
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 4 Issue: 12 242 – 250

242

IJRITCC | December 2016, Available @ http://www.ijritcc.org

Group Reverse Nearest Neighbor Search using Modified Skip Graph

1
Upinder Kaur, Research Scholar, Dept. of Computer Science and Applications, KUK.

2
Dr. Pushpa Rani Suri, Professor, Dept. of Computer Science and Applications, KUK.

Abstract: The reverse nearest neighbor search is used for spatial queries. The reverse nearest neighbor search, the object in high dimensional

space has a certain region where all objects inside the region will think of query object as their nearest neighbor. The existing methods for

reverse nearest neighbor search are limited to the single query point, which is inefficient for the high dimensional spatial databases etc.

Therefore, in this paper we proposed a group reverse nearest neighbor search which can find multiple query objects in a specific region. In this

paper we proposed method for group reverse nearest neighbor queries using modified skip graph.

Index terms: group reverse nearest neighbor search, spatial query, skip graph.

__*****___

1. INTRODUCTION:

Reverse nearest neighbor (RNN) is a query technology and

able to find the sets of database points that have the query

point as the nearest neighbor. RNN has received lot of

attention from the database research community because of

its broad application like marketing, decision support,

resource allocation and data mining, especially digital maps

to process geographical information. Many of our activities

today are done by the aid of spatial data. The most common

one is for navigation where people can easily look for

directions to specific places. Not only for navigation, we can

also find some nearest objects in our surroundings. There is

a rapid development in spatial databases area.

Various researches on the RNN search [1–11] have been

conducted over the last decade. In [1–6], methods for

finding the reverse nearest neighbor from a snapshot of a

dataset are devised. The authors in [7–11] propose methods

for the continuous nearest neighbor search which find the

reverse nearest neighbor and continuously update the result

as the objects change their locations. All the researches use

only the spatial distance for measuring the distance between

objects. However, in many real-life location based services,

we are given more information than just the physical

locations of objects. Recent services such as Google Maps,

Facebook and Groupon provide users with rating scores of

products. Such information is valuable in defining a new

distance measure in the RNN search. For example, when

choosing a premium-grade steakhouse for dinner, we

generally consider not only the spatial proximities of

steakhouses, but also the quality of the steakhouse based on

items such as the food, atmosphere, price and service.

Therefore, in order to choose the better steakhouse, the

spatial proximity and the quality of the steakhouse are

necessary to be comprehensively considered. In such a case,

the traditional distance measure based solely on the spatial

distance cannot be used. Consequently, the distance measure

based on both the spatial proximity and the quality of the

item is more useful and realistic than the traditional

measure.

We can find all the objects that consider the query object as

their nearest neighbour [1]. Another example of RNN Query

is when we are looking for a set of customers who thinks of

a specific supermarket as the nearest one based on the

customer’s location. The RNN is different from Nearest

Neighbour (kNN) Queries where the query object looks for

its own nearest neighbours [5], the important thing in RNN

is that whether the neighbouring objects consider the query

point as their nearest neighbour [2], [6], [7]. It does not

matter for the query object to know its neighbours. Like in

real life, it is not substantial for a shop to look for its

competitor but it is more important to understand which

other shops see it as competitor.

However most of the works done on this approach can only

be implemented to a single query object. In real life we will

encounter a situation where we need to find the RNN of

more than one object. Imagine a case where we need to

build a refugee camp in a war. We absolutely want to have

the safest location possible, where it is closer to the military

soldier locations rather than the enemies. The soldiers are

usually spread in several locations. If we only rely on a

single military soldier location, the area retrieved will not be

safe enough to build the camp. Hence in this paper we try to

solve this kind of problem by proposing the Group Reverse

kNN Queries, where a region will be retrieved through

multiple query objects. The region itself will always have

the minimum sum of distance to the query objects

altogether, which this means that when we locate a new

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 4 Issue: 12 242 – 250

243

IJRITCC | December 2016, Available @ http://www.ijritcc.org

object inside the region, the new object will always consider

all of the query objects as its nearest neighbor.

As a significant role of Group Reverse kNN Query is in

finding the most efficient region based on multiple query

points, the region produced can help us in decision making

process in our daily life like placing a new object in a

strategical area. People want to find a gas station such that

the total cost for visiting the gas station and filling the gas is

minimum based on their locations. Therefore, the marketing

targets of a gas station are promising buyers for which

visiting the gas station is more economical than visiting

other gas stations. The method for our problem can find

such promising buyers by considering the spatial distance

In this paper, we proposed method to process the group

reverse nearest neighbor queries using modified skip graph.

2. Related work

The concept of group reverse nearest neighbor query is in

fact similar to the RNN of multiple query objects. The RNN

results need some modification to solve the problem of

Group RNN. In the past years, various approaches to solve

the RNN Queries had been proposed. The initial one is by

using point-to-point approach [3], [13-15], where we will

gather all the possible points (objects) in the space that will

consider the query as their RNN. The most common

technique for this approach is to determine the Euclidean

distance between every two objects. So in this case

we need to check the distance between the query object with

another object, one by one, in order to get the query’s RNN

Voronoi Diagram has been widely used in spatial query

processing [16]–[19], specifically to solve the RNN Queries

[17]. In Voronoi Diagram, a plane is divided into some

regions and each of the regions has a generator point where

any objects inside the corresponding region think of the

generator point as their closest generator point compare to

the points in other regions [18], [19]. The algorithms used in

the Voronoi Diagram varies depending on the consideration

of the Euclidean distance between objects or the real road

network [17], [20]. The nature of query objects in Group

Reverse kNN Queries is

pretty similar to the Order-k Voronoi Diagram. All the query

objects need to be close to each other in order to create a

region. The Group Reverse kNN region itself is similar to a

single Voronoi cell in Order-k Voronoi Diagram. A dual of

Voronoi Diagram is the Delaunay Triangulation [18], [21].

The triangulation itself is formed by the generator points of

Voronoi Diagram [19]. The algorithm for Delaunay

Triangulation uses divide-and-conquer approach, which runs

in O(N logN) time [22], [23]. In relation to the Group Reverse

kNN Queries, the Delaunay Triangulation can be used to

validate the location of the query objects. The Delaunay

Triangle is applied to all of the objects in the plane, both the

query objects and the non-query objects. The existing

approaches in RNN may not be suitable for solving RNN of

multiple query object. Like the concept used in Influence

Zone, it is similar to Group Reverse kNN Query. We will

have a region that when an object is placed inside this

region, the object will consider the query as its nearest

neighbour. However the main difference here is that

Influence

Zone only focuses on a single query, while Group Reverse

kNN problem is on multiple query objects. Therefore some

modifications to the method are needed so that it is

applicable to multiple query objects in Group Reverse kNN

Query. Moreover, a study on processing multiple query

objects in spatial database has previously been done by [24],

[25] through the Group Nearest Neighbour (Group-KNN)

method. It is a variant of kNN where a number of selected

query points will choose a target object that is considered as

their nearest neighbour [25]–[28]. There are numerous ways

to process Group kNN Queries, some of them are Multiple

Query Method (MQM), Single Point Method (SPM),

Minimum Bounding Box Method (MBM), and Group

closest pairs method [27]. Even though Group-KNN

processes multiple query objects, the main focus in Group-

KNN is to find a single target object, which is the centroid

of the query objects [24]. This is mainly different from the

purpose of Group Reverse kNN Query where we are trying

to find a region, where all objects inside this region will

always think of the query objects as the nearest neighbours.

Moreover, the Group-KNN does not consider the non-query

points when finding the centroid, while the Group Reverse

kNN Query will need to consider the non-query points in

order to form a region through perpendicular bisector of

each query points with all other non-query points.

3. Problem definition:

The concept of RNN is to have a set of objects that

considers a query object as the nearest neighbour. In this

case, the query object of RNN Query has an ”influence” to

the other objects. The set of objects that are the result of

RNN are known as the influence set of the corresponding

query [2].

In the initial technique for solving RNN, point-to-point

approach is applied [3], [13 -15]. This kind of method is

fairly expensive because we need to verify every object one

by one whether it is considered as nearest from the query

object. So instead of using point-to-point approach, region

approach is used [8], [9]. Since a query has influence to

others, then there exists a region where any object located

inside this region will be considered as the RNN objects of

the query, which is why the concept of Influence Zone is

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 4 Issue: 12 242 – 250

244

IJRITCC | December 2016, Available @ http://www.ijritcc.org

presented. Supposed that we have a set of objects P in the

R2 space, P = {p1, p2, ..., pn} (TABLE I). We choose one of

the objects, say p1, as the query object. Based on the

concept of Influence Zone, if an object p is located outside

the region of object p1, p will not consider p1 as its nearest

neighbour, p will consider other object instead. However

when we have more than one object as the query, this

approach cannot be used. The Influence Zone of a single

object is different from a set of objects. In the Figure 1, we

have object p1, p2, p3, q1, q2, and q3 in the space and each

of their Influence Zone is also presented. We choose q1, q2,

and q3 as the query objects, so in this case we will have k =

3. The rest of the non-query objects are assumed as the

competitor objects. We want to have a region where any

objects located inside this region will think of all the query

objects as the nearest. Since we have three query objects,

then when an object located anywhere inside the region

performs 3NN search, object q1, q2, and q3 will always be

the answer. If we use the Influence Zone of a single object,

the region created will not always have all the query objects

as the nearest. Assume that we put a new object p anywhere

inside the region of q1, as can be seen in Figure 2 and

Figure 3. The new object p will obviously think of q1 as the

nearest. But when we do 3NN search, it will not necessarily

think of q1, q2, and q3 as the nearest. In Figure 3, it is still

as what we want since p considers q1, q2, and q3 as the

nearest. But it is

different from Figure 4. p in Figure 4 thinks of p1 and p3 as

the nearest instead of q2 and q3.

Figure 1: Influence Zone applied to each object

Figure 2 : p considers q1, q2, q3 as its 3NN

 Figure 3: p considers q1, p1, p3 as its 3NN Because of the

problem mentioned before, we try to find a potential region

of k number of query objects, where all the k query objects

will be considered as the nearest neighbor when we do kNN

search. The region itself is not the convex hull of all the

query objects. Having convex hull as the region is not

accurate since there are cases where an object will also think

of the competitor objects as the nearest even though it is

located inside the convex hull. There also a case where the

region may actually be larger than the convex hull, which

makes the convex hull method to be inefficient. As can be

seen in Figure 4, the Group Reverse kNN region of q1, q2,

and q3 is actually larger compare to when we create the

convex hull (shown by the black triangle) of the query

objects. There are actually more region can be covered by

the query, compare to when the convex hull method is

applied. Hence in this paper we propose the algorithm to

create an optimal region for this problem. In the Group

Reverse kNN Queries, we will have k number of query

objects as the input, and the output will be a region. a

number of predefined query objects Q = {q1, q2, ..., qk},

where qk ⊆ P (TABLE I), are needed in order to construct a

region. The predefined query objects need to be validated by

their closeness so that a region can be formed. The produced

region is expected to have the shortest sum distance to the

query objects and any object inside the region is believed to

have all of the query points as the nearest objects. Based on

our research, the region that we are looking for is created

based on the influence zone of each query object. Each of

the query object will have its own region, where the

combination of all query object’s regions will intersect and

form the Group Reverse kNN Region. Figure 5 shows this

example. We find the region of each query object, which are

q1 (yellow), q2 (green), and q3 (blue). All of the regions

will have an intersection, which as long as we place an

object inside this intersecting region, object q1, q2, and q3

will always be the nearest objects compare to the competitor

objects. The nature of query points in Group Reverse kNN

Queries is similar to the Order-k Voronoi Diagram. All the

query objects need to be close to each other in order to

create a region [24]. Furthermore, based on the experiment

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 4 Issue: 12 242 – 250

245

IJRITCC | December 2016, Available @ http://www.ijritcc.org

in creating region in Group Reverse kNN Queries, the

region itself is similar to the Voronoi cell in Order-k

Voronoi Diagram. The region created by k number of query

objects in Group Reverse kNN is actually a Voronoi cell in

Higher Order Voronoi Diagram. Hence, the Group Reverse

kNN Queries is actually a type of query where we can create

a single Voronoi cell of Order-k Voronoi Diagram.

Figure 4: Region of multiple query objects

Figure 5: Region of each query object

4. Proposed method

Skip Graphs extend Skip Lists for distributed environments

by adding redundant connectivity and multiple handles into

the data structure. It is equivalent to a collection of up to

Skip Lists (where n is the number of elements in the lowest

level) with each element participating in exactly one list at

each level and some of the lower levels shared across many

Skip Lists. The increased connectivity provides greater fault

tolerance and avoids hot-spots as any element could be

located using any one of the top-level elements of the

different Skip Lists. The insertion,deletion and searching

algorithms in modified skip graph is same used in standard

skip graph.

Figure 6: Example of Skip Graph

4.1 Index strategy

Regions: A region stands for a node in the region tree tree.

Each region is a hyper-rectangle in the search space.

Intermediate regions generate two child regions when split

along one of the dimensions. Leaf regions are associated

with physical machines that are responsible for managing

that portion of the index.

Split history: of a region represents the path in the region

tree from the root to the region. It is a list of tuples (dim split ,

pos split)with each element specifying the dimension and

position of a split.

Region code: is a string of 0s and 1s that represents how a

region is generated by the splitting process. When we split a

region into two pieces, the region code for the left child

(which is the region with smaller coordinates in the splitting

dimension) is generated by appending “0” to the end of the

region code of the parent region. The right child’s region

code is obtained by appending “1” to the parent’s region

code. We represent the code in a binary fraction format,

with a decimal point to the left of the most significant bit.

The ordering imposed by the region codes corresponds to

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 4 Issue: 12 242 – 250

246

IJRITCC | December 2016, Available @ http://www.ijritcc.org

the in-order (or “left-to right”) traversal of the region tree.

When combined with the split history, the region code

completely describes the coordinates of a region.

4.2 Reverse k Nearest Neighbor Query Algorithm

Reverse k nearest neighbor search is similar to a spherical

range query, except that the radius of the query ball is not

prespecified but is instead determined dynamically during

the search. Our reverse nearest neighbor algorithm is

therefore based on the k nearest neighbor search algorithm,

which is enhanced with a demand-driven process for

determining which regions to query.

As the first step, we route the reverse k nearest neighbor

search to the node a owning the region that contains the

query point, then executes a local query to determine an

initial candidate set of nearest neighbors, denoted by Snn.

The maximum distance from q to points in Snn is the initial

value for the RNN query radius Rnn If the size of is Snn less

than k, then Rnn is set to a value that covers the entire d

dimensional space. A also maintains a priority queue, Qsearch

of regions to be searched, ordered by their minimum

distances to the query point. The initial contents of Qsearch is

determined by traversing a’s partial tree view and finding all

regions that intersect with the current query ball(q, Rnn).The

algorithm queries the regions in Qsearch increasing order of

distance. In each step, a extracts the minimum distance

region, R, from the queue and sends a query messag(q,

Rnn,R) towards region R. When this message is received by

a node, which could have more detailed information about

R, the search region is refined based on the node’s partial

tree view and forwarded towards the sub-region of R that is

closest to 0 . When the search region is eventually refined to

a leaf region and received by the corresponding node, a local

query is performed to determine points contained in the

region that are closer than the current KNN distance

estimate Rnn . The results are reported back to a along with

the newly discovered sub-regions that intersect with the

query ball. A then updates Snn and Rnn , and inserts sub-

regions found during the step into Qsearch. A repeats the

query step until there are no regions left in Qsearch within

distance Rnn. Algorithm provides the formal description

4.3 Group Reverse kNN Queries

The main idea is to create the group reverse kNN region

similar to kNN region. However we need to make sure that

the query provided can be used to create the region . We do

not want to waste the computation and resources in the

region creation process only to find out that the region itself

cannot be retrieved. So a validation will be conducted prior

to creating the region. The algorithm to generate the Group

Reverse kNN Queries is broken down into two main parts:

(i) Query Validation and (ii) Region Generation.

Query Validation

Since we are dealing with multiple query objects in the

Group Reverse kNN Query, the region may not be retrieved

all the time. It actually depends on the closeness of the

query objects. There is a possible case where the query

points given does not produce any results, such as when the

competitor objects are intermingling in between the query

objects. Because of this, there is no specific region produced

by Group Reverse kNN since no region serves the shortest

distance to all the query objects. Hence we need to validate

the query given by user. There is no specific region

produced by Group Reverse kNN. There is no intersecting

region of all the query objects’ regions due to p1 and p2

interruption. p1 and p2 has their own influential zone as well

which this makes the query objects to be not having a Group

Reverse kNN region. Therefore the query objects needs to

be close to each other in order to form a region. There are

two levels of validating the query. First we use Delaunay

Triangulation to see the connectivity of the objects, and the

second one is by using the Smallest Enclosing Circle

technique for all the query objects to check the closeness

and clustering of the objects. For the first validation, the

Delaunay Triangulation DT is applied to all of the objects in

the plane P , both the query points and the competitor

points. So in this case we have DT(P). Through DT(P), we

need to see the edge Edge(qi, qj) between the query objects

Algorithm 1: Reverse kNearset neighbor

A does a local nearest neighbor search initializes Snn and
Rnn based on the results

A traverse its partial tree view and initializes Qsearch with all
the regions R, such that mindist(R,q)<=Rnn

While (Qsearch

 not empty) do

Rextract_min(Qsearch)

Forward query(q, Rnn,R) to R

Receive result (SetP,SetR)

Insert regions in SetR into Qsearch

Update Snn and Rnn with SetP

Prune Qsearch with new Rnn

Return Snn

Upon node B receiving the query (q, Rnn,R):

If(local_region (B)==R) then

SetP reverse nearest points within Rnn

SetRleaf regions inside R from local tree view

Reply to A the results(SetP.SetR)

Else find the leaf Rl in the local tree view with minimum

mindist(q,R)

Forwardquery (q, Rnn,R) to Rl

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 4 Issue: 12 242 – 250

247

IJRITCC | December 2016, Available @ http://www.ijritcc.org

in the triangulationwhether they are directly connected to

each other or not. Edge(qi, qj) means that qi and qj are

segment in DT(P) for i = j.

B. Region Creation

Once we have a valid query, then a region can be generated.

In this step, perpendicular bisector will need to be applied

for each query object. The perpendicular bisector Bis(qk :

cn) will be between each query and other competitor points

in the space.

However, there is a case where we do not need to apply

Bis(qk : cn) to all of the query points. We can create a

convexhull of set Q (CH(Q)). All query objects that are

located in the convex hull CH(Q) edges are going to be

processed. The other query points inside the CH(Q) do not

need to be processed since the region of those query points

will always be inside the region of query points located in

the CH(Q) edges. This method can save up some processing

time as we do not need to process the whole query objects,

but we rather have the most influential ones. So if qx lies

inside CH(Q), then its influence zone IZ qx will always

cover the intersection of all influence zone of query points

that are located in CH(Q) edges. The example can be seen in

Figure 8. The query objects are q1, q2, q3, and q4. q4 is

located inside the CH(Q) of the query objects.

Thus, q4 is the innerQ and then q1, q2, q3 are the outerQ.

The distance of q4 to p1 is greater than the distance from q1

to p1. So when we apply perpendicular bisector to q4 with

p1 and q1 with p1, the length of q4 to the Bis(q4 : p1) is

greater than the length from q1 to Bis(q1 : p1), which this

makes the region q4 to be always inside the regions of

objects located in CH(Q) edges. The brown shaded area in

the figure are the regions of q1, q2, q3, while the purple area

is the region of q4. Figure 8: Convex hull of q1, q2, q3, q4

with regions of each query objects As we have known which

query objects to be processed, we also need to consider the

competitor objects. Not all the competitor objects in the

space will be used in creating the region of each query. Thus

in this case we can prune those unused competitor objects.

We will only choose the competitor objects that have direct

impact in the region creation process.

 The pruning process in creating influence zone has already

been solved by Adhinugraha et al. [29] through the usage of

Contact Zone. The idea of Contact Zone is to find potential

peers that have impact to the region generation of the query,

which are identified by the peers location inside the Contact

Zone. It will eliminate all unneeded peers so that not all the

Algorithm 2: Group Reverse kNN Algo

Data: set of query objects Q; set of objects in
the space P

Result: Group Reverse kNN region

Begin

 C=P-Q;

 Boolean qV=QueryValidation(Q,P)

 If qV is True then

 CreateRegion(Q,C)

 End

End

Algorithm 3: Query Validation

Data: set of query objects Q;set of objects in the

space P

Result: query valid or invalid(true or false)

Begin

 DT(P)apply Delaunay Triangulation to P

 If Tree(Q)<l ot Tree(Q)>l then

 Return false;

 End

 SEC(Q)apply smallest Enclosing Circle to Q;

 If no competitor inside SEC(Q) then

 Return true

 End

 true

End

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 4 Issue: 12 242 – 250

248

IJRITCC | December 2016, Available @ http://www.ijritcc.org

points in the space will be processed. This method is

efficient in saving up time and resources. Hence we will

apply this existing method to our algorithm. After we have

pruned the unused competitor objects, we can now apply the

perpendicular bisector Bis(qk : cn) between each query with

all unpruned competitors. This will give us a region of the

corresponding query object. Each of the query will have

their own region. All of those regions will have an

intersection, which this created the Group Reverse kNN

Region. The intersection area itself can be obtained through

polygon clipping algorithm [32], [33]

5. EVALUATION

In this section, some evaluations are conducted in order to

determine the efficiency of the algorithm proposed. There

are. several cases evaluated for each method, which are

aiming to examine the efficiency of both the validation and

region generation process. We mainly focusing on the

closeness of the query objects in the query validation

process. So the variation of number of query objects is

important in the evaluation. We generate 100 to 1000

objects as the sample, and then randomly choose 2 to 5

objects as the query. Several cases are applied to the query

objects, both in average and extreme cases. We chose the

query to be located in the middle of the competitors, where

the query is surrounded by the competitors. We also chose

the query in the corners where the competitors are gathering

in a specific side of the query objects, not surrounding them.

In evaluating the Smallest Enclosing Circle method, we

analyse the effect of competitor objects inside the circle. An

increasing number of competitor objects are added randomly

inside the circle. The location of the competitor objects has

effects to the region, hence we try to apply as many plot as

possible on each number of competitors in order to get the

percentage of un-retrieved region. Figure 9 shows the effect

of competitor objects inside the smallest enclosing circle in

the validation process and when average c0ase is applied. It

shows that the chance of region would not be retrieved is

very high when the competitors are inside, especially when

the number of both the query objects and competitors

increase. There are chances the region can be retrieved but

only when the number of query and competitor objects are

very low.

Figure 9:Effect of Competitors inside the circle on average

cases

However when extreme case is applied on the Group

Reverse kNN queries, the chance of region to be retrieved is

slightly bigger than in the average case. This is due to the

case where the competitor objects are gathered in a specific

side of the query objects. The graph in Figure 10 still shows

a considerably rise of percentage of un-retrieved region whe

the number of query and competitor objects increase. Hence

based on this evaluation, the chance of region to be created

is pretty low when the competitor lies inside the Smallest

Enclosing Circle. It is not suggested to process the query

with un-retrieved region as we will only waste the resources.

Another evaluation is in the region creation process where

we analyse the number of competitor objects that are being

pruned. The competitor objects need to be pruned in order to

safe up some computation since not all of the competitors

Algorithm 4: Create Region

Data: set of query objects Q; set of non-

query object C

Result: Group Reverse kNN region

CH(Q)create convex hull for Q based on

the Delaunay Triangualation lines;

 For each qk in CH(Q) edges do

 Apply Contact Zone;

 Apply Bis(qk:cn);

 End

 Get the intersection region

End

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 4 Issue: 12 242 – 250

249

IJRITCC | December 2016, Available @ http://www.ijritcc.org

will be used to create the region. In our evaluation, we apply

the Contact

Figure 10: Effects of competitors inside the circle on

extreme case

Figure 11:Competitiors pruned before creating

Zone method to each of the query object and

count the number of competitor objects that are being

pruned. Figure 11 shows the result of the pruned

competitors for 100 to 1000 objects in the space. As can be

seen in the graph, the number of pruned competitors are

decreasing as the number of query objects increase. This is

as expected since the more the number of query, the more

the competitors that affecting the region creation. However,

the percentage of pruned competitors shows that it is very

efficient since most of the unused competitors are being

pruned, especially on the high density case since it can even

eliminate more than 80% of the competitor objects.

6. CONCLUSION

The Group Reverse kNN Query is a type of spatial query

that processes a set of query objects in order to find a

potential region where all objects inside this region will

think of the query objects as the nearest neighbour. This

spatial query has significant roles in our daily life, such as in

business and urban planning. In this paper we proposed the

algorithm to process Group Reverse kNN Queries. The

algorithm is broken down into two main parts, which

consists of Query Validation and Region Creation process.

We evaluated the efficiency of both of the processes. The

evaluation on the validation method shows that the chance

of region to be created is pretty low when the competitor lies

inside the Smallest Enclosing Circle. Another more accurate

approach on the validation may be needed as our future

work. The evaluation on the region creation shows that the

method is efficient in pruning the unused competitor objects.

However another future work can be conducted in

maximising the pruning of the competitor objects since

current method needs to apply the Contact Zone to each of

the query objects one by one.

References:

[1] F. Korn, S. Muthukrishnan, Influence sets based on

reverse nearest neighbor queries, in: Proceedings of the

2000 ACM SIGMOD International Conference on

Management of Data, SIGMOD'00, ACM, New York,

NY, USA, 2000, pp. 201–212.

[2] C. Yang, K.-I. Lin, An index structure for efficient

reverse nearest neighbor queries, in: Proceedings of the

17th International Conference on Data Engineering,

IEEE Computer Society, Washington, DC, USA, 2001,

pp. 485–492. URL

〈http://dl.acm.org/citation.cfm?id=645484.656392〉.

[3] K.-I. Lin, M. Nolen, C. Yang, Applying bulk insertion

techniques for dynamic reverse nearest neighbor

problems, in: 2003 Proceedings of Seventh International

Database Engineering and Applications Symposium,

2003, pp. 290–297.

[4] I. Stanoi, D. Agrawal, A.E. Abbadi, Reverse nearest

neighbor queries for dynamic databases, in: In ACM

SIGMOD Workshop on Research Issues in Data Mining

and Knowledge Discovery, 2000, pp. 44–53.

[5] Y. Tao, D. Papadias, X. Lian, Reverse knn search in

arbitrary dimensionality, in: Proceedings of the Thirtieth

International Conference on Very Large Data Bases, vol.

30, VLDB'04, VLDB Endowment, 2004, pp. 744–755.

[6] W. Wu, F. Yang, C.-Y. Chan, K.-L. Tan, Finch:

evaluating reverse k-nearest-neighbor queries on location

data, Proc. VLDB Endow. 1 (1) (2008) 1056–1067.

[7] R. Benetis, C.S. Jensen, G. Karciauskas, S. Saltenis,

Nearest neighbor and reverse nearest neighbor queries

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 4 Issue: 12 242 – 250

250

IJRITCC | December 2016, Available @ http://www.ijritcc.org

for moving objects, in: Proceedings of the 2002

International Symposium on Database Engineering &

Applications, IDEAS'02, IEEE Computer Society,

Washington, DC, USA, 2002, pp. 44–53.

[8] T. Xia, D. Zhang, Continuous reverse nearest neighbor

monitoring, in: Proceedings of the 22nd International

Conference on Data Engineering, ICDE'06, IEEE

Computer Society, Washington, DC, USA, 2006, p. 77.

[9] J. Kang, M. Mokbel, S. Shekhar, T. Xia, D. Zhang,

Continuous evaluation of monochromatic and

bichromatic reverse nearest neighbors, in: IEEE 23rd

International Conference on Data Engineering, 2007,

ICDE 2007, 2007, pp. 806–815.

[10] W. Wu, F. Yang, C.Y. Chan, K.-L. Tan, Continuous

reverse k-nearest-neighbor monitoring, in: Proceedings

of the Ninth International Conference on Mobile Data

Management, MDM'08, IEEE Computer Society,

Washington, DC, USA, 2008, pp. 132–139.

[11] M.A. Cheema, X. Lin, Y. Zhang, W. Wang, W. Zhang,

Lazy updates: an efficient technique to continuously

monitoring reverse knn, Proc. VLDB Endow. 2 (1)

(2009) 1138–1149.

[12] J. Lu, Y. Lu, G. Cong, Reverse spatial and textual k

nearest neighbor search, in: Proceedings of the 2011

ACM SIGMOD International Conference on

Management of Data, SIGMOD'11, ACM, New York,

NY, USA, 2011, pp. 349–360.

[13] Y. Tao, M.L. Yiu, N. Mamoulis, Reverse nearest

neighbor search in metric spaces, IEEE Trans. Knowl.

Data Eng. 18 (9) (2006) 1239–1252.

[14] A. Singh, H. Ferhatosmanoglu, A.c. Tosun, High

dimensional reverse nearest neighbor queries, in:

Proceedings of the Twelfth International Conference on

Information and Knowledge Management, CIKM'03,

ACM, New York, NY, USA, 2003, pp. 91–98.

[15] M.L. Yiu, D. Papadias, N. Mamoulis, Y. Tao, Reverse

nearest neighbors in large graphs, IEEE Trans. Knowl.

Data Eng. 18 (4) (2006) 540–553.

[16] A. Vlachou, C. Doulkeridis, Y. Kotidis, K. Norvag,

Reverse top-k queries, in: 2010 IEEE 26th International

Conference on Data Engineering (ICDE), 2010, pp. 365–

376.

[17] M. Safar, D. Ibrahimi, and D. Taniar, “Voronoi-based

reverse nearest neighbor query processing on spatial

networks,” Multimedia Systems, vol. 15, no. 5, pp. 295–

308, 2009.

[18] A. Okabe, B. Boots, K. Sugihara, S. N. Chiu, and D. G.

Kendall, Definitions and Basic Properties of Voronoi

Diagrams, pp. 43–112. John Wiley & Sons, Inc., 2008.

[19] M. de Berg, O. Cheong, M. van Kreveld, and M.

Overmars, “Voronoi diagrams,” in Computational

Geometry, pp. 147–171, Springer Berlin Heidelberg,

2008.

[20] H. Cho, S. J. Kwon, and T. Chung, “A safe exit

algorithm for continuous nearest neighbor monitoring in

road networks,” Mobile Information Systems, vol. 9, no.

1, pp. 37–53, 2013.

[21] M. de Berg, O. Cheong, M. van Kreveld, and M.

Overmars, “Delaunay triangulations,” in Computational

Geometry, pp. 191–218, Springer Berlin Heidelberg,

2008.

[22] D. Lee and B. Schachter, “Two algorithms for

constructing a Delaunay triangulation,” International

Journal of Computer & Information Sciences, vol. 9, no.

3, pp. 219–242, 1980.

[23] L. Paul Chew, “Constrained delaunay triangulations,”

Algorithmica, vol. 4, no. 1-4, pp. 97–108, 1989.

[24] D. Papadias, Q. Shen, Y. Tao, and K. Mouratidis,

“Group nearest neighbor queries,” in Data Engineering,

2004. Proceedings. 20th International Conference on, pp.

301–312, March 2004.

[25] T. Nghiem, D. Green, and D. Taniar, “Peer-to-peer group

k-nearest neighbours in mobile ad-hoc networks,” in

Parallel and Distributed Systems (ICPADS), 2013

International Conference on, pp. 166–173, Dec2013.

[26] M. Safar, “Group k-nearest neighbors queries in spatial

network databases,” Journal of Geographical Systems,

vol. 10, pp. 407–416, 12 2008. Copyright - Springer-

Verlag 2008; Last updated - 2014-08-30.

[27] D. Taniar and W. Rahayu, “A taxonomy for nearest

neighbour queries in spatial databases,” Journal of

Computer and System Sciences, vol. 79, no. 7, pp. 1017

– 1039, 2013.

[28] D. Papadias, Y. Tao, K. Mouratidis, and C. K. Hui,

“Aggregate nearest neighbor queries in spatial

databases,” ACM Trans. Database Syst., vol. 30, pp.

529–576, June 2005.

[29] K. M. Adhinugraha, D. Taniar, and M. Indrawan,

“Finding reverse nearest neighbors by region,”

Concurrency and Computation: Practice and Experience,

vol. 26, no. 5, pp. 1142–1156, 2014.

[30] P. K. Agarwal, D. Eppstein, and J. Matousek, “Dynamic

half-space reporting, geometric optimization, and

minimum spanning trees,” in Foundations of Computer

Science, 1992. Proceedings., 33rd Annual Symposium

on, pp. 80–89, Oct 1992.

[31] A. Efrat, M. Sharir, and A. Ziv, “Computing the smallest

k-enclosing circle and related problems,” Computational

Geometry, vol. 4, no. 3, pp. 119 – 136, 1994.

[32] I. E. Sutherland and G. W. Hodgman, “Reentrant

polygon clipping,” Commun. ACM, vol. 17, pp. 32–42,

Jan. 1974.

[33] S. Feng and X. Du, “A polygon clipping algorithm based

on series coding technique,” in Future Computer and

Communication (ICFCC), 2010 2nd International

Conference on, vol. 1, pp. V1–373–V1–377, May 2010.

