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Abstract—Web cache is a mechanism for the temporary storage (caching) of web documents, such as HTML pages and images, to reduce 

bandwidth usage, server load, and perceived lag. A web cache stores the copies of documents passing through it and any subsequent requests 

may be satisfied from the cache if certain conditions are met.  In this paper, Decision Tree (DT) a machine learning technique has been used to 

increase the performance of traditional Web proxy caching policies such as SIZE, and Hybrid. Decision Tree (DT) is used and integrated with 

traditional Web proxy caching techniques to form better caching approaches known as DT–SIZE and DT–Hybrid. The proposed approaches are 

evaluated by trace-driven simulation and compared with traditional Web proxy caching techniques. Experimental results have revealed that the 

proposed DT–SIZE and DT–Hybrid significantly increased Pure Hit-Ratio, Byte Hit-Ratio and reduced the latency when compared with SIZE 
and Hybrid. 

Keywords—Web caching, Proxy Cache, Cache replacement, Classification, Decision Tree, Machine Learning. 

__________________________________________________*****_________________________________________________ 

I. INTRODUCTION 

Web proxy caching plays a key role in improving Web 

performance by keeping Web objects that are likely to be 

visited again in the proxy server close to the user. This Web 

proxy caching helps in reducing user perceived latency, i.e. 

delay from the time a request is issued until response is 

received, reducing network bandwidth utilization, and 

alleviating loads on the original servers. Since the space 

apportioned to a cache is limited, the space must be utilized 

effectively. Therefore, an intelligent mechanism is required 

to manage Web cache content efficiently. The cache 

replacement is the core or heart of Web caching. Thus, the 

design of efficient cache replacement algorithms is 

extremely important and crucial for caching mechanism 

achievement [1]. The most common Web caching methods 

are not efficient enough and may suffer from a cache 

pollution problem, since they consider just one factor and 

ignore other factors that may have an impact on the 

efficiency of Web proxy caching [2]. Many Web proxy 

caching policies have attempted to combine some factors 

which can influence the performance of Web proxy caching 

for making decisions about caching. 

However, this is not an easy task, because examining 

one factor in a particular environment may be more 

important in one environment which may not be same in 

other environments [3]. The challenge lies in predicting 

which Web objects should be cached and which Web 

objects should be replaced to make the best use of available 

cache space, improve hit rates, reduce network traffic, and 

alleviate loads on the original server [4]. Web proxy log 

files record the activities of the users in a Web proxy server. 

These proxy log files contain complete and prior knowledge 

of future accesses. The availability of Web proxy log files 

that can be used as training data is the main motivation for 

utilizing machine learning techniques in adopting Web 

caching approaches. Recent studies have proposed that 

using machine learning techniques is proved to cope with 

the above problem [5]. Decision Tree (DT) is popular 

supervised learning algorithms that perform classifications 

more accurately and faster than other algorithms [6]. Hence, 

Decision Tree (DT) can be utilized to produce promising 

solutions for Web proxy caching.  

This paper combines the most significant factors using 

Decision Tree (DT) classifier for predicting Web objects 

that can be re-visited later. In this paper, we present new 

approaches that depend on the capability of Decision Tree 

(DT) classifier to learn from Web proxy logs files and 

predict the classes of objects to be re-visited or not. The 

trained Decision Tree (DT) classifier can be effectively 

incorporated with traditional Web proxy caching algorithms 

to present novel Web proxy caching approaches with better 

performance in terms of hit ratio and byte hit ratio and 
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reduced latency. The remaining parts of this paper are 

organized as follows. Background and related works are 

presented in Section 2. The framework for improved Web 

proxy caching approaches based on machine learning 

techniques is illustrated in Section 3. Implementation and 

experimental results are presented in Section 4. Section 5 

discusses performance evaluation and discussion. Finally, 

Section 6 concludes the paper. 

II. BACKGROUND AND RELATED WORK 

A. How Web Caches Work  

Web caching is the temporary storage of web objects 

(such as HTML documents) for later retrieval. The three 

significant advantages of web caching are [8]:  

a. Reduced bandwidth consumption.   

b. Reduced server load.  

c. Reduced latency.   

All types of caches have a set of rules that they use 

to determine when to serve an object from the cache, if it is 

available. Some of these rules are set in the protocols such 

as HTTP 1.1 and some are set by the administrator of the 

cache.  

The following are the most common rules that are followed 

for a particular request:  

1. If the object's headers directive tell the cache not to keep 

the object, it won't Cache the Object. Also, if no validator is 

specified, most caches will mark the object as uncacheable. 

2. If the object is authenticated or secure, it will not be 

cached. 

3. A cached object is considered to be fresh (that is, able to 

be sent to a client without checking with the origin server) 

if: 

• The object has an expiry time or other age-controlling 

directive set, and is still within the fresh period. 

• If a browser cache has already seen the object, and has 

been set to check once in a session. 

• If a proxy cache has seen the object very recent, and it was 

modified relatively long ago. 

Fresh documents are served directly from the web cache, 

without checking with the origin server. 

4. If an object is stale, the origin server will be asked to 

validate the object, or tell the cache whether the copy that it 

has is still good enough to serve or not. 

Together, freshness and validation are the two most 

important ways that a cache works with content. A fresh 

object will be available instantly from the cache, while a 

validated object will avoid sending the entire object over 

again if it has not changed. Web content can be cached at a 

number of different locations along the path between a client 

and an origin server. The 3 types of Web Caches are  

a. Browser Cache,  

b. Proxy Cache, and  

c. Surrogate/Server Cache.  

The different types of caches are shown in Figure 1. 

 

 

Fig. 1: Different types of caches 

B. Traditional Web proxy caching algorithms  

Cache replacement algorithms or replacement policies 

are optimizing instructions or algorithms that a computer 

program or a hardware-maintained structure can follow, in 

order to manage a cache of information stored on the 

computer. When the cache is full, the replacement algorithm 

must choose which items to discard to make room for the 

new ones. The most widely used replacement algorithms 

include Least Recently Used (LRU), Least Frequently Used 

(LFU), Most Recently Used (MRU), SIZE [9], Greedy-

Dual-Size(GDS), Hybrid [11], Lowest Relative Value(LRV) 

[10] etc. 

Least Recently Used (LRU) discards the least recently 

used web items first. This algorithm requires keeping track 

of what was used and when, which is expensive if one wants 

to make sure the algorithm always discards the least recently 

used item. General implementations of this technique 

require keeping "age bits" for cache-lines and track the 

"Least Recently Used" cache-line based on age-bits. In such 

an implementation, every time a cache-line is used, the age 

of all other cache-lines also changes. Least Frequently Used 

(LFU) counts how often an item is needed. Those that are 

used least are often discarded first. Most Recently Used 

(MRU) discards, in contrast to LRU, the most recently used 

web objects first.  SIZE policy [9] is one of the common 

Web caching policies that replace the largest object(s) from 

a cache when space is needed for a new object. Thus, a 

cache can be polluted with small objects which will not be 

accessed again. Williams et al. [9] presented taxonomy of 

cache retrieval policies, by means of trace-driven 

simulations they measure the maximum feasible hit ratio 

and byte hit ratio. They suggested that it would be much 

better to replace documents based on the size as this 

maximizes the hit ratio in each of their workloads. Cao and 

Irani [12] introduced Greedy-Dual-Size (GDS) cache 

replacement algorithm. This algorithm integrates locality 
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along with cost and size factors. Greedy-Dual-Size tags a 

cost with every object and expels the object that has the 

lowest cost or size. Wooster and Abrams[11] proposed 

Hybrid cache replacement algorithm make use of a 

combination of multiple requirements such as maintaining in 

the cache documents from servers that take significant time 

to connect to, those that need to be fetched from the slowest 

links, those that have been accessed very frequently, and 

those that are small. Wooster and Abrams checked the 

performance of Hybrid algorithm alongside LRU, LFU and 

SIZE. Hybrid algorithm performed well when compared 

with traditional LRU, LFU and SIZE replacement 

algorithms. The Lowest Relative Value (LRV) cache 

replacement algorithm proposed by Rizzo and Vicisano [10] 

expels the object that has the lowest utility value. In LRV, 

the utility of a document is calculated adaptively on the 

basis of data readily available to a proxy server. Rizzo and 

Vicisano show that LRV performs better than LRU and can 

substantially better the performance of a cache that is of 

modest size. 

C. Improved Web proxy caching algorithms 

A.P. Foong, H. Yu-Hen, D.M. Heisey [15] 

proposed a logistic regression model (LR) to predict the 

future request. Then, the objects with the lowest re-access 

probability value were replaced first regardless of cost and 

size of the predicted object. T. Koskela, J. Heikkonen, K. 

Kaski [14] used Multilayer perceptron network (MLP) 

classifier in Web caching to predict the class of Web objects 

depending on syntactic features from HTML structure of the 

document and the HTTP responses of the server as inputs of 

MLP. The class value was integrated with LRU, known to 

be LRU-C, to optimize the Web cache. However, frequency 

factor was ignored the frequency factor in Web cache 

replacement decision. An integrated solution of back-

propagation neural network (BPNN) as caching decision 

policy and LRU technique as replacement policy for script 

data object has been proposed by Farhan [13]. Recently W. 

Ali, S.M. Shamsuddin, A.S. Ismail [5] proposed three 

algorithms namely SVM–LRU, SVM–GDSF and C4.5–

GDS which make use of the capability of Support vector 

machine (SVM) and decision tree (C4.5) to learn from Web 

proxy logs files and predict the classes of objects to be re-

visited or not. The trained SVM and C4.5 classifiers were 

incorporated with traditional Web proxy caching algorithms 

to present new Web proxy caching approaches. They proved 

that their proposed SVM–LRU, SVM–GDSF and C4.5–

GDS significantly improved the performances of LRU, 

GDSF and GDS respectively in terms of hit ratio and byte 

hit ratio.  

D. Machine learning Techniques 

Machine learning, a branch of artificial 

intelligence, concerns with the construction and study of 

systems that can learn from data. For example, a machine 

learning system could be trained on email messages to learn 

to distinguish between the spam and the non-spam 

messages. After learning, it can then be used to classify new 

email messages into spam and non-spam and send them to 

respective folders. The core of machine learning deals with 

representation and generalization. The two areas Machine 

learning and data mining overlap in many ways: data mining 

uses many machine learning techniques, but often with a 

slightly different goal in mind. On the other hand, machine 

learning also employs data mining methods as 

"unsupervised learning" or as a preprocessing step to 

improve learner accuracy.  

E. Decision Tree (NB) Classifier  

Decision tree learning uses a decision tree as a 

predictive model which maps observations about an item to 

conclusions about the item's target value. It is one of the 

predictive modeling approaches used in statistics, data 

mining and machine learning. In data mining, a decision tree 

describes data but not decisions; rather the resulting 

classification tree can be an input for decision making. 

Decision tree learning is a method commonly used in data 

mining [17]. The goal is to create a model that predicts the 

value of a target variable based on several input variables. A 

decision tree is a simple representation for class examples. 

Decision tree learning is one of the most successful 

techniques for supervised classification learning. Decision 

trees used in data mining are of two main types: 

1. Classification tree analysis is when the predicted 

outcome is the class to which the data belongs. 

 

2. Regression tree analysis is when the predicted 

outcome can be considered a real number (e.g. the price of a 

house, or a patient’s length of stay in a hospital). 

 

Decision tree learning is the construction of a 

decision tree from class-labeled training tuples. A decision 

tree is a flow-chart-like structure, where each internal (non-

leaf) node denotes a test on an attribute, each branch 

represents the outcome of a test, and each leaf (or terminal) 

node holds a class label. The topmost node in a tree is the 

root node. An example Decision tree is shown in Figure 3. 
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Fig. 2: an example of Decision Tree 

Amongst other data mining methods, decision trees have 

various advantages: 

1. Simple to understand and interpret. People are able 

to understand decision tree models after a brief 

explanation. 

2. Requires little data preparation. Other techniques 

often require data normalization, dummy variables 

need to be created and blank values to be removed. 

3. Able to handle both numerical and categorical data. 

Other techniques are usually specialized in 

analyzing datasets that have only one type of 

variable.  

III. THE PROPOSED WEB PROXY CACHING 

ALGORITHMS 

       The proposed two algorithms namely DT–SIZE and 

DT–Hybrid make use of the capability of Decision Tree 

(DT) classifier to learn from Web proxy logs files and 

predict the classes of objects to be re-visited or not. The 

trained Decision Tree (DT) classifier was incorporated with 

traditional Web proxy caching algorithms to present new 

Web proxy caching approaches. Training and testing was 

done on Web proxy logs files (datasets) offline which can be 

used to predict the classes of objects to be re-visited or not 

in future. In order to prepare the training dataset, the desired 

features of Web objects are extracted from traces and proxy 

access log files. The important features of Web objects that 

indicate the user interest are extracted for preparing the 

training dataset. These features consist of URL ID, 

timestamp, elapsed time, size and type of Web object. The 

common features were selected and extracted as suggested 

by W. Ali et al [5]. Subsequently, these features are 

converted to the input/output dataset or training patterns in 

the format <x1, x2, x3, x4, x5, y>. x1… x5 represent the 

inputs and y represents target output of the requested object. 

Table I shows the inputs and their meanings for each 

training pattern. 

TABLE I: THE INPUTS AND THEIR MEANINGS 

Input Meaning 

x1 Elapsed time of Web object 

x2 Frequency of Web object 

x3 Recency of Web object 

x4 Size of Web object 

x5 URL ID of Web object 

 

A. DT–SIZE 

           Williams et al. [9] suggested that it would be much 

better to replace documents based on the size as this 

maximizes the hit ratio in each of their workloads. As SIZE 

policy is replace the largest object(s) from a cache when 

space is needed for a new object. Thus, a cache can be 

polluted with small objects which will not be accessed 

again. Therefore, the Decision Tree (DT) classifier is 

integrated with SIZE for improving the performance in 

terms of the hit ratio of SIZE. The proposed proxy caching 

policy is called DT–SIZE. In DT–SIZE, a trained Decision 

Tree (DT) classifier is used to predict the classes of Web 

objects either objects may be re-visited later or not. After 

this, the classification decision is integrated into cache 

replacement policy (SIZE) to give a value 

(unchanged/decreased) for each object in the cache.  

Consequently, the objects with the maximum size are 

removed first, there by postponing the removal of an object 

based on common factors of web object. 

 

B. DT–HYBRID 

         Wooster and Abrams[11] proposed Hybrid cache 

replacement algorithm make use of a combination of 

multiple requirements such as maintaining in the cache 

documents from servers that take significant time to connect 

to, those that need to be fetched from the slowest links, 

those that have been accessed very frequently, and those that 

are small. Wooster and Abrams checked the performance of 

Hybrid algorithm alongside LRU, LFU and SIZE. Hybrid 

algorithm performed well when compared with traditional 

LRU, LFU and SIZE replacement algorithms. Though, 

Hybrid algorithm takes into consideration multiple factors of 

a web object, the capability of Decision Tree (DT) will 

boost the performance of the Hybrid algorithm. Therefore, 

the Decision Tree (DT) classifier is integrated with Hybrid 

algorithm for improving the performance in terms of the hit 

ratio of Hybrid algorithm. The proposed proxy caching 

policy is called DT–Hybrid. In DT–Hybrid, a trained 

Decision Tree (DT) classifier is used to predict the classes 

of Web objects either objects may be re-visited later or not. 
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After this, the classification decision is integrated into cache 

replacement policy (Hybrid) to give a value 

(unchanged/decreased) for each object in the cache.  

Consequently, the objects with the maximum size and less 

frequently visited were removed first, there by 

postponing/proponing the removal of an object based on 

common factors of web object. 

IV. IMPLEMENTATION AND EXPERIMENTAL 

RESULTS 

A. Raw data collection 

The proxy logs files and traces of the Web objects 

were collected from three different datasets from [7]. 

Timestamps have 1 second resolution. Table II shows the 

details of used datasets in the paper. 

 

Table II: COLLECTED DATASET DETAILS 

Server Collected Time 
No. of Records 

in the Dataset 

Clarknet-HTTP 

04
th

 September, 1995 

to 10
th

  September, 

1995 

125500 

NASA-HTTP 
01

st
 July, 1995 to 31

st
  

July 
175800 

Saskatchewan-

HTTP 

01
st
 June, 1995 to 31

st
  

December, 1995 
57906 

 

 

B. Data Pre-processing 

Data pre-processing is an important step in the data 

mining process. The phrase "garbage in, garbage out" is 

particularly applicable to data mining and machine learning 

projects. Analyzing the data that has not been carefully 

screened for such problems may produce misleading results. 

Thus, the representation and quality of data is the first step 

before running an analysis. Data pre-processing includes 

cleaning, normalization, transformation, feature extraction 

and selection, etc. The product of data pre-processing is the 

final training set. 

C. Training Phase 

Proxy log traces were preprocessed and training 

data sets were prepared based on the format requirement of 

the simulators. Each proxy dataset is trained and tested with 

defaults. Decision Tree (DT) was implemented using 

Rapidminer version 5.3.013. The default values of 

parameters and settings are used as determined in 

Rapidminer. After training and verification, the trained 

classifiers were saved in the files which were utilized in 

improving the performance of the traditional Web proxy 

caching policies. 

D. Web proxy cache simulation 

The simulator software for non-uniform size web 

document caches was provided by University of Wisconsin 

[16]. The simulator can simulate LRU, SIZE, LRV, Hybrid 

and variations of Greedy Dual algorithms. The trained 

classifiers are integrated with simulator software to simulate 

the proposed Web proxy caching policies. The simulator 

takes input a text file describing each HTTP requests, 

calculates the hit ratio and byte hit ratio under an infinite-

sized cache, and then calculates the hit ratio and byte hit 

ratio for each algorithm, under cache sizes being various 

percentages of the total data set size. 

V. PERFORMANCE EVALUATION 

A. Classifier evaluation 

Three different performance measurements were 

used for evaluating the model/classifier. Table IV shows 

each measure name and formula to calculate the same. Table 

III shows the values of performance measures of testing 

datasets. A correct classification rate (CCR) is a measure for 

evaluating a model or classifier. The true positive rate (TPR) 

or sensitivity, the true negative rate (TNR) or specificity 

also used to evaluate the performance of machine learning 

techniques. Table II shows the Confusion matrix. 

TABLE II: CONFUSION MATRIX 

 Predicted 

positive 

Predicted 

negative 

Actual 

positive 

True positive 

(TP) 

False negative 

(FN) 

Actual 

negative 

False positive 

(FP) 

True negative 

(TN) 

 

TABLE III: THE PERFORMANCE MEASURES OF 

TESTING DATA (in %). 

  
Clarkn

et 

NAS

A 

Saskatche

wan 
Average 

Deci

sion 

Tree 

(DT) 

CRR 99.98 99.97 99.92 99.96 

TPR 99.98 99.96 99.97 99.97 

TNR 99.78 100 99.72 99.83 
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TABLE IV: THE MEASURES USED FOR 

EVALUATING PERFORMANCE OF DECISION TREE 

(DT) ALGORITHM 

Measure name Formula 

Correct classification rate 𝑪𝑹𝑹 =
TP+TN

TP+FP+TN+FN
 (%) 

True positive rate 𝑻𝑷𝑹 =
TP

TP+FN
 (%) 

True negative rate 𝑻𝑵𝑹 =
TN

TN+FP
 (%) 

 

B. Evaluation of proposed Web proxy caching approaches 

a. Performance measures 

In Web proxy caching, hit ratio (HR) and byte hit 

ratio (BHR) are two widely used metrics for evaluating the 

performance of Web proxy caching policies [14]. HR is 

defined as the ratio of the number of requests served from 

the proxy cache and the total number of requests. BHR 

refers to the number of bytes served from the cache, divided 

by the total number of bytes served. Usually HR and BHR 

work in opposite ways. The following table shows the Pure 

hit-rate, Byte hit-rate and Reduced latency for existing and 

proposed algorithms. Table 5 shows the Pure hit-rate, Byte 

hit-rate and Reduced latency for existing and proposed 

algorithms. Graph of the interpreted data can be seen in 

figures 4, 5, 6. 

TABLE V: PURE HIT-RATE, BYTE HIT-RATE AND 

REDUCED LATENCY FOR EXISTING AND 

PROPOSED ALGORITHMS FOR NASA SERVER 

TRACES. 

Algorithm 

Cache 

Size 

(%) 

Pure 

Hit-Rate 

Byte 

Hit-Rate 

Reduced 

Latency 

SIZE 

0.05% 0.035848 0.002297 0.035862 

0.50% 0.118478 0.024549 0.118526 

5.00% 0.383347 0.183973 0.383502 

10.00% 0.516068 0.305851 0.516276 

20.00% 0.677665 0.498386 0.677939 

DT-SIZE 

0.05% 0.035659 0.002295 0.035504 

0.50% 0.118459 0.024587 0.118353 

5.00% 0.384382 0.184788 0.384432 

10.00% 0.516827 0.306642 0.516954 

20.00% 0.678774 0.499823 0.678997 

Hybrid 

0.05% 
0.017389 0.003614 0.01738 

0.50% 
0.110464 0.038888 0.110402 

5.00% 
0.353067 0.205831 0.352868 

10.00% 
0.475001 0.30624 0.474734 

20.00% 
0.612905 0.451322 0.61256 

DT-

Hybrid 

0.05% 
0.017383 0.003612 0.017371 

0.50% 
0.110475 0.038892 0.1104 

5.00% 
0.356117 0.207354 0.355875 

10.00% 
0.471577 0.304488 0.471256 

20.00% 
0.612221 0.450748 0.611804 

 

VI. CONCLUSION 

Since the space apportioned to a web proxy cache is limited, 

the space must be utilized effectively. The cache 

replacement is the core or heart of Web caching. Thus, the 

design of efficient cache replacement algorithms is 

extremely important and crucial for caching mechanism 

achievement. The most common Web caching methods are 

not efficient enough and may suffer from a cache pollution 

problem, since they consider just one factor and ignore other 

factors that may have an impact on the efficiency of Web 

proxy caching. Decision Tree (DT) is popular supervised 

learning algorithms that perform classifications more 

accurately and faster than traditional algorithms. This 

research combines the most significant factors using 

Decision Tree (DT) classifier for predicting Web objects 

that can be re-visited later. In this research, we present new 

approaches that depend on the capability of Decision Tree 

(DT) classifier to learn from Web proxy logs files and 

predict the classes of objects to be re-visited or not. The 

trained Decision Tree (DT) classifier was effectively 

incorporated with traditional Web proxy caching algorithms 

to present novel Web proxy caching approaches with better 

performance in terms of hit ratio and byte hit ratio and 

reduced latency. Experimental results have revealed that the 

proposed two algorithms DT–SIZE and DT–Hybrid 

significantly increased Pure Hit-Ratio, Byte Hit-Ratio and 

reduced the latency when compared with SIZE and Hybrid. 

The same is evident from the below shown graphs for 

NASA dataset. 
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Fig.  4: Pure Hit-Rate graph  for existing and 

proposed Algorithms 

 

 

Fig.  5: Byte Hit-Rate graph  for existing and 

proposed Algorithms 

 

 

Fig.6: Reduced Latency graph  for existing and 

proposed Algorithms 
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