group Commit

Locally Commit

Point StatusUpdater To Local Status Updater

}

}

Figure 5. Globally committing provisionally committed

transactions.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 11 3389 - 3397

3396

IJRITCC | November 2014, Available @ http://www.ijritcc.org

__

Log files and permanent storages are immediately

updated and the participating transactions are duly informed

about the changes. Otherwise the transactionDoAbort() is

called to end the transaction and its descendants. The

implication is that no updates or changes are made to log

files and permanent storage. Instead the aborted transaction

must undo its sequence of operations, by executing inverses

of those operations in the reverse order to restore the state of

any modified location to what it was before the transaction

modified it. The log files are called into action or maintained

for the purposes of recovery and fault tolerance.

The NestedTransactionExecutor() kicks in the

coordinator otherwise known as the transaction manager

which performs the 2PCP. All descendant transactions of the

root transaction report their current states along with a tree

structure except the descendants of aborted transactions.

With all the sub-transactions in the tree provisionally

committed, the coordinator has the yes votes from such

individual transactions. This is where their statuses change

from ACTIVE to READYTOCOMMIT to end the first

phase of 2PCP. The coordinator then invokes the

globalGroupCommit() to commit whatever is left in the tree

to stable storage to complete the second phase of the 2PCP.

At this stage the coordinator informs the participating

transactions that the log files and databases have been

updated accordingly.

When a child commits, its log is appended to its

parent’s log. When a child is forced to abort or is aborted

because it failed, all of its actions and updates on the log

files are undone and discarded. As mentioned before,

aborting a child does not affect its parents or ancestors,

though the parent must be informed to take a firm decision

on making progress to committing or aborting itself.

The user closes the set of nested transactions by

invoking the endTransaction() or abort() or

transactionDoAbort() sub-routines on the root transaction or

on a specific sub-transaction.

The rules and policies on isolation and concurrency

enforced on failed transactions in this nested transaction

model are either relaxed or made more intense. Strict

isolation rules, as in a single system with or without internal

structure, permit sub-transactions at the same level to be run

concurrently with additional rules to grant locks.

However, ancestor transactions do not run

concurrently with their descendant transactions because they

must remain atomic and serializable with other sibling

transactions. For that matter, individual transactions in the

sub-transaction act independently. They are isolated and

atomic, strictly enforcing the all-or-nothing principles in

their own rights. Reference [16] confirms that the

concurrency control scheme introduced by the closed-nested

transaction model guarantees isolated execution for sub-

transactions and that the schedules of concurrent nested

transaction are serializable.

On the other hand with the rules on isolation at the

global level relaxed on failed transactions, room is created

for a long-lived transaction to be accommodated in this

model. Reference [1] has proposed several extensions to the

closed-nested transactions to increase concurrency and

throughput by relaxing the consistency and isolations rules

of a typical traditional transaction model.

In this nested transaction model parent transactions

reserve the prerogative to make progress in the event of

descendant transactions failing. This guarantees that long-

lived transactions are not put on hold forever and much

work completed at the time of failure is not lost. Much of

the data resources locked is released when transactions are

aborted to prevent the starvations of other transactions that

might need those resources.

It is interesting to note that this proposed nested

model combines the strengths of both closed and open

nesting and a blend of synchronized transactions that can be

automatically rolled back to immediate parent transaction,

implement the 2PCP on top of it and extensions that

override failed transactions.

IX. CONCLUSIONS AND RECOMMENDATIONS

The concept of transactions has been employed in

software engineering to permit management of activities and

resources in a reliable computing environment tolerating

faults. Transactions are able to guarantee efficient software

engineering techniques, bringing consistency and

concurrency into applications in the face of eminent failure.

Nested transactions allow fine-grained control over

serializability, concurrency, and recovery.Programmers need

not concern themselves with the complexity of deciding

how to best allocate locks, deadlocks, livelocks, priority

inversion, locking granularity, and other typical lock-based

programming issues[20].

The flat transaction model proposed by the DSTM2

is necessary in order to write reliable short-lived

applications that share or require persistent or consistent

data. Nevertheless, the new advanced feature of nesting

transactions proposed by the paper supports enough

flexibility and performance for complex transactions and

long-lived transactions, making it suitable and applicable in

single or multicore or even distributed systems. For most of

these systems, much will depend on the policies adopted for

the failed or aborted transactions.

In a typical nested transaction, the outermost or

root transaction is not aborted because one of the sub-

transactions failed in the course of execution. The failure of

a transaction does not necessarily lead to the failure of the

root transaction, and until the root transaction is committed

no durable state changes are made to the shared resource.

For these reasons, it can conveniently be concluded that

there are no requirements for failure recovery mechanisms.

Since the effects of the multilevel nested transaction are

provisional upon commit or abort of the root transaction, the

effects are easily recovered if the root transaction aborted

even though the descendant transactions committed.

As far as contention management is concerned,

access rights acquired by parents are inherited by children

transactions and executed depth first sequentially or

guaranteed serializability for concurrent transactions to

avoid possible conflicts among sibling transactions.In order

to maximize performance, several transction memory

implementations included mechanisms allowing the

programmer to specify whether transaction memory should

ignore certain conflicts[21].

This multilevel nested transaction that is hereby

proposed has two main advantages over flat transactions.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 11 3389 - 3397

3397

IJRITCC | November 2014, Available @ http://www.ijritcc.org

__

First, this model allows the potential internal consistent

parallelism and nesting transactions many levels deep to be

exploited. Second, it provides finer control over failures by

limiting the effects of failures to a small part of the global

transaction. These properties are achieved by allowing

nested transactions within a given transaction to fail

independently of their invoking transactions. Changes made

by the nested transaction, when it is committed, remain

contingent upon commitment of all of its ancestors [18].

Finally more than one section of the tree could be

created and traversed concurrently or sequentially in this

multilevel nested transaction model. Isolation rules ensure

that the result of each concurrent tree’s provisionally

committed or aborted descendant transactions are not visible

to other transactions, except their parent transaction to

maintain consistencies throughout the lifetime of the

transactions.

For further study I recommend extending this

framework to support conditional waiting and integration

into the DSTM2 model or other similar models.

REFERENCES

[1] Elmagarmid, A. K. (1991). Transaction models for

advanced database application. THE INDIANA

CENTER FOR DATABASE SYSTEMS

DEPARTMENT OF COMPUTER SCIENCE, PURDUE

UNIVERSITY, W. LAFAYETTE, IN.

[2] Elmasri, R., & Navethe, S. B. (2007). Fundamentals of

database systems (5th ed.).

[3] Eswaran, K.P., Gray, J.N., Lorie, R.A., & Traiger, I.L.

(1976, November). The Notions Of Consistency and

Predicate Locks in a Database System. Communications

of the ACM, 19(11), 624-633.

[4] Gray, J., McJones, P., Blasgen, M., Lorie, R., Price, T.,

Putzolu, F., & Traiger, I. (1981, June). The recovery

manager of the system R database manager. ACM

Computing Surveys, 13(2), 223-242.

[5] Gray, J., & Reuter, A. (1993). Transaction processing:

concepts and techniques. Morgan Kaufmann. San

Francisco, CA.

[6] Haerder, T., & Rothermel, K. (1987). Concepts for

transaction recovery in nested transactions. ACM

Sigmod Record, 16(3), 239-248.

[7] Harris, T.L., Marlow, S., Peyton J., & S., Herlihy,

M.(2005). Composable memory transactions. PPoPP

2005. Principles and practice of parallel programming,

pages 48–60, New York, NY, USA.

[8] Garcia-Molina H. (1983). Using semantic knowledge for

transaction processing in a distributed database. ACM

Trans. Database Syst.,8(2):186–213.

[9] Garcia-Molina H., & Salem, K. SAGAS.(1987)

SIGMOD '87: Proceedings of the 1987 ACM SIGMOD

international conference on Management of data.

[10] Herlihy, M., Luchangco, V., & Moir, M. (2006). A

flexible framework for implementing software

transactional memory. ACM Sigplan Notices, 41(10),

253-262.

[11] Herlihy, M. & Moss, J.E.B.(1993) Transactional

memory: architectural support for lock-free data

structures. ISCA. International symposium on computer

architecture, pages 289–300, New York, NY, USA.

[12] Kifer, M., Bernstein, A. & Lewis, P M. (2005). Database

system: Application-oriented Approach (2nd ed).

Addition-Wesley.

[13] Kung, H. T., & Robinson, J. T. (1981, June). On

optimistic methods for concurrency control. Pittsburgh:

Carnegie-Mellon University.

[14] Liskov, B., & Scheifler, R. (1983, July). Guardians and

actions: Linguistic support for robust, distributed

programs. ACM Transactions on Programming

Languages and Systems, 5(3), 381–404.

[15] Moss, E. B. (1981). Nested transactions: An approach to

reliable distributed computing. Ph.D. thesis,

Massachusetts Institute of Technology, Cambridge, MA.

[16] Papazoglou, M. P. (2008). Web Services: Principles and

Technology. Prentice Hall Publications. Tilburg

University, The Netherlands.

[17] Saha, B., Adl-Tabatabai, A., Hudson, R. L., Minh, C.C.,

Hertzberg, B., (2006). McRT-STM: A High Performance

Software Transactional Memory System for a Multi-Core

Runtime, Proceedings of the eleventh ACM SIGPLAN

symposium on Principles and practice of parallel

programming: pages187 – 197.

[18] Saheb, M., Karoui, R., & Sédillot, S. (1999). Open

nested transaction: A support for increasing performance

and multi-tier applications. Le Chenay Cedex, France:

Institut National Recherché En Informatique Et En

Automatique.

[19] Virendra J. Marathe, William N. Scherer III, and Michael

L. Scott,(2004) Design Tradeoffs in Modern Software

Transactional Memory Systems? http://web.cse.ohio-

state.edu/~agrawal/788-

su08/Papers/week4/design_tradeoffs_modern_stm.pdf

[20] Alexander Hogue, Software Transactional Memory and

the Rotate- Free Tree (2012).

[21] M. Couceiro, P. Romano, Where does Transactional

Memory research standand what challenges lie

ahead?WTM 2012, EuroTM Workshop on Transactional

Memory, IST/INESC-ID, Lisbon, Portuga (2012)

[22] Richard M. Yoo, Sandhya Viswanathan, Vivek R.

Deshpande, Christopher J. Hughes, Shirish Aundhe,

Early Experience on Transactional Execution of JavaTM

Programs Using Intel R Transactional Synchronization

Extensions, TRANSACT 2014 9th ACM SIGPLAN

Workshop on Transactional Computing (2014) Salt

Lake City, Utah, USA (co-located with ASPLOS 2014)

