
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 2 302 – 309

__

302

IJRITCC | February 2014, Available @ http://www.ijritcc.org

Web Proxy Cache Replacement Policies Using Decision Tree (DT) Machine

Learning Technique for Enhanced Performance of Web Proxy

P. N. Vijaya Kumar
PhD Research Scholar,

Department of Computer Science & Technology,

Sri Krishnadevaraya University,

Anantapuramu, INDIA.

pnvijay.research@gmail.com

Dr. V. Raghunatha Reddy
Assistant Professor,

Department of Computer Science & Technology,

Sri Krishnadevaraya University,

Anantapuramu, INDIA.

vraghu9@gmail.com

Abstract—Web cache is a mechanism for the temporary storage (caching) of web documents, such as HTML pages and images, to reduce

bandwidth usage, server load, and perceived lag. A web cache stores the copies of documents passing through it and any subsequent requests

may be satisfied from the cache if certain conditions are met. In this paper, Decision Tree (DT) a machine learning technique has been used to

increase the performance of traditional Web proxy caching policies such as SIZE, and Hybrid. Decision Tree (DT) is used and integrated with

traditional Web proxy caching techniques to form better caching approaches known as DT–SIZE and DT–Hybrid. The proposed approaches are

evaluated by trace-driven simulation and compared with traditional Web proxy caching techniques. Experimental results have revealed that the

proposed DT–SIZE and DT–Hybrid significantly increased Pure Hit-Ratio, Byte Hit-Ratio and reduced the latency when compared with SIZE
and Hybrid.

Keywords—Web caching, Proxy Cache, Cache replacement, Classification, Decision Tree, Machine Learning.

__*****___

I. INTRODUCTION

Web proxy caching plays a key role in improving Web

performance by keeping Web objects that are likely to be

visited again in the proxy server close to the user. This Web

proxy caching helps in reducing user perceived latency, i.e.

delay from the time a request is issued until response is

received, reducing network bandwidth utilization, and

alleviating loads on the original servers. Since the space

apportioned to a cache is limited, the space must be utilized

effectively. Therefore, an intelligent mechanism is required

to manage Web cache content efficiently. The cache

replacement is the core or heart of Web caching. Thus, the

design of efficient cache replacement algorithms is

extremely important and crucial for caching mechanism

achievement [1]. The most common Web caching methods

are not efficient enough and may suffer from a cache

pollution problem, since they consider just one factor and

ignore other factors that may have an impact on the

efficiency of Web proxy caching [2]. Many Web proxy

caching policies have attempted to combine some factors

which can influence the performance of Web proxy caching

for making decisions about caching.

However, this is not an easy task, because examining

one factor in a particular environment may be more

important in one environment which may not be same in

other environments [3]. The challenge lies in predicting

which Web objects should be cached and which Web

objects should be replaced to make the best use of available

cache space, improve hit rates, reduce network traffic, and

alleviate loads on the original server [4]. Web proxy log

files record the activities of the users in a Web proxy server.

These proxy log files contain complete and prior knowledge

of future accesses. The availability of Web proxy log files

that can be used as training data is the main motivation for

utilizing machine learning techniques in adopting Web

caching approaches. Recent studies have proposed that

using machine learning techniques is proved to cope with

the above problem [5]. Decision Tree (DT) is popular

supervised learning algorithms that perform classifications

more accurately and faster than other algorithms [6]. Hence,

Decision Tree (DT) can be utilized to produce promising

solutions for Web proxy caching.

This paper combines the most significant factors using

Decision Tree (DT) classifier for predicting Web objects

that can be re-visited later. In this paper, we present new

approaches that depend on the capability of Decision Tree

(DT) classifier to learn from Web proxy logs files and

predict the classes of objects to be re-visited or not. The

trained Decision Tree (DT) classifier can be effectively

incorporated with traditional Web proxy caching algorithms

to present novel Web proxy caching approaches with better

performance in terms of hit ratio and byte hit ratio and

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 2 302 – 309

__

303

IJRITCC | February 2014, Available @ http://www.ijritcc.org

reduced latency. The remaining parts of this paper are

organized as follows. Background and related works are

presented in Section 2. The framework for improved Web

proxy caching approaches based on machine learning

techniques is illustrated in Section 3. Implementation and

experimental results are presented in Section 4. Section 5

discusses performance evaluation and discussion. Finally,

Section 6 concludes the paper.

II. BACKGROUND AND RELATED WORK

A. How Web Caches Work

Web caching is the temporary storage of web objects

(such as HTML documents) for later retrieval. The three

significant advantages of web caching are [8]:

a. Reduced bandwidth consumption.

b. Reduced server load.

c. Reduced latency.

All types of caches have a set of rules that they use

to determine when to serve an object from the cache, if it is

available. Some of these rules are set in the protocols such

as HTTP 1.1 and some are set by the administrator of the

cache.

The following are the most common rules that are followed

for a particular request:

1. If the object's headers directive tell the cache not to keep

the object, it won't Cache the Object. Also, if no validator is

specified, most caches will mark the object as uncacheable.

2. If the object is authenticated or secure, it will not be

cached.

3. A cached object is considered to be fresh (that is, able to

be sent to a client without checking with the origin server)

if:

• The object has an expiry time or other age-controlling

directive set, and is still within the fresh period.

• If a browser cache has already seen the object, and has

been set to check once in a session.

• If a proxy cache has seen the object very recent, and it was

modified relatively long ago.

Fresh documents are served directly from the web cache,

without checking with the origin server.

4. If an object is stale, the origin server will be asked to

validate the object, or tell the cache whether the copy that it

has is still good enough to serve or not.

Together, freshness and validation are the two most

important ways that a cache works with content. A fresh

object will be available instantly from the cache, while a

validated object will avoid sending the entire object over

again if it has not changed. Web content can be cached at a

number of different locations along the path between a client

and an origin server. The 3 types of Web Caches are

a. Browser Cache,

b. Proxy Cache, and

c. Surrogate/Server Cache.

The different types of caches are shown in Figure 1.

Fig. 1: Different types of caches

B. Traditional Web proxy caching algorithms

Cache replacement algorithms or replacement policies

are optimizing instructions or algorithms that a computer

program or a hardware-maintained structure can follow, in

order to manage a cache of information stored on the

computer. When the cache is full, the replacement algorithm

must choose which items to discard to make room for the

new ones. The most widely used replacement algorithms

include Least Recently Used (LRU), Least Frequently Used

(LFU), Most Recently Used (MRU), SIZE [9], Greedy-

Dual-Size(GDS), Hybrid [11], Lowest Relative Value(LRV)

[10] etc.

Least Recently Used (LRU) discards the least recently

used web items first. This algorithm requires keeping track

of what was used and when, which is expensive if one wants

to make sure the algorithm always discards the least recently

used item. General implementations of this technique

require keeping "age bits" for cache-lines and track the

"Least Recently Used" cache-line based on age-bits. In such

an implementation, every time a cache-line is used, the age

of all other cache-lines also changes. Least Frequently Used

(LFU) counts how often an item is needed. Those that are

used least are often discarded first. Most Recently Used

(MRU) discards, in contrast to LRU, the most recently used

web objects first. SIZE policy [9] is one of the common

Web caching policies that replace the largest object(s) from

a cache when space is needed for a new object. Thus, a

cache can be polluted with small objects which will not be

accessed again. Williams et al. [9] presented taxonomy of

cache retrieval policies, by means of trace-driven

simulations they measure the maximum feasible hit ratio

and byte hit ratio. They suggested that it would be much

better to replace documents based on the size as this

maximizes the hit ratio in each of their workloads. Cao and

Irani [12] introduced Greedy-Dual-Size (GDS) cache

replacement algorithm. This algorithm integrates locality

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 2 302 – 309

__

304

IJRITCC | February 2014, Available @ http://www.ijritcc.org

along with cost and size factors. Greedy-Dual-Size tags a

cost with every object and expels the object that has the

lowest cost or size. Wooster and Abrams[11] proposed

Hybrid cache replacement algorithm make use of a

combination of multiple requirements such as maintaining in

the cache documents from servers that take significant time

to connect to, those that need to be fetched from the slowest

links, those that have been accessed very frequently, and

those that are small. Wooster and Abrams checked the

performance of Hybrid algorithm alongside LRU, LFU and

SIZE. Hybrid algorithm performed well when compared

with traditional LRU, LFU and SIZE replacement

algorithms. The Lowest Relative Value (LRV) cache

replacement algorithm proposed by Rizzo and Vicisano [10]

expels the object that has the lowest utility value. In LRV,

the utility of a document is calculated adaptively on the

basis of data readily available to a proxy server. Rizzo and

Vicisano show that LRV performs better than LRU and can

substantially better the performance of a cache that is of

modest size.

C. Improved Web proxy caching algorithms

A.P. Foong, H. Yu-Hen, D.M. Heisey [15]

proposed a logistic regression model (LR) to predict the

future request. Then, the objects with the lowest re-access

probability value were replaced first regardless of cost and

size of the predicted object. T. Koskela, J. Heikkonen, K.

Kaski [14] used Multilayer perceptron network (MLP)

classifier in Web caching to predict the class of Web objects

depending on syntactic features from HTML structure of the

document and the HTTP responses of the server as inputs of

MLP. The class value was integrated with LRU, known to

be LRU-C, to optimize the Web cache. However, frequency

factor was ignored the frequency factor in Web cache

replacement decision. An integrated solution of back-

propagation neural network (BPNN) as caching decision

policy and LRU technique as replacement policy for script

data object has been proposed by Farhan [13]. Recently W.

Ali, S.M. Shamsuddin, A.S. Ismail [5] proposed three

algorithms namely SVM–LRU, SVM–GDSF and C4.5–

GDS which make use of the capability of Support vector

machine (SVM) and decision tree (C4.5) to learn from Web

proxy logs files and predict the classes of objects to be re-

visited or not. The trained SVM and C4.5 classifiers were

incorporated with traditional Web proxy caching algorithms

to present new Web proxy caching approaches. They proved

that their proposed SVM–LRU, SVM–GDSF and C4.5–

GDS significantly improved the performances of LRU,

GDSF and GDS respectively in terms of hit ratio and byte

hit ratio.

D. Machine learning Techniques

Machine learning, a branch of artificial

intelligence, concerns with the construction and study of

systems that can learn from data. For example, a machine

learning system could be trained on email messages to learn

to distinguish between the spam and the non-spam

messages. After learning, it can then be used to classify new

email messages into spam and non-spam and send them to

respective folders. The core of machine learning deals with

representation and generalization. The two areas Machine

learning and data mining overlap in many ways: data mining

uses many machine learning techniques, but often with a

slightly different goal in mind. On the other hand, machine

learning also employs data mining methods as

"unsupervised learning" or as a preprocessing step to

improve learner accuracy.

E. Decision Tree (NB) Classifier

Decision tree learning uses a decision tree as a

predictive model which maps observations about an item to

conclusions about the item's target value. It is one of the

predictive modeling approaches used in statistics, data

mining and machine learning. In data mining, a decision tree

describes data but not decisions; rather the resulting

classification tree can be an input for decision making.

Decision tree learning is a method commonly used in data

mining [17]. The goal is to create a model that predicts the

value of a target variable based on several input variables. A

decision tree is a simple representation for class examples.

Decision tree learning is one of the most successful

techniques for supervised classification learning. Decision

trees used in data mining are of two main types:

1. Classification tree analysis is when the predicted

outcome is the class to which the data belongs.

2. Regression tree analysis is when the predicted

outcome can be considered a real number (e.g. the price of a

house, or a patient’s length of stay in a hospital).

Decision tree learning is the construction of a

decision tree from class-labeled training tuples. A decision

tree is a flow-chart-like structure, where each internal (non-

leaf) node denotes a test on an attribute, each branch

represents the outcome of a test, and each leaf (or terminal)

node holds a class label. The topmost node in a tree is the

root node. An example Decision tree is shown in Figure 3.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 2 302 – 309

__

305

IJRITCC | February 2014, Available @ http://www.ijritcc.org

Fig. 2: an example of Decision Tree

Amongst other data mining methods, decision trees have

various advantages:

1. Simple to understand and interpret. People are able

to understand decision tree models after a brief

explanation.

2. Requires little data preparation. Other techniques

often require data normalization, dummy variables

need to be created and blank values to be removed.

3. Able to handle both numerical and categorical data.

Other techniques are usually specialized in

analyzing datasets that have only one type of

variable.

III. THE PROPOSED WEB PROXY CACHING

ALGORITHMS

 The proposed two algorithms namely DT–SIZE and

DT–Hybrid make use of the capability of Decision Tree

(DT) classifier to learn from Web proxy logs files and

predict the classes of objects to be re-visited or not. The

trained Decision Tree (DT) classifier was incorporated with

traditional Web proxy caching algorithms to present new

Web proxy caching approaches. Training and testing was

done on Web proxy logs files (datasets) offline which can be

used to predict the classes of objects to be re-visited or not

in future. In order to prepare the training dataset, the desired

features of Web objects are extracted from traces and proxy

access log files. The important features of Web objects that

indicate the user interest are extracted for preparing the

training dataset. These features consist of URL ID,

timestamp, elapsed time, size and type of Web object. The

common features were selected and extracted as suggested

by W. Ali et al [5]. Subsequently, these features are

converted to the input/output dataset or training patterns in

the format <x1, x2, x3, x4, x5, y>. x1… x5 represent the

inputs and y represents target output of the requested object.

Table I shows the inputs and their meanings for each

training pattern.

TABLE I: THE INPUTS AND THEIR MEANINGS

Input Meaning

x1 Elapsed time of Web object

x2 Frequency of Web object

x3 Recency of Web object

x4 Size of Web object

x5 URL ID of Web object

A. DT–SIZE

 Williams et al. [9] suggested that it would be much

better to replace documents based on the size as this

maximizes the hit ratio in each of their workloads. As SIZE

policy is replace the largest object(s) from a cache when

space is needed for a new object. Thus, a cache can be

polluted with small objects which will not be accessed

again. Therefore, the Decision Tree (DT) classifier is

integrated with SIZE for improving the performance in

terms of the hit ratio of SIZE. The proposed proxy caching

policy is called DT–SIZE. In DT–SIZE, a trained Decision

Tree (DT) classifier is used to predict the classes of Web

objects either objects may be re-visited later or not. After

this, the classification decision is integrated into cache

replacement policy (SIZE) to give a value

(unchanged/decreased) for each object in the cache.

Consequently, the objects with the maximum size are

removed first, there by postponing the removal of an object

based on common factors of web object.

B. DT–HYBRID

 Wooster and Abrams[11] proposed Hybrid cache

replacement algorithm make use of a combination of

multiple requirements such as maintaining in the cache

documents from servers that take significant time to connect

to, those that need to be fetched from the slowest links,

those that have been accessed very frequently, and those that

are small. Wooster and Abrams checked the performance of

Hybrid algorithm alongside LRU, LFU and SIZE. Hybrid

algorithm performed well when compared with traditional

LRU, LFU and SIZE replacement algorithms. Though,

Hybrid algorithm takes into consideration multiple factors of

a web object, the capability of Decision Tree (DT) will

boost the performance of the Hybrid algorithm. Therefore,

the Decision Tree (DT) classifier is integrated with Hybrid

algorithm for improving the performance in terms of the hit

ratio of Hybrid algorithm. The proposed proxy caching

policy is called DT–Hybrid. In DT–Hybrid, a trained

Decision Tree (DT) classifier is used to predict the classes

of Web objects either objects may be re-visited later or not.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 2 302 – 309

__

306

IJRITCC | February 2014, Available @ http://www.ijritcc.org

After this, the classification decision is integrated into cache

replacement policy (Hybrid) to give a value

(unchanged/decreased) for each object in the cache.

Consequently, the objects with the maximum size and less

frequently visited were removed first, there by

postponing/proponing the removal of an object based on

common factors of web object.

IV. IMPLEMENTATION AND EXPERIMENTAL

RESULTS

A. Raw data collection

The proxy logs files and traces of the Web objects

were collected from three different datasets from [7].

Timestamps have 1 second resolution. Table II shows the

details of used datasets in the paper.

Table II: COLLECTED DATASET DETAILS

Server Collected Time
No. of Records

in the Dataset

Clarknet-HTTP

04
th

 September, 1995

to 10
th

 September,

1995

125500

NASA-HTTP
01

st
 July, 1995 to 31

st

July
175800

Saskatchewan-

HTTP

01
st
 June, 1995 to 31

st

December, 1995
57906

B. Data Pre-processing

Data pre-processing is an important step in the data

mining process. The phrase "garbage in, garbage out" is

particularly applicable to data mining and machine learning

projects. Analyzing the data that has not been carefully

screened for such problems may produce misleading results.

Thus, the representation and quality of data is the first step

before running an analysis. Data pre-processing includes

cleaning, normalization, transformation, feature extraction

and selection, etc. The product of data pre-processing is the

final training set.

C. Training Phase

Proxy log traces were preprocessed and training

data sets were prepared based on the format requirement of

the simulators. Each proxy dataset is trained and tested with

defaults. Decision Tree (DT) was implemented using

Rapidminer version 5.3.013. The default values of

parameters and settings are used as determined in

Rapidminer. After training and verification, the trained

classifiers were saved in the files which were utilized in

improving the performance of the traditional Web proxy

caching policies.

D. Web proxy cache simulation

The simulator software for non-uniform size web

document caches was provided by University of Wisconsin

[16]. The simulator can simulate LRU, SIZE, LRV, Hybrid

and variations of Greedy Dual algorithms. The trained

classifiers are integrated with simulator software to simulate

the proposed Web proxy caching policies. The simulator

takes input a text file describing each HTTP requests,

calculates the hit ratio and byte hit ratio under an infinite-

sized cache, and then calculates the hit ratio and byte hit

ratio for each algorithm, under cache sizes being various

percentages of the total data set size.

V. PERFORMANCE EVALUATION

A. Classifier evaluation

Three different performance measurements were

used for evaluating the model/classifier. Table IV shows

each measure name and formula to calculate the same. Table

III shows the values of performance measures of testing

datasets. A correct classification rate (CCR) is a measure for

evaluating a model or classifier. The true positive rate (TPR)

or sensitivity, the true negative rate (TNR) or specificity

also used to evaluate the performance of machine learning

techniques. Table II shows the Confusion matrix.

TABLE II: CONFUSION MATRIX

 Predicted

positive

Predicted

negative

Actual

positive

True positive

(TP)

False negative

(FN)

Actual

negative

False positive

(FP)

True negative

(TN)

TABLE III: THE PERFORMANCE MEASURES OF

TESTING DATA (in %).

Clarkn

et

NAS

A

Saskatche

wan
Average

Deci

sion

Tree

(DT)

CRR 99.98 99.97 99.92 99.96

TPR 99.98 99.96 99.97 99.97

TNR 99.78 100 99.72 99.83

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 2 302 – 309

__

307

IJRITCC | February 2014, Available @ http://www.ijritcc.org

TABLE IV: THE MEASURES USED FOR

EVALUATING PERFORMANCE OF DECISION TREE

(DT) ALGORITHM

Measure name Formula

Correct classification rate 𝑪𝑹𝑹 =
TP+TN

TP+FP+TN+FN
 (%)

True positive rate 𝑻𝑷𝑹 =
TP

TP+FN
 (%)

True negative rate 𝑻𝑵𝑹 =
TN

TN+FP
 (%)

B. Evaluation of proposed Web proxy caching approaches

a. Performance measures

In Web proxy caching, hit ratio (HR) and byte hit

ratio (BHR) are two widely used metrics for evaluating the

performance of Web proxy caching policies [14]. HR is

defined as the ratio of the number of requests served from

the proxy cache and the total number of requests. BHR

refers to the number of bytes served from the cache, divided

by the total number of bytes served. Usually HR and BHR

work in opposite ways. The following table shows the Pure

hit-rate, Byte hit-rate and Reduced latency for existing and

proposed algorithms. Table 5 shows the Pure hit-rate, Byte

hit-rate and Reduced latency for existing and proposed

algorithms. Graph of the interpreted data can be seen in

figures 4, 5, 6.

TABLE V: PURE HIT-RATE, BYTE HIT-RATE AND

REDUCED LATENCY FOR EXISTING AND

PROPOSED ALGORITHMS FOR NASA SERVER

TRACES.

Algorithm

Cache

Size

(%)

Pure

Hit-Rate

Byte

Hit-Rate

Reduced

Latency

SIZE

0.05% 0.035848 0.002297 0.035862

0.50% 0.118478 0.024549 0.118526

5.00% 0.383347 0.183973 0.383502

10.00% 0.516068 0.305851 0.516276

20.00% 0.677665 0.498386 0.677939

DT-SIZE

0.05% 0.035659 0.002295 0.035504

0.50% 0.118459 0.024587 0.118353

5.00% 0.384382 0.184788 0.384432

10.00% 0.516827 0.306642 0.516954

20.00% 0.678774 0.499823 0.678997

Hybrid

0.05%
0.017389 0.003614 0.01738

0.50%
0.110464 0.038888 0.110402

5.00%
0.353067 0.205831 0.352868

10.00%
0.475001 0.30624 0.474734

20.00%
0.612905 0.451322 0.61256

DT-

Hybrid

0.05%
0.017383 0.003612 0.017371

0.50%
0.110475 0.038892 0.1104

5.00%
0.356117 0.207354 0.355875

10.00%
0.471577 0.304488 0.471256

20.00%
0.612221 0.450748 0.611804

VI. CONCLUSION

Since the space apportioned to a web proxy cache is limited,

the space must be utilized effectively. The cache

replacement is the core or heart of Web caching. Thus, the

design of efficient cache replacement algorithms is

extremely important and crucial for caching mechanism

achievement. The most common Web caching methods are

not efficient enough and may suffer from a cache pollution

problem, since they consider just one factor and ignore other

factors that may have an impact on the efficiency of Web

proxy caching. Decision Tree (DT) is popular supervised

learning algorithms that perform classifications more

accurately and faster than traditional algorithms. This

research combines the most significant factors using

Decision Tree (DT) classifier for predicting Web objects

that can be re-visited later. In this research, we present new

approaches that depend on the capability of Decision Tree

(DT) classifier to learn from Web proxy logs files and

predict the classes of objects to be re-visited or not. The

trained Decision Tree (DT) classifier was effectively

incorporated with traditional Web proxy caching algorithms

to present novel Web proxy caching approaches with better

performance in terms of hit ratio and byte hit ratio and

reduced latency. Experimental results have revealed that the

proposed two algorithms DT–SIZE and DT–Hybrid

significantly increased Pure Hit-Ratio, Byte Hit-Ratio and

reduced the latency when compared with SIZE and Hybrid.

The same is evident from the below shown graphs for

NASA dataset.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 2 302 – 309

__

308

IJRITCC | February 2014, Available @ http://www.ijritcc.org

Fig. 4: Pure Hit-Rate graph for existing and

proposed Algorithms

Fig. 5: Byte Hit-Rate graph for existing and

proposed Algorithms

Fig.6: Reduced Latency graph for existing and

proposed Algorithms

REFERENCES

[1] H.T. Chen, Pre-Fetching and Re-Fetching in Web

Caching Systems: Algorithms and Simulation, Trent

University, Peterborough, Ontario, Canada, Peterborough,

Ontario, Canada, 2008.

[2] S. Romano, H. ElAarag, A neural network proxy cache

replacement strategy and its implementation in the Squid

proxy server, Neural Computing and Applications 20 (2011)

59–78.

[3] W. Kin-Yeung, Web cache replacement policies: a

pragmatic approach, IEEE Network 20 (2006) 28–34.

[4] C. Kumar, J.B. Norris, A new approach for a proxy-level

web caching mechanism, Decision Support Systems 46

(2008) 52–60.

[5] W. Ali, S.M. Shamsuddin, A.S. Ismail, Intelligent Web

proxy caching approaches based on machine learning

techniques, Elsevier (2012) 0167-9236.

[6] Rokach, Lior; Maimon, Data mining with decision trees:

theory and applications. World Scientific Pub Co Inc.

(2008) ISBN 978-9812771711.

[7] The University of California and Lawrence Berkeley

National Laboratory, Traces: Available at

http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html

[8] Sulaiman, S.; Shamsuddin, S.M.; Forkan, F.; Abraham,

A. "Intelligent Web Caching Using Neurocomputing and

Particle Swarm Optimization Algorithm" IEEE Modeling &

Simulation, 2008. AICMS 08. Second Asia International

Conference, Page(s): 642 - 647, Print ISBN: 978-0-7695-

3136-6, 13-15 May 2008.

[9] M. Abrams, C.R. Standridge, G. Abdulla, E.A. Fox, S.

Williams, Removal Policies in Network Caches for World-

Wide Web Documents, ACM, 1996, pp. 293–305.

[10] Rizzo, Vicisano, Replacement Policies for a Proxy

Cache, IEEE/ACM TRANSACTIONS ON

NETWORKING, VOL. 8, NO. 2, APRIL 2000

[11] Roland P. Wooster and Marc Abrams: Proxy Caching

That Estimates Page Load Delays from: Computer Networks

and Isdn Systems - CN, Vol. 29, No. 8-13, pp. 977-986,

1997.

[12] Pei Cao and Sandy Irani, Cost-aware www proxy

caching algorithms. In Proceedings of the USENIX

http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 2 302 – 309

__

309

IJRITCC | February 2014, Available @ http://www.ijritcc.org

Symposium on Internet Technologies and Systems,

Monterey, California, December 1997.

[13] J. Cobb, H. ElAarag, Web proxy cache replacement

scheme based on back-propagation neural network, Journal

of Systems and Software 81 (2008) 1539–1558.

[14] T. Koskela, J. Heikkonen, K. Kaski, Web cache

optimization with nonlinear model using object features,

Computer Networks 43 (2003) 805–817.

[15] A.P. Foong, H. Yu-Hen, D.M. Heisey, Logistic

regression in an adaptive Web cache, IEEE Internet

Computing 3 (1999) 27–36.

[16] Copyright 1997. University of Wisconsin – Madison.

All Rights Reserved.

