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Abstract: The reverse nearest neighbor search is used for spatial queries. The reverse nearest neighbor search, the object in high dimensional 

space has a certain region where all objects inside the region will think of query object as their nearest neighbor.  The existing methods for 

reverse nearest neighbor search are limited to the single query point, which is inefficient for the high dimensional spatial databases etc. 

Therefore, in this paper we proposed a group reverse nearest neighbor search which can find multiple query objects in a specific region. In this 

paper we proposed method for group reverse nearest neighbor queries using modified skip graph. 

Index terms: group reverse nearest neighbor search, spatial query, skip graph. 
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1. INTRODUCTION: 

Reverse nearest neighbor (RNN) is a query technology and 

able to find the sets of database points that have the query 

point as the nearest neighbor. RNN has received lot of 

attention from the database research community because of 

its broad application like marketing, decision support, 

resource allocation and data mining, especially digital maps 

to process geographical information. Many of our activities 

today are done by the aid of spatial data. The most common 

one is for navigation where people can easily look for 

directions to specific places. Not only for navigation, we can 

also find some nearest objects in our surroundings. There is 

a rapid development in spatial databases area. 

Various  researches on the RNN search [1–11] have been 

conducted over the last decade. In [1–6], methods for 

finding the reverse nearest neighbor from a snapshot of a 

dataset are devised. The authors in [7–11] propose methods 

for the continuous nearest neighbor search which find the 

reverse nearest neighbor and continuously update the result 

as the objects change their locations. All the researches use 

only the spatial distance for measuring the distance between 

objects. However, in many real-life location based services, 

we are given more information than just the physical 

locations of objects. Recent services such as Google Maps, 

Facebook and Groupon provide users with rating scores of 

products. Such information is valuable in defining a new 

distance measure in the RNN search. For example, when 

choosing a premium-grade steakhouse for dinner, we 

generally consider not only the spatial proximities of 

steakhouses, but also the quality of the steakhouse based on 

items such as the food, atmosphere, price and service. 

Therefore, in order to choose the better steakhouse, the 

spatial proximity and the quality of the steakhouse are 

necessary to be comprehensively considered. In such a case, 

the traditional distance measure based solely on the spatial 

distance cannot be used. Consequently, the distance measure 

based on both the spatial proximity and the quality of the 

item is more useful and realistic than the traditional 

measure. 

We can find all the objects that consider the query object as 

their nearest neighbour [1]. Another example of RNN Query 

is when we are looking for a set of customers who thinks of 

a specific supermarket as the nearest one based on the 

customer’s location. The RNN is different from Nearest 

Neighbour (kNN) Queries where the query object looks for 

its own nearest neighbours [5], the important thing in RNN 

is that whether the neighbouring objects consider the query 

point as their nearest neighbour [2], [6], [7]. It does not 

matter for the query object to know its neighbours. Like in 

real life, it is not substantial for a shop to look for its 

competitor but it is more important to understand which 

other shops see it as competitor. 

However most of the works done on this approach can only 

be implemented to a single query object. In real life we will 

encounter a situation where we need to find the RNN of 

more than one object. Imagine a case where we need to 

build a refugee camp in a war. We absolutely want to have 

the safest location possible, where it is closer to the military 

soldier locations rather than the enemies. The soldiers are 

usually spread in several locations. If we only rely on a 

single military soldier location, the area retrieved will not be 

safe enough to build the camp. Hence in this paper we try to 

solve this kind of problem by proposing the Group Reverse 

kNN Queries, where a region will be retrieved through 

multiple query objects. The region itself will always have 

the minimum sum of distance to the query objects 

altogether, which this means that when we locate a new 
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object inside the region, the new object will always consider 

all of the query objects as its nearest neighbor. 

As a significant role of Group Reverse kNN Query is in 

finding the most efficient region based on multiple query 

points, the region produced can help us in decision making 

process in our daily life like placing a new object in a 

strategical area. People want to find a gas station such that 

the total cost for visiting the gas station and filling the gas is 

minimum based on their locations. Therefore, the marketing 

targets of a gas station are promising buyers for which 

visiting the gas station is more economical than visiting 

other gas stations. The method for our problem can find 

such promising buyers by considering the spatial distance 

In this paper, we proposed method to process the group 

reverse nearest neighbor queries using modified skip graph. 

2. Related work 

The concept of group reverse nearest neighbor query is in 

fact similar to the RNN of multiple query objects. The RNN 

results need some modification to solve the problem of 

Group RNN. In the past years, various approaches to solve 

the RNN Queries had been proposed. The initial one is by 

using point-to-point approach [3], [13-15], where we will 

gather all the possible points (objects) in the space that will 

consider the query as their RNN. The most common 

technique for this approach is to determine the Euclidean 

distance between every two objects. So in this case 

we need to check the distance between the query object with 

another object, one by one, in order to get the query’s RNN 

Voronoi Diagram has been widely used in spatial query 

processing [16]–[19], specifically to solve the RNN Queries 

[17]. In Voronoi Diagram, a plane is divided into some 

regions and each of the regions has a generator point where 

any objects inside the corresponding region think of the 

generator point as their closest generator point compare to 

the points in other regions [18], [19]. The algorithms used in 

the Voronoi Diagram varies depending on the consideration 

of the Euclidean distance between objects or the real road 

network [17], [20]. The nature of query objects in Group 

Reverse kNN Queries is 

pretty similar to the Order-k Voronoi Diagram. All the query 

objects need to be close to each other in order to create a 

region. The Group Reverse kNN region itself is similar to a 

single Voronoi cell in Order-k Voronoi Diagram. A dual of 

Voronoi Diagram is the Delaunay Triangulation [18], [21]. 

The triangulation itself is formed by the generator points of 

Voronoi Diagram [19]. The algorithm for Delaunay 

Triangulation uses divide-and-conquer approach, which runs 

in O(N logN) time [22], [23]. In relation to the Group Reverse 

kNN Queries, the Delaunay Triangulation can be used to 

validate the location of the query objects. The Delaunay 

Triangle is applied to all of the objects in the plane, both the 

query objects and the non-query objects. The existing 

approaches in RNN may not be suitable for solving RNN of 

multiple query object. Like the concept used in Influence 

Zone, it is similar to Group Reverse kNN Query. We will 

have a region that when an object is placed inside this 

region, the object will consider the query as its nearest 

neighbour. However the main difference here is that 

Influence 

Zone only focuses on a single query, while Group Reverse 

kNN problem is on multiple query objects. Therefore some 

modifications to the method are needed so that it is 

applicable to multiple query objects in Group Reverse kNN 

Query. Moreover, a study on processing multiple query 

objects in spatial database has previously been done by [24], 

[25] through the Group Nearest Neighbour (Group-KNN) 

method. It is a variant of kNN where a number of selected 

query points will choose a target object that is considered as 

their nearest neighbour [25]–[28]. There are numerous ways 

to process Group kNN Queries, some of them are Multiple 

Query Method (MQM), Single Point Method (SPM), 

Minimum Bounding Box Method (MBM), and Group 

closest pairs method [27]. Even though Group-KNN 

processes multiple query objects, the main focus in Group-

KNN is to find a single target object, which is the centroid 

of the query objects [24]. This is mainly different from the 

purpose of Group Reverse kNN Query where we are trying 

to find a region, where all objects inside this region will 

always think of the query objects as the nearest neighbours. 

Moreover, the Group-KNN does not consider the non-query 

points when finding the centroid, while the Group Reverse 

kNN Query will need to consider the non-query points in 

order to form a region through perpendicular bisector of 

each query points with all other non-query points. 

3. Problem definition: 

The concept of RNN is to have a set of objects that 

considers a query object as the nearest neighbour. In this 

case, the query object of RNN Query has an ”influence” to 

the other objects. The set of objects that are the result of 

RNN are known as the influence set of the corresponding 

query [2]. 

In the initial technique for solving RNN, point-to-point 

approach is applied [3], [13 -15]. This kind of method is 

fairly expensive because we need to verify every object one 

by one whether it is considered as nearest from the query 

object. So instead of using point-to-point approach, region 

approach is used [8], [9]. Since a query has influence to 

others, then there exists a region where any object located 

inside this region will be considered as the RNN objects of 

the query, which is why the concept of Influence Zone is 
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presented. Supposed that we have a set of objects P in the 

R2 space, P = {p1, p2, ..., pn} (TABLE I). We choose one of 

the objects, say p1, as the query object. Based on the 

concept of Influence Zone, if an object p is located outside 

the region of object p1, p will not consider p1 as its nearest 

neighbour, p will consider other object instead. However 

when we have more than one object as the query, this 

approach cannot be used. The Influence Zone of a single 

object is different from a set of objects. In the Figure 1, we 

have object p1, p2, p3, q1, q2, and q3 in the space and each 

of their Influence Zone is also presented. We choose q1, q2, 

and q3 as the query objects, so in this case we will have k = 

3. The rest of the non-query objects are assumed as the 

competitor objects. We want to have a region where any 

objects located inside this region will think of all the query 

objects as the nearest. Since we have three query objects, 

then when an object located anywhere inside the region 

performs 3NN search, object q1, q2, and q3 will always be 

the answer. If we use the Influence Zone of a single object, 

the region created will not always have all the query objects 

as the nearest. Assume that we put a new object p anywhere 

inside the region of q1, as can be seen in Figure 2 and 

Figure 3. The new object p will obviously think of q1 as the 

nearest. But when we do 3NN search, it will not necessarily 

think of q1, q2, and q3 as the nearest. In Figure 3, it is still 

as what we want since p considers q1, q2, and q3 as the 

nearest. But it is 

different from Figure 4. p in Figure 4 thinks of p1 and p3 as 

the nearest instead of q2 and q3. 

 

Figure 1: Influence Zone applied to each object 

 

Figure 2 : p considers q1, q2, q3 as its 3NN 

   

 Figure 3: p considers q1, p1, p3 as its 3NN Because of the 

problem mentioned before, we try to find a potential region 

of k number of query objects, where all the k query objects 

will be considered as the nearest neighbor when we do kNN 

search. The region itself is not the convex hull of all the 

query objects. Having convex hull as the region is not 

accurate since there are cases where an object will also think 

of the competitor objects as the nearest even though it is 

located inside the convex hull. There also a case where the 

region may actually be larger than the convex hull, which 

makes the convex hull method to be inefficient. As can be 

seen in Figure 4, the Group Reverse kNN region of q1, q2, 

and q3 is actually larger compare to when we create the 

convex hull (shown by the black triangle) of the query 

objects. There are actually more region can be covered by 

the query, compare to when the convex hull method is 

applied. Hence in this paper we propose the algorithm to 

create an optimal region for this problem. In the Group 

Reverse kNN Queries, we will have k number of query 

objects as the input, and the output will be a region. a 

number of predefined query objects Q = {q1, q2, ..., qk}, 

where qk ⊆ P (TABLE I), are needed in order to construct a 

region. The predefined query objects need to be validated by 

their closeness so that a region can be formed. The produced 

region is expected to have the shortest sum distance to the 

query objects and any object inside the region is believed to 

have all of the query points as the nearest objects. Based on 

our research, the region that we are looking for is created 

based on the influence zone of each query object. Each of 

the query object will have its own region, where the 

combination of all query object’s regions will intersect and 

form the Group Reverse kNN Region. Figure 5 shows this 

example. We find the region of each query object, which are 

q1 (yellow), q2 (green), and q3 (blue). All of the regions 

will have an intersection, which as long as we place an 

object inside this intersecting region, object q1, q2, and q3 

will always be the nearest objects compare to the competitor 

objects. The nature of query points in Group Reverse kNN 

Queries is similar to the Order-k Voronoi Diagram. All the 

query objects need to be close to each other in order to 

create a region [24]. Furthermore, based on the experiment 
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in creating region in Group Reverse kNN Queries, the 

region itself is similar to the Voronoi cell in Order-k 

Voronoi Diagram. The region created by k number of query 

objects in Group Reverse kNN is actually a Voronoi cell in 

Higher Order Voronoi Diagram. Hence, the Group Reverse 

kNN Queries is actually a type of query where we can create 

a single Voronoi cell of Order-k Voronoi Diagram. 

 

Figure 4: Region of multiple query objects 

 

Figure 5: Region of each query object 

 

4. Proposed method 

Skip Graphs extend Skip Lists for distributed environments 

by adding redundant connectivity and multiple handles into 

the data structure. It is equivalent to a collection of up to 

Skip Lists (where n is the number of elements in the lowest 

level) with each element participating in exactly one list at 

each level and some of the lower levels shared across many 

Skip Lists. The increased connectivity provides greater fault 

tolerance and avoids hot-spots as any element could be 

located using any one of the top-level elements of the 

different Skip Lists. The  insertion,deletion and searching 

algorithms in modified skip graph is same used in standard 

skip graph. 

 

Figure 6: Example of Skip Graph 

4.1 Index strategy  

Regions: A region stands for a node in the region tree tree. 

Each region is a hyper-rectangle in the search space. 

Intermediate regions generate two child regions when split 

along one of the dimensions. Leaf regions are associated 

with physical machines that are responsible for managing 

that portion of the index.  

Split history: of a region represents the path in the region 

tree from the root to the region. It is a list of tuples (dim split , 

pos split )with each element specifying the dimension and 

position of a split.  

Region code: is a string of 0s and 1s that represents how a 

region is generated by the splitting process. When we split a 

region into two pieces, the region code for the left child 

(which is the region with smaller coordinates in the splitting 

dimension) is generated by appending “0” to the end of the 

region code of the parent region. The right child’s region 

code is obtained by appending “1” to the parent’s region 

code. We represent the code in a binary fraction format, 

with a decimal point to the left of the most significant bit. 

The ordering imposed by the region codes corresponds to 
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the in-order (or “left-to right”) traversal of the region tree. 

When combined with the split history, the region code 

completely describes the coordinates of a region. 

4.2 Reverse k Nearest Neighbor Query Algorithm 

Reverse k nearest neighbor search is similar to a spherical 

range query, except that the radius of the query ball is not 

prespecified but is instead determined dynamically during 

the search. Our reverse nearest neighbor algorithm is 

therefore based on the k nearest neighbor search algorithm, 

which is enhanced with a demand-driven process for 

determining which regions to query. 

As the first step, we route the reverse k nearest neighbor 

search to the node a owning the region that contains the 

query point, then executes a local query to determine an 

initial candidate set of nearest neighbors, denoted by Snn. 

The maximum distance from q  to points in Snn is the initial 

value for the RNN query radius Rnn If the size of  is Snn less 

than k, then Rnn   is set to a value that covers the entire d 

dimensional space. A also maintains a priority queue, Qsearch 

of regions to be searched, ordered by their minimum 

distances to the query point. The initial contents of Qsearch is 

determined by traversing a’s partial tree view and finding all 

regions that intersect with the current query ball(q, Rnn).The 

algorithm queries the regions in  Qsearch increasing order of 

distance. In each step, a extracts the minimum distance 

region, R, from the queue and sends a query messag(q, 

Rnn,R) towards region R. When this message is received by 

a node, which could have more detailed information about 

R, the search region is refined based on the node’s partial 

tree view and forwarded towards the sub-region of R that is 

closest to 0 . When the search region is eventually refined to 

a leaf region and received by the corresponding node, a local 

query is performed to determine points contained in the 

region that are closer than the current KNN distance 

estimate Rnn . The results are reported back to a along with 

the newly discovered sub-regions that intersect with the 

query ball. A then updates Snn and Rnn , and inserts sub-

regions found during the step into Qsearch.  A repeats the 

query step until there are no regions left in Qsearch within 

distance Rnn. Algorithm  provides the formal description 

4.3 Group Reverse kNN Queries 

The main idea is to create the group reverse kNN region 

similar to kNN region. However we need to make sure that 

the query provided can be used to create the region . We do 

not want to waste the computation and resources in the 

region creation process only to find out that the region itself 

cannot be retrieved. So a validation will be conducted prior 

to creating the region. The algorithm to generate the Group 

Reverse kNN Queries is broken down into two main parts: 

(i) Query Validation and (ii) Region Generation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Query Validation 

Since we are dealing with multiple query objects in the 

Group Reverse kNN Query, the region may not be retrieved 

all the time. It actually depends on the closeness of the 

query objects. There is a possible case where the query 

points given does not produce any results, such as when the 

competitor objects are intermingling in between the query 

objects. Because of this, there is no specific region produced 

by Group Reverse kNN since no region serves the shortest 

distance to all the query objects. Hence we need to validate 

the query given by user. There is no specific region 

produced by Group Reverse kNN. There is no intersecting 

region of all the query objects’ regions due to p1 and p2 

interruption. p1 and p2 has their own influential zone as well 

which this makes the query objects to be not having a Group 

Reverse kNN region. Therefore the query objects needs to 

be close to each other in order to form a region. There are 

two levels of validating the query. First we use Delaunay 

Triangulation to see the connectivity of the objects, and the 

second one is by using the Smallest Enclosing Circle 

technique for all the query objects to check the closeness 

and clustering of the objects. For the first validation, the 

Delaunay Triangulation DT is applied to all of the objects in 

the plane P , both the query points and the competitor 

points. So in this case we have DT(P). Through DT(P), we 

need to see the edge Edge(qi, qj) between the query objects 

Algorithm 1: Reverse kNearset neighbor 

A does a local nearest neighbor search initializes Snn and 
Rnn based on the results 

A traverse its partial tree view and initializes Qsearch with all 
the regions R, such that mindist(R,q)<=Rnn  

While (Qsearch
 
  not empty) do 

Rextract_min(Qsearch) 

Forward query(q, Rnn,R) to R 

Receive result (SetP,SetR) 

Insert regions in SetR into Qsearch 

Update Snn and Rnn with SetP 

Prune Qsearch with new Rnn 

Return Snn 

Upon node B receiving the query (q, Rnn,R): 

If(local_region (B)==R) then 

SetP reverse nearest points within Rnn 

SetRleaf regions inside R from local tree view 

Reply to A the results( SetP.SetR) 

Else find the leaf Rl in the local tree view with minimum 

mindist(q,R) 

Forwardquery (q, Rnn,R) to Rl 
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in the triangulationwhether they are directly connected to 

each other or not. Edge(qi, qj) means that qi and qj are 

segment in DT(P) for i = j.  

B. Region Creation 

Once we have a valid query, then a region can be generated. 

In this step, perpendicular bisector will need to be applied 

for each query object. The perpendicular bisector Bis(qk : 

cn) will be between each query and other competitor points 

in the space. 

However, there is a case where we do not need to apply 

Bis(qk : cn) to all of the query points. We can create a 

convexhull of set Q (CH(Q)). All query objects that are 

located in the convex hull CH(Q) edges are going to be 

processed. The other query points inside the CH(Q) do not 

need to be processed since the region of those query points 

will always be inside the region of query points located in 

the CH(Q) edges. This method can save up some processing 

time as we do not need to process the whole query objects, 

but we rather have the most influential ones. So if qx lies 

inside CH(Q), then its influence zone IZ qx will always 

cover the intersection of all influence zone of query points 

that are located in CH(Q) edges. The example can be seen in  

 

Figure 8. The query objects are q1, q2, q3, and q4. q4 is 

located inside the CH(Q) of the query objects. 

 

 

 

 

 

  

 

 

 

Thus, q4 is the innerQ and then q1, q2, q3 are the outerQ. 

The distance of q4 to p1 is greater than the distance from q1 

to p1. So when we apply perpendicular bisector to q4 with 

p1 and q1 with p1, the length of q4 to the Bis(q4 : p1) is 

greater than the length from q1 to Bis(q1 : p1), which this 

makes the region q4 to be always inside the regions of 

objects located in CH(Q) edges. The brown shaded area in 

the figure are the regions of q1, q2, q3, while the purple area 

is the region of q4. Figure 8: Convex hull of q1, q2, q3, q4 

with regions of each query objects As we have known which 

query objects to be processed, we also need to consider the 

competitor objects. Not all the competitor objects in the 

space will be used in creating the region of each query. Thus 

in this case we can prune those unused competitor objects. 

We will only choose the competitor objects that have direct 

impact in the region creation process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The pruning process in creating influence zone has already 

been solved by Adhinugraha et al. [29] through the usage of 

Contact Zone. The idea of Contact Zone is to find potential 

peers that have impact to the region generation of the query, 

which are identified by the peers location inside the Contact 

Zone. It will eliminate all unneeded peers so that not all the 

Algorithm 2: Group Reverse kNN  Algo 

Data: set of query objects Q; set of objects in 
the space P  

Result: Group Reverse kNN region 

Begin 

    C=P-Q; 

   Boolean qV=QueryValidation(Q,P) 

     If qV is True then 

       CreateRegion(Q,C) 

    End 

End 

Algorithm 3: Query Validation 

Data: set of query objects Q;set of objects in the 

space P 

Result: query valid or invalid(true or false) 

Begin  

    DT(P)apply Delaunay Triangulation to P 

          If Tree(Q)<l ot Tree(Q)>l then 

         Return false; 

        End 

    SEC(Q)apply smallest Enclosing Circle to Q; 

         If no competitor inside SEC(Q) then 

         Return true 

         End 

      true 

End 

 



International Journal on Recent and Innovation Trends in Computing and Communication                                       ISSN: 2321-8169 
Volume: 4 Issue: 12                                                                                                                                                                           242 – 250 

_______________________________________________________________________________________________ 

248 

IJRITCC | December 2016, Available @ http://www.ijritcc.org 

_______________________________________________________________________________________ 

points in the space will be processed. This method is 

efficient in saving up time and resources. Hence we will 

apply this existing method to our algorithm. After we have 

pruned the unused competitor objects, we can now apply the 

perpendicular bisector Bis(qk : cn) between each query with 

all unpruned competitors. This will give us a region of the 

corresponding query object. Each of the query will have 

their own region. All of those regions will have an 

intersection, which this created the Group Reverse kNN 

Region. The intersection area itself can be obtained through 

polygon clipping algorithm [32], [33] 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. EVALUATION 

In this section, some evaluations are conducted in order to 

determine the efficiency of the algorithm proposed. There 

are. several cases evaluated for each method, which are 

aiming to examine the efficiency of both the validation and 

region generation process. We mainly focusing on the 

closeness of the query objects in the query validation 

process. So the variation of number of query objects is 

important in the evaluation. We generate 100 to 1000 

objects as the sample, and then randomly choose 2 to 5 

objects as the query. Several cases are applied to the query 

objects, both in average and extreme cases. We chose the 

query to be located in the middle of the competitors, where 

the query is surrounded by the competitors. We also chose 

the query in the corners where the competitors are gathering 

in a specific side of the query objects, not surrounding them. 

In evaluating the Smallest Enclosing Circle method, we 

analyse the effect of competitor objects inside the circle. An 

increasing number of competitor objects are added randomly 

inside the circle. The location of the competitor objects has 

effects to the region, hence we try to apply as many plot as 

possible on each number of competitors in order to get the 

percentage of un-retrieved region. Figure 9 shows the effect 

of competitor objects inside the smallest enclosing circle in 

the validation process and when average c0ase is applied. It 

shows that the chance of region would not be retrieved is 

very high when the competitors are inside, especially when 

the number of both the query objects and competitors 

increase. There are chances the region can be retrieved but 

only when the number of query and competitor objects are 

very low. 

 

Figure 9:Effect of Competitors inside the circle on average 

cases 

However when extreme case is applied on the Group 

Reverse kNN queries, the chance of region to be retrieved is 

slightly bigger than in the average case. This is due to the 

case where the competitor objects are gathered in a specific 

side of the query objects. The graph in Figure 10 still shows 

a considerably rise of percentage of un-retrieved region whe  

the number of query and competitor objects increase. Hence 

based on this evaluation, the chance of region to be created 

is pretty low when the competitor lies inside the Smallest 

Enclosing Circle. It is not suggested to process the query 

with un-retrieved region as we will only waste the resources. 

Another evaluation is in the region creation process where 

we analyse the number of competitor objects that are being 

pruned. The competitor objects need to be pruned in order to 

safe up some computation since not all of the competitors 

Algorithm 4: Create Region 

Data: set of query objects Q; set of non-

query object C 

Result: Group Reverse kNN region 

CH(Q)create convex hull for Q based on 

the Delaunay Triangualation lines; 

        For each qk  in CH(Q) edges do 

              Apply Contact Zone; 

             Apply Bis(qk:cn); 

       End 

   Get the intersection region 

End 
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will be used to create the region. In our evaluation, we apply 

the Contact  

 

Figure 10: Effects of competitors inside the circle on 

extreme case 

 

Figure 11:Competitiors pruned before creating 

Zone method to each of the query object and 

count the number of competitor objects that are being 

pruned. Figure 11 shows the result of the pruned 

competitors for 100 to 1000 objects in the space. As can be 

seen in the graph, the number of pruned competitors are 

decreasing as the number of query objects increase. This is 

as expected since the more the number of query, the more 

the competitors that affecting the region creation. However, 

the percentage of pruned competitors shows that it is very 

efficient since most of the unused competitors are being 

pruned, especially on the high density case since it can even 

eliminate more than 80% of the competitor objects. 

6. CONCLUSION 

The Group Reverse kNN Query is a type of spatial query 

that processes a set of query objects in order to find a 

potential region where all objects inside this region will 

think of the query objects as the nearest neighbour. This 

spatial query has significant roles in our daily life, such as in 

business and urban planning. In this paper we proposed the 

algorithm to process Group Reverse kNN Queries. The 

algorithm is broken down into two main parts, which 

consists of Query Validation and Region Creation process. 

We evaluated the efficiency of both of the processes. The 

evaluation on the validation method shows that the chance 

of region to be created is pretty low when the competitor lies 

inside the Smallest Enclosing Circle. Another more accurate 

approach on the validation may be needed as our future 

work. The evaluation on the region creation shows that the 

method is efficient in pruning the unused competitor objects. 

However another future work can be conducted in 

maximising the pruning of the competitor objects since 

current method needs to apply the Contact Zone to each of 

the query objects one by one. 
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