Laplace Transform \& It's Applications to Solve Ordinary Differential Equation (ODE) By Using MATLAB

Author - Prof. Mrs. Shirke Usha Kailas
Department of Mathematics
S.v.p.m's college of engineering
Malegaon (bk) Baramati Dist- Pune Maharashtra
e-mail:ushagulumkar@rediff.com

Abstract

Laplace transform is an integral transform method which is widely used by scientists \& Engineers with the increasing complexity Of Engineering problems .Laplace transform help in solving complex problems with a very simple approach just like the applications of Transfer functions to solve ordinary differential equations. This paper introduce new technological approach for solving ODE by using MATLAB.

Keywords-Laplace Transform , ODE, MATLAB.

I. INTRODUCTION

1) Laplace transform is effectively used in solving linear ordinary \& Partial differential equations . Laplace transform reduces an ordinary differential equation into algebraic equations. It gives the direct

Solution of differential equation with given initial conditions. To compute quickly the solution of differential $\mathbf{S t}$ equation, we use Mathematical software.
One of such powerful software package is MATLAB that contains many easy to use tools \& built in functions to solve or simulate Differential equation by Laplace Transform.

Definition- Laplace Transform-

Let $f(t)$ be a function of t defined for all $t>0$. Then the Laplace Transform of $f(t)$ denoted by $L(f(t)$ isdefined by,

$$
L(f(t))=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

Where is a parameter which is either real or a complex quantity.

Theorem - Sufficient condition for existence of Laplace

 Transform-If $\boldsymbol{f}(\boldsymbol{t})$ is piecewise continuous in every finite interval in t Range $t \geq 0 \&$ is of exponential order, then its Laplace transform.

2) Method to solve linear ordinary differential (ODE)

 by using Laplace transform -The advantage of using the Laplace transform is that it yields the Particular solutions directly without the necessity of first finding .The general solution \& then evaluating the arbitrary constants.

Step -1 Start with differential equation with initial condition.

Step-2 Take Laplace Transform on both sides of equation obtain subsidiary equation.

$$
\begin{aligned}
& \text { Step }-3 \text { Take inverse transform \& simplify. } \\
& \text { Example- i) solve the equation } \\
& \quad y^{\prime \prime}-3 y^{\prime}+2 y=12 e^{-2 t} \\
& \text { given that } y(0)=2, y^{\prime}(0)=6 \text {. }
\end{aligned}
$$

Solution-

Consider

$$
y^{\prime \prime}-3 y^{\prime}+2 y=12 e^{-2 t}
$$

Taking Laplace transform on both sides \& Let $L(y(t))=Y(s)$.

$$
L\left(y^{\prime \prime}\right)-3 L\left(y^{\prime}\right)+2 L(y)=12 L\left(e^{-2 t}\right)
$$

Using formulae

$$
\begin{aligned}
\left\{s^{2} Y(0)-s y(0)\right. & \left.-y^{\prime}(0)\right\}-3\{s Y(s)-y(0)\}+2 Y(s) \\
& =\frac{12}{s+2}
\end{aligned}
$$

Substituting given conditions, $y(0)=2, y^{\prime}(0)=6$.

We have

$$
\begin{aligned}
& \left(s^{2}-3 s+2\right) Y(s)-2 s=\frac{12}{s+2} \\
& Y(s)=\frac{1}{\left(s^{2}-3 s+2\right)}\left(2 s+\frac{12}{s+2}\right) \\
& Y(s)=\frac{2 s^{2}+4 s+12}{\left(s^{2}-3 s+2\right)(s+2)}
\end{aligned}
$$

Using Partial Fractions, We get

$$
Y(s)=-\frac{6}{s-1}+\frac{7}{s-2}+\frac{1}{s+2}
$$

Taking inverse Laplace transforms,

$$
\begin{gathered}
L^{-1}(Y(s))=-6 L^{-1}\left(\frac{6}{s-1}\right)+L^{-1}\left(\frac{7}{s-2}\right)+L^{-1}\left(\frac{1}{s+2}\right) \\
y(t)=-6 e^{t}+7 e^{2 t}+e^{-2 t} .
\end{gathered}
$$

3) To solve ordinary differential equations by Laplace transform by using MATLAB -
MATLAB has a powerful features for solving differential equations of all types . We will explore some of these features using Laplace transform. We use symbolic Math Toolbox. The result will be the form of the function \& it may be readily Plotted with MATLAB.
MATLAB program me to solve above example (i) above -
Example- solve the equation
$y^{\prime \prime}-3 y^{\prime}+2 y=12 e^{-2 t}$ given that $y(0)=2, y^{\prime}(0)=6$
Program me -
Syms sty

$$
\begin{gathered}
f=12 * \exp (-2 * t) \\
F=\operatorname{Laplace}(f, t, s) \\
y_{1}=s * y-2 \\
y_{2}=s * y_{1}-6 \\
\therefore y_{2}=s *(s * y-2)-6 \\
\text { sol }=\operatorname{solve}\left(y_{2}-3 * y_{1}+2 * y-F, y\right) \\
\text { sol }=\text { ilaplace }(s o l,[0,15]) \\
\text { Grid on,('GRAPHIC DISPLAY OF SOLUTION OF } \\
\text { ODE BY LAPLACE TRANSFORM') } \\
\text { X label ('time'), y label (f(t)) } \\
\text { Legend ('Laplace transform') } \\
\text { Output: } f=12 * \exp (-2 * t) \\
\text { sol }=7 * \exp (2 * t)+\exp (-2 * t)-6 * \exp (t) \\
\text { Also we get graphic display of solution of ODE by } \\
\text { Laplace Transform. }
\end{gathered}
$$

Here we consider the two approaches to solve an initial value Problem with the general method \& technological method using MATLAB \& it is observed that both gives same solution.

4) CONCLUSION

MATLAB which is mathematical software saves a lot of time in routine calculation for engineers \& scientists.
This paper represents an example of MATLAB applications in Mathematical computation including generating the graph of respective functions using Laplace Transform.

Authors Contribution-

The author personally run the program me \& checked output . Also read \& approved the final manuscript.

REFERENCES

[1] Purnima Rai - Applications of Laplace Transform to solve ODE using MATLAB, Journal of informatics \& mathematical sciences vol7, No. 2 pp.93-97,2015.
[2] S Kadry- Learning basic Mathematics using MATLAB, International Journal of information technology \& computer science 14 (A 202) (2014), 48-56.
[3] Symbolic Math Toolbox Users Guide (2006). The math works, Inc (www.Mathwork.com)
[4] MATLAB-An introduction with application - Rao V.Dukkipati - New age international publishers.
[5] Getting started with MATLAB-A quick introduction for scientists \& Engineers by Rudra Pratap- Oxford University press -Indian edition.
[6] Advanced Engineering Mathematics by H.K.Dass Pp 671 -734.

