
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 3 261 – 268

261
IJRITCC | March 2017, Available @ http://www.ijritcc.org

Struts, Hibernate and Spring Integration – A Case Study

Dr.Poornima G. Naik

Professor

Department of Computer Studies

CSIBER

Kolhapur, India

pgnaik@siberindia.edu.in

Mr. Girish R. Naik

Associate Professor

Production Department

KIT’s College of Engineering

Kolhapur, India

Abstract— Over the last few decades software development has undergone tremendous radical changes in order to enhance user experience, user

friendliness and to widen its scope over large geographical area. The key actors in this arena are two leading IT companies Microsoft and Sun

Microsystems, now taken owner by Oracle Inc. who compete on a continual basis for rendering rapid professional software design and

development process at the same time incorporating more functionality and focusing strongly towards software maintenance issues. Due to this

intense competition, the ultimate beneficiary is a software developer who is tremendously benefited at large. In this review paper, the researcher

aims at consolidating the technological advancements that have brought a revolutionary change in corporate software development over last few

decades. The main substance of the paper is technological advancements facilitating J2EE application development viz., struts framework,

hibernate and spring framework which operate in different layers of scalable N-tier architecture. Each technology has its own merits and de-

merits. The researcher attempts to aggregate the benefits offered by the trio in a single J2EE application thereby bringing in best of three worlds

to a single application. The application is boosted with powerful struts tag library, persistent layer provided by hibernate and dependency

injection or Inversion of Control (IoC) user the same roof. A case study is presented to demonstrate the integration of three diverse technologies,

struts, hibernate and spring. JBOSS application server is employed as a container for J2EE components.

Keywords-Model-View-Controller Architecture, Loose Coupling, Object-Relation Mapping, Persistent Layer, Plain Old Java Objects, Tight

Coupling,

__*****__

I. INTRODUCTION

 Each of Struts2, Spring and Hibernate is a diverse

open source technology targeting different objectives. Each

technology has its own advantages. Apache Struts 2

framework is an open-source web application framework for

developing Java EE web applications adopting a model–view–

controller (MVC) architecture which extends a Java Servlet

API. Struts 2 offers configurable MVC components. POJO

(Plain Old Java Objects) based actions, rich tab library support

make Struts2 a favourite framework among developers for

building J2EE applications in MVC architecture. Hibernate is

a high-performance Object/Relational persistence and query

service which is licensed under the open source GNU Lesser

General Public License (LGPL) and is free to download.

Hibernate is commonly adopted for developing a persistent

layer of a J2EE application. The Spring Framework consists of

features organized into about 20 modules. These modules are

grouped into Core Container, Data Access/Integration, Web,

AOP (Aspect Oriented Programming), Instrumentation,

Messaging, and Test. The major benefits offered by Spring

framework deal with separation of dependencies and their

injection into the application at runtime. Aspect –oriented

programming (AOP) on the other hand separate the cross-

cutting concerns which span across multiple points in multiple

modules from the main business logic and weaving them in to

the main application either at compile time, class load time or

runtime.

Spring is a popular web framework which supports an easy

integration with external frameworks as such does not impose

any restriction with framework selection, instead works as a

glue for holding together disparate frameworks in a single

application. Spring is much more than an MVC framework. It

offers many benefits which are lacking in Struts framework.

The current work focuses on bringing all the three diverse

technologies to a common platform so that a single application

can reap the benefits of all the three. Hibernate is employed

for designing a persistent layer on the top of MVC architecture

of Struts framework where the dependencies are injected

dynamically at runtime using IoC (Inversion of Control) of

Spring Framework

II. LITERATURE REVIEW

 The journey of software development process from

few decades back to till date is not abrupt. The development

process has witnessed dramatic changes over a period.

Irrespective of the type of the key player involved in

technology transfer the common goal was to target multiple

platforms, multiple devices, support of large user base and

internationalization. The least common denominator

underlying all these changes include:

• Separation of code from its presentation

• Separation of business logic from presentation

logic

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 3 261 – 268

262
IJRITCC | March 2017, Available @ http://www.ijritcc.org

• Separating out software concerns

• Addresssing State managements techniques

• Addressing security issues

• Incorporating efficiency improvement techniques

• Addressing transaction control and concurrency

control mechanisms

• Hiding lot of repeated code behind a set of

libraries

Java technology started as a single large player in a software

development solving platform dependency issues, security

issues, eliminating lacunae present in the language, adding

web flavour to software development through applets early in

1980s. Custom tags play an important role in web applications.

JSP custom tags are written to extract data from database

using drop down menu to generate options dynamically [1-4].

The concept of Annotations in Java with an emphasis on

various in-built annotations in Java and the annotations that

are used by other annotations is reported [5]. The reader is

introduced to J2EE standard annotations and those employed

by Hibernate as a replacement for XML-based mapping

document. Steps in designing and using custom annotations

are highlighted. A custom annotation design is illustrated with

the help of an example for execution of DML commands in a

generic way in a database management system independent

manner. The documentation of various object-oriented

framework and relative comparison between different model

of MVC architecture is reported in literature [6, 7].

Implementation of MVC using spring and struts

framework was carried out by Gupta et. al.. [8]. Integration of

multiple frameworks for an E-commerce system and

University system has been addressed [9-11].

III. IMPLEMENTATION DETAILS

A. Application Folder Structure

The trivial partial class diagram of the classes employed in the

application is shown in Figure 1.

Figure 1. Partial Class Diagram

The folder structure and different components constituting

the application is depicted in Figure 2.

Figure 2. Application Folder Structure

The work flow of the application between different

frameworks and between different components of each
framework is depicted in Figure 3.

B. Application Work Flow

Figure 3. Application Work Flow

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 3 261 – 268

263
IJRITCC | March 2017, Available @ http://www.ijritcc.org

C. Insight into Execution of Application

The following steps are involved in the execution of

application.

1. The user requests login.jsp page which contains the

line

<s:form action="user">

2. The struts configuration file struts.xml is looked up

for action with the name user and the following line is

encountered.

<action name="user" class="loginClass" method="execute">

3. The spring configuration file applicationContext.xml

is looked up for the bean with the id loginClass and

the following line is encountered.

<bean id="loginClass" class="com.siber.Login"/>

4. Login class is loaded by the class loader and is

instantiated.

5. SetterX() methods are invoked for initializing the

userName and password with the values entered by

the user in login.jsp page.

6. Next, Login class’s execute() method is invoked.

7. The first statement in execute() method invokes the

static method saveUser() of UserDAO class which

creates as object of PersistentUser class by invoking

parameterized constructor for initializing userName

and password and employs hibernate classes for

persisting data into a MySQL table user.

8. The following statements in execute() method

dynamically instantiate UserSerive class with its

dependency Guest stored in User class reference by

reading the corresponding information from

applicationContext.xml file as shown below:

<bean id="guest" class="com.siber.Guest"/>

<bean id="admin" class="com.siber.Admin"/>

<bean id="userService" class="com.siber.UserService">

<property name="user">

<ref bean="guest"/>

</property>

</bean>

9. message() method of Guest class is invoked which

returns the string ―guest‖. The same is returned by the

execute() method of UserService class.

10. The struts configuration file strusts.xml is looked up

for the result equal to ―guest‖ and the following line

is encountered.

<result name="guest">/guest.jsp</result>

11. The view specified in struts.xml file, guest.jsp is

displayed next and the response is generated to an

end user.

D. Complete Source Code

User.java

package com.siber;

public class User {

 String userName;

 public String message()

 {

 return null;

 }

 public String getUserName() {

 return userName;

 }

 public void setUserName(String userName) {

 this.userName = userName;

 }

 }

Admin.java

package com.siber;

public class Admin extends User{

 public String message()

 {

 return "admin";

 }

}

Guest.java

package com.siber;

public class Guest extends User{

 public String message()

 {

 return "guest";

 }

}

Login.java

package com.siber;

import

org.springframework.context.support.ClassPathXmlApplicatio

nContext;

public class Login {

private String userName;

private String password;

public String getUserName() {

 return userName;

}

public void setUserName(String userName) {

 this.userName = userName;

}

public String getPassword() {

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 3 261 – 268

264
IJRITCC | March 2017, Available @ http://www.ijritcc.org

 return password;

}

public void setPassword(String password) {

 this.password = password;

}

public String execute()

{

 try

 {

 UserDAO.saveUser(userName, password);

 ClassPathXmlApplicationContext appContext=new

ClassPathXmlApplicationContext("/WEB-

INF/applicationContext.xml");

 UserService

us=(UserService)appContext.getBean("userService");

 //UserService us=new UserService();

 //us.setUser(new Guest());

 return us.message();

 }

 catch(Exception e)

 {

 System.out.println(e);

 return null;

 }

 //return "guest";

}

}

PersistentUser.java

package com.siber;

import java.io.Serializable;

public class PersistentUser implements Serializable {

 private int id;

 private String userName ;

 private String password;

 public PersistentUser()

 {

 }

 public PersistentUser(String userName, String

password)

 {

 this.userName=userName;

 this.password=password;

 }

 public int getId()

 {

 return id;

 }

 public void setId(int id)

 {

 this.id=id;

 }

 public String getUserName() {

 return userName;

 }

 public void setUserName(String userName) {

 this.userName = userName;

 }

 public String getPassword() {

 return password;

 }

 public void setPassword(String password) {

 this.password = password;

 }

}

UserDAO.java

package com.siber;

import org.hibernate.Session;

import org.hibernate.SessionFactory;

import org.hibernate.Transaction;

import org.hibernate.cfg.Configuration;

public class UserDAO {

 public static void saveUser(String userName, String

password){

 SessionFactory sessionFactory;

 Session hibSession;

 sessionFactory=new

Configuration().configure().buildSessionFactory();

 hibSession=sessionFactory.openSession();

 Transaction tx=null;

 try

 {

 tx=hibSession.beginTransaction();

 PersistentUser u = new

PersistentUser(userName, password);

 hibSession.save(u);

 tx.commit();

 }

 catch(RuntimeException e)

 {

 if (tx != null)

 tx.rollback();

 throw e;

 }

 }

 }

UserService.java

package com.siber;

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 3 261 – 268

265
IJRITCC | March 2017, Available @ http://www.ijritcc.org

public class UserService {

 User user;

 public void setUser(User user)

 {

 this.user=user;

 }

 public String message()

 {

 return user.message();

 }

}

E. Structure of XML Configuration Files

web.xml

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:web="http://java.sun.com/xml/ns/javaee/web-

app_2_5.xsd"

xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"

id="WebApp_ID" version="2.5">

 <listener>

 <listener-class>

org.springframework.web.context.ContextLoaderListener

 </listener-class>

 </listener>

 <filter>

 <filter-name>struts2</filter-name>

 <filter-class>

org.apache.struts2.dispatcher.ng.filter.StrutsPrepareAndExecut

eFilter

 </filter-class>

 </filter>

 <filter-mapping>

 <filter-name>struts2</filter-name>

 <url-pattern>/*</url-pattern>

 </filter-mapping>

</web-app>

struts.xml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE struts PUBLIC

"-//Apache Software Foundation//DTD Struts Configuration

2.0//EN"

"http://struts.apache.org/dtds/struts-2.0.dtd">

<struts>

 <constant name="struts.devMode" value="true" />

 <package name="helloworld" extends="struts-default">

 <action name="user" class="loginClass"

method="execute">

 <result name="admin">/admin.jsp</result>

 <result name="guest">/guest.jsp</result>

 </action>

 </package>

</struts>

applicationContext.xml

<?xml version="1.0" encoding="UTF-8"?>

<beans

xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:p="http://www.springframework.org/schema/p"

xmlns:aop="http://www.springframework.org/schema/aop"

xmlns:tx="http://www.springframework.org/schema/tx"

xsi:schemaLocation="http://www.springframework.org/schem

a/beans

http://www.springframework.org/schema/beans/spring-beans-

2.5.xsd

 http://www.springframework.org/schema/aop

http://www.springframework.org/schema/aop/spring-aop-

2.5.xsd

 http://www.springframework.org/schema/tx

http://www.springframework.org/schema/tx/spring-tx-

2.5.xsd">

 <bean id="guest" class="com.siber.Guest"/>

 <bean id="admin" class="com.siber.Admin"/>

 <bean id="userService" class="com.siber.UserService">

 <property name="user">

 <ref bean="guest"/>

 </property>

 </bean>

 <bean id="loginClass" class="com.siber.Login"/>

</beans>

PersistentUser.hbm.xml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE hibernate-mapping PUBLIC "-

//Hibernate/Hibernate Mapping DTD 3.0//EN"

"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping>

<class name="com.siber.PersistentUser" table="login"

catalog="test">

<id name="id" type="java.lang.Integer">

<column name="id"/>

<generator class="identity"/>

</id>

<property name="userName" type="java.lang.String">

<column name="username" length="50"/>

</property>

<property name="password" type="java.lang.String">

<column name="Password" length="50"/>

</property>

</class>

</hibernate-mapping>

hibernate.cfg.xml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE hibernate-configuration PUBLIC "-

//Hibernate/Hibernate Configuration DTD 3.0//EN"

"http://hibernate.sourceforge.net/hibernate-configuration-

3.0.dtd">

<hibernate-configuration>

<session-factory>

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 3 261 – 268

266
IJRITCC | March 2017, Available @ http://www.ijritcc.org

<property

name="connection.driver_class">com.mysql.jdbc.Driver</pro

perty>

<property

name="connection.url">jdbc:mysql://localhost:3306/test</pro

perty>

<property name="connection.username">root</property>

<property name="connection.password">mca</property>

<property

name="dialect">org.hibernate.dialect.MySQLDialect</propert

y>

<mapping resource="com/siber/PersistentUser.hbm.xml" />

</session-factory>

</hibernate-configuration>

F. Client –Side Code

login.jsp

<%@ page language="java" contentType="text/html;

charset=ISO-8859-1" pageEncoding="ISO-8859-1"%>

<%@ taglib prefix="s" uri="/struts-tags" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01

Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<title>Hello World</title>

</head>

<body>

 <h1>Struts2 - Spring and Hibernate Integration</h1>

 <s:form action="user">

 <s:textfield name="userName" label="User Name"/>

 <s:password name="password" label="Password"/>

 <center><s:submit value="Login"/></center>

 </s:form>

</body>

</html>

admin.jsp

<%@ page language="java" contentType="text/html;

charset=ISO-8859-1"

 pageEncoding="ISO-8859-1"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01

Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html;

charset=ISO-8859-1">

<title>Insert title here</title>

</head>

<body>

<h1>Admin Console</h1>

<table border width="80%">

<tr>

 <td>User Maintenance</td>

 <td>Stock Maintenance</td>

 <td>View Reports</td>

 <td>Sign In</td>

</tr>

</table>

</body>

</html>

guest.jsp

<%@ page language="java" contentType="text/html;

charset=ISO-8859-1"

 pageEncoding="ISO-8859-1"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01

Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html;

charset=ISO-8859-1">

<title>Insert title here</title>

</head>

<body>

<h1>Welcome Guest </h1>

<table border width="80%">

<tr>

 <td>Browse Products</td>

 <td>Sign Out</td>

</tr>

</table>

</body>

</html>

IV. RESULTS AND DISCUSSIONS

A. Testing of the Application

The user generates an HTTP request, requesting the login.jsp

page. The HTTP response generated by JBOSS application

server is depicted in Figure

Figure 4. End User Requesting Login Page

The hibernate framework constituting the persistent layer of

the application retrieves the data input by the user and inserts a

corresponding record in login table of MySQL database as

shown in Figure 5.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 3 261 – 268

267
IJRITCC | March 2017, Available @ http://www.ijritcc.org

Figure 5. Inserting a Row in MySQL Table

Case 1 :Tight Coupling

Test Run 1 : Implement the execute() method of Login class

as shown below:

UserService us=new UserService();

 us.setUser(new Guest());

Execute the application. The output generated is shown in

Figure 6..

Figure 6. Tight Coupling to Guest Class Object

Test Run 2 : Change the execute() to the one shown below:

 UserService us=new UserService();

 us.setUser(new Admin());

Re-execute the application. The following output is generated.

Figure 7. Tight Coupling to Admin Class Object

In the case of tight-coupling, all the objects along with its all

dependencies are created in the code. In contrast to this in the

case of loose coupling, the dependency information is stored

in a spring configuration file and when the application requests

the container for the object containing some dependencies, the

container instantiates the object along with its all dependencies

dynamically at runtime. The technique is referred to as

―Dependency injection‖ or Inversion of Control, IoC.

Case 2 : Loose Coupling

Test Run 3 : Implement the execute() method of Login class

as shown below:

ClassPathXmlApplicationContextappContext=newClassPathX

mlApplicationContext("/WEB-INF/applicationContext.xml");

UserService us= (UserService)

 appContext.getBean("userService");

 returnus.message();

The dependency configuration in applicationContext.xml file

is as follows:

<bean id="guest" class="com.siber.Guest"/>

<bean id="admin" class="com.siber.Admin"/>

<bean id="userService" class="com.siber.UserService">

<property name="user">

<ref bean="guest"/>

</property>

</bean>

Execute the application. The same output as shown in Figure 6

is generated.

Test Run 4 :Without distrubing the execute() method of Login

class, Change the statement shown in bold in

applicationContext.xml given above, to the one given below:

<ref bean="admin"/>

and re-execute the application. The same output as shown in

Figure 7 is generated.

V. CONCLUSION

Struts, Hibernate and Spring are three emerging technologies

for the design and development of J2EE application. Each

technology has its own merits and operates in a specific tier of

scalable n-tiered enterprise application. The current work

provides the blend of these three vital technologies for bringing

the merits offered by them under a common roof to a single

application.

REFERENCES

[1] Dr. Poornima G. Naik, JSP Custom Tag Library for

Implementing JDBC Functionality,

http://www.codeproject.com/Articles/1084607/JSP-Custom-

Tag-Library-for-Implementing-JDBC-Funct, 11th March

2016.

[2] Dr. Poornima G. Naik, JSP Custom Tag Library (Version 2)

for DML Operations,

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 3 261 – 268

268
IJRITCC | March 2017, Available @ http://www.ijritcc.org

http://www.codeproject.com/Articles/1085185/JSP-Custom-

Tag-Library-Version-for-DML-Operations, 14th March, 2016

[3] Dr. Poornima G. Naik, JSP Custom Tag Library for Table

Joins and Master Detail Relationships,

[4] http://www.codeproject.com/Articles/1086716/JSP-Custom-

Tag-Library-for-Table-Joins-and-Master, 19th March, 2016.

[5] https://www.codeproject.com/Articles/1169961/Custom-

Annotation-for-Execution-of-Data-Manipulati

[6] Vijayakumar C, Analysis of the Frame work Standard and the

Respective Technologies, - International Journal of Computer

Science and Information Technology & Security, Vol. 1, No.

1, October 2011.

[7] Tamal Dey, A Comparative Analysis on Modeling and

Implementing with MVC Architecture, nternational

Conference on Web Services Computing (ICWSC),

Proceedings published by International Journal of Computer

Applications® (IJCA), pp. 44-49, 2011.

[8] Praveen Gupta, Prof. M.C. Govil, MVC Design Pattern for

the multi framework distributed applications using XML,

spring and struts Framework, International Journal on

Computer Science and Engineering Vol. 02, No. 04, 2010,

1047-1051

[9] Deepak Kasgar, Harish Chandra Maurya, Integration of Struts

& Spring & Hibernate for Enterprise Applications,

International Journal of Modern Engineering Research, Vol.

5, Iss.4, pp. 52-59, Apr. 2015.

[10] Neha Munsi, Nidhi Sehrawat, Mahak Jain, International

Journal of Computer Science and Mobile Computing, Vol. 3,

Issue. 10, pp.853–859, October 2014.

[11] Ankur Bawiskar, Prashant Sawant, Vinayak Kankate, Dr.

B.B.Meshram, International Journal of Emerging Technology

and Advanced Engineering, Volume 2, Issue 6, pp. 203-210,

June 2012.

http://www.ijritcc.org/
https://www.codeproject.com/Articles/1169961/Custom-Annotation-for-Execution-of-Data-Manipulati
https://www.codeproject.com/Articles/1169961/Custom-Annotation-for-Execution-of-Data-Manipulati

