
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 2 Issue: 1 114 – 119

114

IJRITCC | January 2014, Available @ http://www.ijritcc.org

__

Web Server Security and Survey on Web Application Security

Shaikh Bushra Almin,

Department of Information Technology,

PIIT, New Panvel.

University of Mumbai, India.

skbushra78691@gmail.com

Abstract— A web server is a computer host configured and connected to Internet, for serving the web pages on request. Information on the

public web server is accessed by anyone and anywhere on the Internet. Since web servers are open to public access they can be subjected to

attempts by hackers to compromise the server‘s security. Hackers can deface websites and steal data valuable data from systems. This can

translate into significant loss of revenue if it is a financial institution or e-commerce site. In the case of corporate or government systems, loss of

important data means launch of information espionages or information warfare on their sites. Apart from data loss or theft, web defacement can

also result in significant damage to the image of company [1]. The fact that an attacker can strike remotely makes a Web server an appealing

target. Understanding threats to Web server and being able to identify appropriate countermeasures permits to anticipate many attacks and thwart

the ever-growing numbers of attackers [3]. This work begins by reviewing the most common threats that affect Web servers. It then uses this

perspective to find certain countermeasures. A key concept of this work focuses on the survey of most prevailing attacks that occurs due to

certain vulnerabilities present in the web technology or programming which are exploited by attackers and also presents general

countermeasures. In addition, various methods to detect and prevent those attacks are discussed and highlighted the summary and comparative

analysis of the approaches on the basis of different attacks that shows you how to improve Web server's security.

Keywords— SQLIA (SQL Injection Attack), XSS (Cross Site Scripting), CSRF (Cross Site Request Forgery), OWASP (Open Web Application

Security Project).

___*****___

I. INTRODUCTION

A secure Web server provides a protected foundation for

hosting Web applications, and Web server configuration plays

a critical role in Web application's security. Badly configured

virtual directories, a common mistake, can lead to unauthorized

access. A forgotten share can provide a convenient back door,

while an overlooked port can be an attacker's front door.

Neglected user accounts can permit an attacker to slip by your

defenses unnoticed.

The fact that an attacker can strike remotely makes a Web

server an appealing target. Understanding threats to Web server

and being able to identify appropriate countermeasures permits

to anticipate many attacks and thwart the ever-growing

numbers of attackers [3].

A. Threats to Web Server and Countermeasures

The main threats to a Web server are [3]:

 Profiling

 Denial of service

 Unauthorized access

 Arbitrary code execution

 Elevation of privileges

 Viruses, worms, and Trojan horses

Fig. 1 Prominent web server threats

1) Profiling: Profiling, or host enumeration, is an

exploratory process used to gather information about your Web

site. An attacker uses this information to attack known weak

points.

 Vulnerabilities

Common vulnerabilities that make your server susceptible to

profiling include:

 Unnecessary protocols

 Open ports

 Web servers providing configuration information in

banners

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 2 Issue: 1 114 – 119

115

IJRITCC | January 2014, Available @ http://www.ijritcc.org

__

 Attacks

Common attacks used for profiling include:

 Port scans

 Ping sweeps

 NetBIOS and server message block (SMB) enumeration

 Countermeasures

Countermeasures include blocking all unnecessary ports,

blocking Internet Control Message Protocol (ICMP) traffic, and

disabling unnecessary protocols such as NetBIOS and SMB.

2) Denial of Service: Denial of service attacks occur

when your server is overwhelmed by service requests. The

threat is that Web server will be too overwhelmed to respond to

legitimate client requests.

 Vulnerabilities

Vulnerabilities that increase the opportunities for denial of

service include:

 Weak TCP/IP stack configuration

 Unpatched servers

 Attacks

Common denial of service attacks include:

 Network-level SYN floods

 Buffer overflows

 Flooding the Web server with requests from distributed

locations

 Countermeasures

Countermeasures include hardening the TCP/IP stack and

consistently applying the latest software patches and updates to

system software.

3) Unauthorized Access: Unauthorized access occurs

when a user without correct permissions gains access to

restricted information or performs a restricted operation.

 Vulnerabilities

Common vulnerabilities that lead to unauthorized access

include:

 Weak IIS Web access controls including Web permissions

 Weak NTFS permissions

 Countermeasures

Countermeasures include using secure Web permissions,

NTFS permissions, and .NET Framework access control

mechanisms including URL authorization.

4) Arbitrary Code Execution: Code execution attacks

occur when an attacker runs malicious code on your server

either to compromise server resources or to mount additional

attacks against downstream systems.

 Vulnerabilities

Vulnerabilities that can lead to malicious code execution

include:

 Weak IIS configuration

 Unpatched servers

 Attacks

Common code execution attacks include:

 Path traversal

 Buffer overflow leading to code injection

 Countermeasures

Countermeasures include configuring IIS to reject URLs

with "../" to prevent path traversal, locking down system

commands and utilities with restrictive access control lists

(ACLs), and installing new patches and updates.

5) Elevation of Privileges: Elevation of privilege attacks

occur when an attacker runs code by using a privileged process

account.

 Vulnerabilities

Common vulnerabilities that make your Web server

susceptible to elevation of privilege attacks include:

 Over-privileged process accounts

 Over-privileged service accounts

 Countermeasures

Countermeasures include running processes using least

privileged accounts and using least privileged service and

user accounts.

6) Viruses, Worms, and Trojan Horses: Malicious code

comes in several varieties, including:

 Viruses. Programs that are designed to perform malicious

acts and cause disruption to an operating system or

applications.

 Worms. Programs that are self-replicating and self-

sustaining.

 Trojan horses. Programs that appear to be useful but that

actually do damage.

 Vulnerabilities

Common vulnerabilities that make you susceptible to viruses,

worms, and Trojan horses include:

 Unpatched servers

 Running unnecessary services

 Countermeasures

Countermeasures include the prompt application of the latest

software patches, disabling unused functionality such as unused

ISAPI filters and extensions, and running processes with least

privileged accounts to reduce the scope of damage in the event

of a compromise [3].

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 2 Issue: 1 114 – 119

116

IJRITCC | January 2014, Available @ http://www.ijritcc.org

__

II. OWASP TOP 10 WEB SECURITY THREATS

To keep pace, OWASP periodically update the OWASP Top

10. In this 2013 release, they made the following changes: [2]

Fig. 2 OWASP Top 10 Web Application Security Threats

In this survey, we are focusing only on 3 most prevalent

attacks which are occuring most frequently.

III. SQLIA

Injection flaws, such as SQL, injection occur when untrusted

data is sent to an interpreter as part of a command or query.

The attacker‘s hostile data can trick the interpreter into

executing unintended commands or accessing data without

proper authorization [2]. An example of simple tautology type

of SQLIA is shown in figure 2, which will result in displaying

all the records in the database irrespective of wrong username

and password because the condition 0=0 always evaluates to

true.

Fig. 3 Example of Tautology SQLIA

 Some of the most commonly followed prevention

mechanism for SQLIA are as follows [5]:

 Use prepared statements

 Perform Input Validation

 Escape all user supplied input

 Enforce least privilege

 Use stored procedures

Apart from these, there are few research oriented

techniques that have proved to be successful in preventing

SQLIA to a greater extent. They are as follows:

 Access Control Mechanism [6]

 Network Vulnerability Scanner [7]

 Encryption [8]

Access control mechanism presents a technique, which will

be used for the detection and prevention from SQL Injection.

The parameterized cursor is used to implement the concept.

The user session information will be passed as a parameter to

cursor. If the user is an authorized user then the cursor will

fetch the desired tuples else will fail to execute [6].

Network Vulnerability scanner are designed to penetrate the

web applications against the security issues. They are the

automated tools designed in such a way that they will perform

the same attack as we do manually, the advantage of using

Scanners is that they generate the automated report which

shows what are the input points which are vulnerable [7].

In [8], the advantages of randomization are employed to

prevent SQL injection attacks in web based applications. For a

hacker to modify a database, details such as field and table

names are required. So a solution to the above problem is

proposed by preventing it using an encryption algorithm based

on randomization. The random4 algorithm is based on

randomization and is used to convert the input into a cipher text

incorporating the concept of cryptographic salt. This algorithm

forms the basis of the proposed approach.

IV. XSS

XSS flaws occur whenever an application takes untrusted

data and sends it to a web browser without proper validation or

escaping. XSS allows attackers to execute scripts in the

victim‘s browser which can hijack user sessions, deface web

sites, or redirect the user to malicious sites. [2]

 Example Attack Scenario:

The application uses untrusted data in the construction of the

following HTML snippet without validation or escaping:

(String) page += "<input name='creditcard'

type='TEXT‗ value='" + request.getParameter ("CC") + "'>";

The attacker modifies the ‗CC‘ parameter in his browser to:

'><script>document.location='http://www.attacker.com/cgi-

bin/cookie.cgi? foo='+document.cookie</script>'.

This causes the victim‘s session ID to be sent to the

attacker‘s website, allowing the attacker to hijack the user‘s

current session. [2]

 Types of XSS

1) Stored XSS:

Stored attacks are those where the injected script is

permanently stored on the target servers, such as in a database,

in a message forum, visitor log, comment field, etc. The victim

then retrieves the malicious script from the server when it

requests the stored information. Stored XSS is also sometimes

referred to as Persistent or Type-I XSS [15].

2) Reflected XSS:

Reflected attacks are those where the injected script is

reflected off the web server, such as in an error message, search

result, or any other response that includes some or all of the

input sent to the server as part of the request. Reflected attacks

are delivered to victims via another route, such as in an e-mail

message, or on some other web site. Reflected XSS is also

sometimes referred to as Non-Persistent or Type-II XSS. [15]

Following are some recent techniques that are applied to

detect/prevent XSS:

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 2 Issue: 1 114 – 119

117

IJRITCC | January 2014, Available @ http://www.ijritcc.org

__

 Dynamic Cookies Rewriting[9]

 Comment Injection [10]

 Multi Agent Scanner [11]

With this [9] technique in place, the web proxy will

automatically rewrite the value of the name attribute in the

cookie with the randomized value before sending the cookie to

the browser, so the browser will keep the randomized value in

its database instead of the original value sent by the web server.

The returned cookie from the browser will also be rewritten

back to the original value at the web proxy before being

forwarded to the web server. As the browser‘s database does

not store the original values of the cookies, so even the XSS

attacks can steal the cookies from the browser‘s database, the

cookies cannot be used later to impersonate the users.

This [10] approach is based on the concept of injecting

comment statements containing random tokens and features of

legitimate JavaScript code. When a response page is generated,

JavaScript code without or incorrect comment is considered as

injected code. Moreover, the valid comments are checked for

duplicity. Any presence of duplicate comments or a mismatch

between expected code features and actually observed features

represents JavaScript code as injected. A prototype tool is

implemented that automatically injects JavaScript comments

and deploy injected JavaScript code detector as a server side

filter.

A novel multi-agent architecture allows for each one of

those tasks to be carried out by a different type of agent. This

design decision has been taken to allow each of the stages of

the scanning process to be performed concurrently with the

other stages. It also allows for the different sub tasks of the

scanning process to take place in a distributed and/or parallel

way [11].

V. CSRF

A CSRF attack forces a logged-on victim‘s browser to send

a forged HTTP request, including the victim‘s session cookie

and any other automatically included authentication

information, to a vulnerable web application. This allows the

attacker to force the victim‘s browser to generate requests to

the vulnerable application thinks are legitimate requests from

the victim. [2]

The differences between XSS and CSRF

Though CSRF seems similar to (XSS) at first, both are

completely different attack vectors. Where XSS aims at

inserting active code in an HTML document to either abuse

client-side active scripting holes, or to send privileged

information (e.g., authentication/session cookies) to an

unknown evil website, CSRF aims to perform unwanted

actions on a website where the victim has some prior

relationship and authority.

Moreover, where XSS sought to steal your online trading

cookies so an attacker could manipulate a victim‘s account,

CSRF seeks to use the victims‘ cookies to force them to

execute a trade without their knowledge or consent. While XSS

attacks exploits the trust that a user has on the website, CSRF

attacks exploit the trust that the website has in its user. [16]

 Types of CSRF attacks

1. Reflected CSRF attacks

In a reflected CSRF attack, the attacker uses a system

outside the application to expose the victim to the exploit link

or content. This can be done using a blog, an email message, an

instant message, a message-board posting, [16].

2. Local/stored CSRF attacks

A stored/local CSRF attack is one where the attacker can use

the application itself to provide the victim the exploit link, or

other content which directs the victim‘s browser to perform

attacker-controlled actions in the application. Examples include

bulletin boards and social sites where users are allowed to post

images with foreign URL sources.[16].

Most commonly used methods to prevent CSRF are as

follows [17]:

 Use of random tokens

 Use of POST in form rather than GET

 Limiting the lifetime of authentication cookies

 Damage limitation

 Force user to use your form

CSRF attacks are also successfully prevented by applying

following techniques:

 Shared secret token[12]

 Referer header[13]

 Origin header[13]

 Visibility and content checking[14]

 A proxy based solution [12] uses a proxy that is

placed on the server side between the web server and the target

application. This proxy is able to inspect and modify client

requests as well as the application‘s replies (output) to

automatically and transparently extend applications with the

previously sketched shared secret technique. In particular, the

proxy has to

 Ensure that replies to an authenticated user are modified

in such a way that future requests originating from this

document (i.e., through hyperlinks and forms) will

contain a valid token, and

 Take countermeasures against the requests of

authenticated users that do not contain a valid token.

 An essential prerequisite for this mechanism is the

proxy‘s ability to associate a user‘s session with a valid

token. To this end, the proxy maintains a token table

with entries that map session IDs to tokens.

Drawback:

 Does not discriminate between hyperlinks

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 2 Issue: 1 114 – 119

118

IJRITCC | January 2014, Available @ http://www.ijritcc.org

__

It does not discriminate between hyperlinks back to the web

application and hyperlinks to other web sites. If the web

application links to another site, the remote site will receive a

copy of the user‘s CSRF token [13].

 Does not defend against login CSRF

It does not defend against login CSRF because it only

validates the CSRF token if the user already has a session

identifier. Although this oversight is repairable, it demonstrates

the complexity of implementing secret token validation

correctly [13].

Unfortunately, the Referer contains sensitive information

that impinges on the privacy of web users. Therefore using

Referer header is widely suppressed. [14]

The Origin header improves on the Referer header by

respecting the user‘s privacy:

 The Origin header includes only the information required

to identify the principal that initiated the request (typically

the scheme, host, and port of the active document‘s URL).

In particular, the Origin header does not contain the path or

query portions of the URL included in the Referer header

that invade privacy without providing additional security.

 The Origin header is sent only for POST requests, whereas

the Referer header is sent for all requests. Simply

following a hyperlink (e.g., from a list of search results or

from a corporate intranet) does not send the Origin header,

preventing the majority of accidental leakage of sensitive

information.

By responding to privacy concerns, the Origin header will

likely not be widely suppressed. [13]

This [14] approach relies on the matching of parameters and

values present in a suspected request with a form‘s input fields

and values that are being displayed on a webpage (visibility).

To overcome an attacker‘s attempt to circumvent form

visibility checking, the response content type of a suspected

request with the expected content type are compared.

VI. COMPARATIVE ANALYSIS AND SUGGESTIONS

Following are the comparative study of the above discussed

techniques to detect and prevent SQLIA, XSS and

CSRF.

Table 1 Comparison of SQLIA prevention/detection techniques

Table 2 Comparison of XSS prevention/detection techniques

Table 3 Comparison of CSRF prevention/detection techniques

VII. CONCLUSIONS

To help organizations and developers reduce their

application security risks in a cost effective manner, OWASP

has produced numerous free and open resources that you can

use to address application security in your organization. The

following are some of the many resources OWASP has

produced to help organizations produce secure web

applications. [2]

 Guidelines for Developers:

 Establish & Use Repeatable Security Processes and

Standard Security Controls

 Application Security Requirements:

To produce a secure web application, developers must define

what secure means for that application. OWASP recommends

to use the OWASP Application Security Verification Standard

(ASVS), as a guide for setting the security requirements for

application(s).

 Application Security Architecture:

Rather than retrofitting security into applications, it is far

more cost effective to design the security in from the start.

OWASP recommends the OWASP Developer‘s Guide, and the

OWASP Prevention Cheat Sheets as good starting points for

guidance on how to design security in from the beginning.

 Standard Security Controls:

Building strong and usable security controls is exceptionally

difficult. A set of standard security controls radically simplifies

the development of secure applications. OWASP recommends

the OWASP Enterprise Security API (ESAPI) project as a

model for the security APIs needed to produce secure web

applications. ESAPI provides reference implementations in

Java, .NET, PHP, Classic ASP, Python, and Cold Fusion.

 Secure Development Lifecycle:

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 2 Issue: 1 114 – 119

119

IJRITCC | January 2014, Available @ http://www.ijritcc.org

__

To improve the process an organization follows when

building such applications, OWASP recommends the OWASP

Software Assurance Maturity Model (SAMM). This model

helps organizations formulate and implement a strategy for

software security that is tailored to the specific risks facing

their organization.

 Application Security Education:

The OWASP Education Project provides training materials

to help educate developers on web application security and has

compiled a large list of OWASP Educational Presentations.

 Guidelines for Verifier’s:

 Code Review:

OWASP has produced the OWASP Code Review Guide to

help developers and application security specialists understand

how to efficiently and effectively review a web application for

security by reviewing the code.

 Security and Penetration Testing:

OWASP produced the Testing Guide to help developers,

testers, and application security specialists understand how to

efficiently and effectively test the security of web applications.

This enormous guide, which had dozens of contributors,

provides wide coverage on many web application security

testing topics. [2].

REFERENCES

[1] ―Web Server Security Guidelines‖, Online: Available,
http://delhi.gov.in/wps/wcm/ connect/CISG-2004-04.pdf

[2] ―The Ten Most Critical Web Application Security Risks‖, ‖sql-injection-

prevention-cheat-sheet‖, ‖css-prevention-cheat-sheet‖,‖csrf-prevention-
cheat-sheet‖, Online : available,

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project.

[3] ―Improving Web Application Security: Threats and Countermeasures‖,
online: available, http://msdn.microsoft.com/en-us/library/ff648653.aspx

[4] Online: available, http://www.veracode.com/security/sql-injection.

[5] Online: available, http://www.veracode.com/security/sql-prevention-
cheat-sheet.

[6] Jan, Z.; Shah, M.; Rauf, A.; Khan, M.A.; Mahfooz, S., "Access Control

Mechanism For Web Databases By Using Parameterized Cursor,‖ In

Future Information Technology (FutureTech), 2010 5th International

Conference on , vol., no., pp.1,6, 21-23 May 2010.

[7] Singh, A.K.; Roy, S., "A network based vulnerability scanner for

detecting SQLI attacks in web applications," Recent Advances in

Information Technology (RAIT), 2012 1st International Conference on ,
vol., no., pp.585,590, 15-17 March 2012.

[8] Avireddy, S.; Perumal, V.; Gowraj, N.; Kannan, R.S.; Thinakaran, P.;

Ganapthi, S.; Gunasekaran, J.R.; Prabhu, S., "Random4: An Application
Specific Randomized Encryption Algorithm to Prevent SQL Injection,"

Trust, Security and Privacy in Computing and Communications
(TrustCom), 2012 IEEE 11th International Conference on , vol., no.,

pp.1327,1333, 25-27 June 2012.

[9] Rattipong Putthacharoen, Pratheep Bunyatnoparat ,‖Protecting Cookies
from Cross Site Script Attacks Using Dynamic Cookies Rewriting

Technique‖, Advanced Communication Technology (ICACT), 2011

13th International Conference on , vol., no., pp.1090,1094, 13-16 Feb.

2011.

[10] Hossain Shahriar and Mohammad Zulkernine, ―Injecting Comments to

Detect JavaScript Code Injection Attacks‖, Computer Software and
Applications Conference Workshops (COMPSACW), 2011 IEEE 35th

Annual , vol., no., pp.104,109, 18-22 July 2011.

[11] E. Galan, A. Alcaide, A. Orfila, J. Blasco ,―A Multi-agent Scanner to
Detect Stored-XSS Vulnerabilities‖, Internet Technology and Secured

Transactions (ICITST), 2010 International Conference on , vol., no.,

pp.1,6, 8-11 Nov. 2010.

[12] Nenad Jovanovic, Engin Kirda, and Christopher Kruegel ―Preventing

Cross Site Request Forgery Attacks‖ In IEEE International Conference

on Security and Privacy in Communication Networks (SecureComm),
Securecomm and Workshops, 2006 , vol., no., pp.1,10, Aug. 28 2006-

Sept. 1 2006

[13] Adam Barth, Collin Jackson, John C. Mitchell, ―Robust Defenses for
Cross-Site Request Forgery‖, CCS‘08, October 27–31, 2008, Alexandria,

Virginia, USA. Copyright ACM 978-1-59593-810-7/08/10.$5.00, 2008.

[14] Hossain Shahriar and Mohammad Zulkernine, ―Client-Side Detection of
Cross-Site Request Forgery Attacks‖, Software Reliability Engineering

(ISSRE), 2010 IEEE 21st International Symposium on , vol., no.,

pp.358,367, 1-4 Nov. 2010.

[15] Online:available,http://www.veracode.com/security/cross-site-scripting

[16] Online:available,http://www.linuxforu.com/2010/11/securing-apache-

part-3-xsrf-csrf/

[17] Siddiqui, M.S.; Verma, D., "Cross site request forgery: A common web

application weakness," Communication Software and Networks

(ICCSN), 2011 IEEE 3rd International Conference on, vol., no.,
pp.538,543, 27-29 May 2011.

