
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 12 218 – 225

218

IJRITCC | December 2016, Available @ http://www.ijritcc.org

__

Intelligent Geographical Information Retrieval using Ontology

Mansi A. Radke
Visvesvaraya National Institute of

Technology, Nagpur, India

mansiaradke@gmail.com

Omkar B. Nagare
Ittiam Systems

Bangalore, India

omkar.balkrishna@gmail.com

Umesh A. Deshpande
Visvesvaraya National Institute of

Technology, Nagpur, India

uadeshpande@gmail.com

Abstract:- With Web 3.0 gaining popularity, efficiently retrieving geographical information from ever growing geospatial data is an important

task. We address two issues in this work.Firstly, consider the query “Find all restaurants towards the east of Singhania school within a distance

of 50km”. In current systems to get the required result, first all the objects of type restaurant are extracted, then those within a required distance

range are filtered and finally the approximate direction is determined by comparing co-ordinates. This processing is done at run-time i.e.

dynamically when the query is executed. In this paper, we suggest a technique to avoid this computational overhead by constructing triples after

pre-processing data from the existing ontologies to make implicit information explicitly available.Secondly, to address queries like “Find all

schools in Mumbai”, the current systems manually construct a polygon which encloses Mumbai and then the required schools are filtered out.

The task of determining a polygon which encircles the required locality is laborious if done manually and inaccurate with APIs like Google

Maps. We propose an accurate technique which automatically forms the enclosing polygon for a region under consideration.

Keywords:- GeoSPARQL, Semantic Web, Ontology, Parliament.

__*****___

I. INTRODUCTION

With the advancement in internet technologies, the amount

of digital information is expanding rapidly. Lot ofthe data

content on the internet includes geographic references in the

form of place names or spatial relationship to geographical

places. For example, consider the sentence, VJTI

engineering college is towards the east of Matunga railway

station in which VJTI and Matunga are place names bound

with the spatial relationship “east of”. Retrieving

information specific to a place of interest is a common

activity observed in search engines. Significant part of the

total queries fired on a search engine contain queries related

to geographic information retrieval [23]. Geographic

information retrieval (GIR) [2] is an augmentation of

information retrieval with geographic metadata. GIR aims at

solving keyword based queries that involve geographic

content. Relying only on keyword based search causes

problem for newcomers who may not be familiar with

keywords used in the system. Also, using different

terminology for the same concept in the system will have

low recall. For example, street and road are semantically

similar but spelt differently. On the other hand, using

homonymous terms will result into low precision. For

example, the word close may refer to something nearby or

may refer to something which is shut depending on the

scenario. Hence, the ambiguities present in natural language

inherently restrict the state-of-the-art keyword based search

approaches. On the other hand, sometimes overwhelming

results might be brought by the keyword search. A lot of

time will be spent by the user to browse through many

unwanted query results. Therefore a semantic based

approach is needed to overcome these challenges by

providing a meaningful web to machines. OGC (Open

Geospatial Consortium) [16] proposed GeoSPARQL [6] as

an extension to existing SPARQL [14] (which is a query

language and a protocol for RDF data) for representing and

querying geospatial data. However, GeoSPARQL has its

own limitations. The runtime cost of the query is dominated

by spatial join operations because the RDF data model

involves great attention to detail. It is also dominated by

filter expressions involving spatial operators. Pre-computing

the spatial indices does not ensure improved performance as

the RDF queries are much more flexible, making it difficult

to predict which object to index and how the indexing

should be done. Another problem is the way of storing

spatial attributes corresponding to geometrical objects in the

RDF data sets. They are usually stored as string literals

which adhere to specific formats such as GML [3] or WKT

[17]. So, for spatial computation, the GeoSPARQL query

engine has to parse the strings which is a large runtime

overhead as such functionsare stateless. Hence, the already

parsed literals cannot be cached. This shows that

GeoSPARQL provides a way to utilize the geospatial data

available in order to make geospatial applications more

accurate and useful. However, representing such data can

result into inefficient data access. This paper has two distinct

contributions to facilitate solving specific kind of

geographical queries. The first kind of query is the one in

which an individual wants to find the places within a

threshold distance and towards a particular direction of a

known place (or the current place). An example is a query -

mailto:mansiaradke@gmail.com
mailto:omkar.balkrishna@gmail.com
mailto:uadeshpande@gmail.com

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 12 218 – 225

219

IJRITCC | December 2016, Available @ http://www.ijritcc.org

__

find all the restaurants towards the south of Mumbai within

50 km. In the current systems, to get the required result, first

all the objects of the type restaurant are extracted and then

those lying within a particular distance range are filtered.

Finally the relative direction is determined by comparing

latitude and longitude information of the places under

consideration. In the current systems, this processing is done

at runtime and requires a lot of computational overhead.

Hence an approach for efficient retrieval of the required

information is proposed in this paper with the help of a

modified ontology. Secondly, we consider a use case where

a person wants to retrieve all the entities within a particular

geometrical region. Typical query will be, find all the

historical places in New York city. In order to obtain such

information, the current systems follow a two-step process

in which, first an approximate polygon enclosing New York

is constructed. Then all the historical places which lie inside

that polygon are retrieved. This paper deals with the first

step of the process which is construction of the required

polygon. The task of determining a polygon which encloses

the locality under consideration is to be done either

manually or using APIs like Google Maps. The manual

process is laborious, whereas Google maps API provides

only specific shapes like a rectangle or a circle to represent a

particular region. This is quite inaccurate as the

geographical regions are irregular in shape. Hence the

determination of a polygon for a geographical region is

time-consuming, inconsistent and error-prone. Hence an

approach to automate the polygon construction to facilitate

solving these typical kind of queries is proposed. The paper

is structured as follows. The next section reviews the

currently existing systems. This is followed by section 3 in

which we explain the proposed approach in detail. The

experimental results are presented in section 4. Section 5

concludes the paper and points out some directions for

future work.

II. LITERATURE REVIEW

Many approaches have been proposed to solve the problem

of efficient geographic information retrieval with the help of

ontologies till date. Mei Kun et al. [20] proposed an

architecture in 2007 which is purely based on an ontology to

support semantic interoperability of Geographic Information

Systems (GIS). This helps the users to refer to data as well

as semantics behind it to retrieve the required result. Their

system looks for the semantics related to individual entities

in the data under consideration and fetches the results

considering interaction among the different ontologies.

In 2009, Du Ping et al. [22] built a place name ontology

(PNO) and implemented the PNO knowledge base

(PNOKB) to substitute the state-of-the-art gazetteers. These

gazetteers consist of a huge list of places and their

geographical information. But due to the poor semanticsand

simple data structure of gazetteers, GIR systems which rely

on them have many limitations. Such systems have low

recall value due to synonymous concepts, while they have

low precision due to homonymous keywords present. Hence

the systems suffer mainly because they do not consider the

semantics behind the data present in the gazetteers. The

authors have shown that, efficient retrieval can be achieved

by using an ontology in GIR systems. In this paper, we have

used a similar kind of ontology which is built by modifying

PNO.

 In 2010, Liu et al. [21] used their own ontology to consider

the spatial and non-spatial attributes related to geographical

information which was designed to achieve a higher level of

retrieval, such that the results are retrieved not only based

on a keyword but also using semantics which are related to

direction, topology and distance. Earlier proposed

researches focused primarily on the concept of topology and

distance, but they did not consider spatial information

associated with the data. The authors have given more

importance to the spatial relations among the various

geographical entities. By analyzing the current data, they

have created additional data based on a reference ontology

which describes the spatial relations. This was not

considered before. In this paper, we have used a similar idea

of adding additional data to make implicit information

available explicitly.

In 2012, Bhattacharjee et al. [19] proposed an ontology

based approach to manage geospatial information using

semantics. Due to the semantic heterogeneity, a keyword

based search in spatial catalogue containing a large amount

of information becomes inaccurate. They created a standard

using an ontology to handle the heterogeneity and

incompatibility in order to effectively retrieve suitable data

from the catalogues. They have used the Jena API [1] for

building reasoner to resolve semantic ambiguity. Apache

Jena (or Jena in short) is a free and open source Java

framework for building semantic web and Linked Data

applications. The framework is composed of different APIs

interacting together to process the RDF data.

In the same year, Battle et al. [18] who are also authors of

Parliament [11] and contributors to OGC, published an

article focusing on GeoSPARQL, which discusses issues

related to geospatial data access and indexing. Parliament is

a triple store which complies with the RDF [12], RDFS [13],

OWL [10], SPARQL, and GeoSPARQL standards. A triple

consists of a subject and an object joined together by a

predicate in the form subject-predicate-object. For example,

Size is 45 or George knows Sally. A triple store or RDF

store is a database made specifically for the retrieval and

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 12 218 – 225

220

IJRITCC | December 2016, Available @ http://www.ijritcc.org

__

storage of triples using semantic queries [15]. Many of the

triple stores support partial or complete implementation of

GeoSPARQL which shows that the geospatial applications

are important. Efficient geospatial queries are required to

fully utilize the geospatial RDF content present over the

semantic web. So, for the users to truly realize geospatial

semantic web, tools like Parliament and the technologies

such as GeoSPARQL are necessary. In this paper, we have

used Parliament triplestore for experimental purposes.

These approaches show the importance of using ontologies

to solve the problems related to geographical information

retrieval. In this paper, we propose and use a modified

ontology approach based on PNO to achieve interoperability

between two different kinds of data sets and their ontologies.

This modified ontology is then used to generate additional

information using Jena and GeoSPARQL to reduce the

retrieval time of specific geospatial queries.

III. PROPOSEDAPPROACH

In this section, we present our two distinct contributions.

3.1 Reducing the Information Retrieval Time

usinganOntology

Consider the query, “find all the places towards the east of

Badlapur town within 50 km”. Listing 1 shows a

conventional query for getting the required information in

the existing systems.

Listing 1: Conventional Query Example

1 #Find all the places within 50 km towards the east of

Badlapur town

2 SELECT DISTINCT

3 ?object

4 WHERE {

5 ?object rdf:type lgdo:Place;

6 w3cGeo:long ?longitude_object;

7 w3cGeo:lat ?latitude_object;

8 geovocab:geometry

9 [geo:asWKT ?geometry_object].

10 lgeodata:node969958566

11 w3cGeo:long ?longitude_badlapur ;

12 w3cGeo:lat ?latitude_badlapur;

13 geovocab:geometry

14 [geo:asWKT ?geometry_badlapur].

15 FILTER ((geof:distance(?geometry_badlapur

,?geometry_object , uom:metre)/1000) <= 50)

16 FILTER (?longitude_object>? longitude_badlapur)

17 }

In the given query, lgeodata:node9699585661 represents a

geometrical object corresponding to Badlapur town. The

execution plan for the query is explained in the following

steps.

1. Firstly, a triple pattern, ?object rdf:type lgdo:Place

is matched against the triples from the data set

(linkedgeodata) by an exhaustive search.

2. All the matched triples are then stored in the

document Result1.

3. In a similar way, the matched triples for the triple

patterns, ?object w3cGeo:long ?longitude object

and ?object w3cGeo:lat ?latitude object are stored

in the documents Result2 and Result3 respectively.

4. The documents Result1 and Result2 are then joined

by ?object to get the document Join1. Similarly,

the documents Result2 and Result3 are joined in the

same way to obtain the document Join2.

5. Line 8 and 9 from listing 1 is split into two triple

patterns, ?object geovocab:geometry_ :blank_node

and _:blank_node_geo:asWKT ?geometry_object,

where _:blank_node represents a blank node. 1This

data is taken from linkedgeodata [9], which is a

large RDF knowledge base containing geospatial

RDF data. Linkedgeodata is in conformance with

GeoSPARQL standards.

6. The matched triples from the above two triple

patterns are joined together using the blank node to

get the document Join3.

7. The documents Join1 and Join2 are joined again

using ?object to form the document Join4 which is

further joined with the document Join3 to form the

document Object.

8. The document Object contains various solutions to

the variables ?object, ?longitude_object,

?latitude_object and ?geometry_ object which

satisfy all the triple patterns mentioned between

line 5 to line 9 from the Listing 1.

9. A similar process is followed to obtain the

solutions for variables corresponding to Badlapur

town. The difference here is that, the join operation

will not be costly. This is because each document

will contain only one triple specific to

lgeodata:node969958566.

10. The filter expression, shown in line 15, is used to

extract only those solutions for which value of the

expression, ((geof:distance(?geometry badlapur,

?geometry object,uom:metre)/1000) <= 50) is true.

11. For the expression to be evaluated, the solutions

corresponding to the variable ?geometry_object are

parsed to recover their spatial coordinates.

12. The distance between the two objects is evaluated

with the help of coordinates by using a spatial join.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 12 218 – 225

221

IJRITCC | December 2016, Available @ http://www.ijritcc.org

__

13. All such filtered objects are again filtered by

comparing their longitudes which also requires a

normal join operation.

14. The solutions obtained after all these steps,

represent the places towards the east of Badlapur

town within 50 km range.

15. The query engine has to follow the above

mentioned steps, at runtime to fetch the required

result.

The above query takes 9 normal join operations and 1

spatial join operation to process the result. The join

operations are costly. One of the filter expression requires a

spatial join as well as parsing of string literals. Both the

operations require heavy computation, thus increasing the

cost of the query. The places which are towards the east of

Badlapur town can be obtained by comparing latitude-

longitude information available. In this case, if longitude of

the object under consideration is greater than that of

Badlapur town then we can say that the object is towards the

east of Badlapur town approximately as shown in Figure 1.

Similar comparisons can be made to figure out the other

directions. All these mentioned tasks are executed at

runtime, resulting into a high response time. In order to

retrieve implicit information, complex queries are to be

written which requires heavy join operations, filter

expressions and literal parsing. In order to avoid such

computations, additional triples can be generated by pre-

processing the existing data to make the implicit information

explicit. This pre-processing is an one time activity which is

done statically.

Figure 1: Filtering Entities towards the East of Bad

-lapur within 50 km

For that, first all the geometrical objects are retrieved from

linkedgeodata. Then for each such object, the distance from

every other object is calculated using the function

geof:distance. After all such distances have been computed,

we classify each pair of the geometrical objects into 4

different categories depending upon the distance. If the

distance between them is less than or equal to 10 km then

the pair is added to category-10. Similar process is done for

categorizing the object pairs into category-50, category-100

or category-500. Consider a scenario where a user is

walking or running. In such cases, a user might be interested

only in those entities which are within 10 km distance.

However, if a user is travelling by a car, he or she might

travel up to 100 km or 500 km. This categorization,

depending upon the distance, is needed to add more

flexibility to the system, as we do not know the mode of

transport the user is using. All the pairs with the distance of

separation greater than 500 km are discarded. The relative

direction between the objects is then determined, after every

such pair is categorized. The determination of direction is

done by calculating angular separation between the objects

using their latitude and longitude information [7]. For

example if the angular separation is between -22.5
0
 to 22.5

0

then the relative direction is east. Figure 2 shows the

determination of the direction for pair of objects from

category-50 where one of the object from the pair is

Badlapur town. These computations are carried out using

Jena API which is a Java framework designed for creation,

storage and retrieval of semantic data from the triple stores.

Figure 2: Determination of the Direction using An

-gular Separation between Places

With the above information in hand, the triples can be

generated by using an appropriate ontology to enable

intelligent information retrieval. Table 1 represents the

summarized structure of the proposed ontology. It consists

of four columns namely, Type, Properties, SameAs and

ReverseOf. Column Type is used to specify the type of

object properties mentioned in the ontology. Properties

column contains all the different type of predicates created

in the ontology. Column SameAs is used to state the

equivalence relation among object properties while Column

ReverseOf represents an inverse-functional relation among

them.

The properties listed can be divided into three major types

namely directional, relative and proximity. The directional

type properties can be further subdivided into 4 categories

depending upon threshold limit used. They are threshold-10,

threshold-50, threshold-100 and threshold-500, each

containing all the eight directions. For example, 10-northof

represents a predicate of type threshold-10 where the

relative direction between the objects is north and they are

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 12 218 – 225

222

IJRITCC | December 2016, Available @ http://www.ijritcc.org

__

within 10 km distance. Relative position between the two

objects is represented using the properties leftof and rightof.

Also for specifying proximity, the predicates nearof and

farof are used. The objects are said to be near if they are

within 50 km distance of each other, otherwise far. For each

categorized pair, a triple is generated using an appropriate

directional property.

Table 1: Proposed Ontology

Type Properties SameAs ReverseOf

 10-southof - 10-northof

 10-southwestof - 10-northeastof

 10-westof leftOf 10-eastof

 10-northwestof - 10-southeastof

 10-northof - 10-southof

 10-northeastof - 10-southwestof

 10-eastof rightOf 10-westof

 10-southeastof - 10-northwestof

 50-southof - 50-northof

 50-southwestof - 50-northeastof

 50-westof leftOf 50-eastof

 50-northwestof - 50-southeastof

 50-northof - 50-southof

 50-northeastof - 50-southwestof

 50-eastof rightOf 50-westof

Directional

50-southeastof - 50-northwestof

100-southof - 100-northof

 100-southwestof - 100-northeastof

 100-westof leftOf 100-eastof

 100-northwestof - 100-southeastof

 100-northof - 100-southof

 100-northeastof - 100-southwestof

 100-eastof rightOf 100-westof

 100-southeastof - 100-northwestof

 500-southof - 500-northof

 500-southwestof - 500-northeastof

 500-westof leftOf 500-eastof

 500-northwestof - 500-southeastof

 500-northof - 500-southof

 500-northeastof - 500-southwestof

 500-eastof rightOf 500-westof

 500-southeastof - 500-northwestof

Relative

leftof westof Rightof

rightof eastof Leftof

Proximity

nearof - Farof

farof - Nearof

Threshold value for property is determined from the

category to which the pair belongs. For each pair from the

category-10 and the category-50, a triple is generated with

the proximity type property nearof. In addition, while

creating the triples with directional properties, the triples

representing relative directions are also created only for

those pairs where the determined direction is either west or

east. Considering the proposed ontology, the query for the

same problem can be represented as listed in Listing 2.

Listing 2: Query Example using Proposed Ontology

1 #Find all the places within 50 km towards the east of

Badlapur town

2 SELECT DISTINCT

3 ?object

4 WHERE {

5 ?object

6 rdf:type lgdo:Place;

7 :50-eastof lgeodata:node969958566.

8 }

.

The query requires following steps to execute.

1. Firstly, All the triples from the data set are matched

against the triple pattern, ?objectrdf:type

lgdo:Place and are then stored in the document

Result1.

2. A similar process is done to find the matching

triples for the pattern, ?object :50-eastof

lgeodata:node969958566 which are stored in the

document Result2.

3. In order to obtain the solutions for the variable

?object, the documents Result1 and Result2 are

joined by using ?object.

4. The solutions obtained, represent the places

towards the east of Badlapur town within 50 km

range.

Only one normal join operation is required as compared to 9

in the conventional case. This query is free from filter

expressions. There is no spatial information needed to

execute the query, hence no spatial joins are required which

reduces the time required. As literals are not represented as

strings, parsing is not required. Hence the cost of the query

is very low compared to that of the conventional query. The

pre-processing step has a large overhead of memory.

However, we assume large amount of memory is available

for storage. Additionally if one wants to determine the

places which are located within an arbitrary distance which

is different from the standard categories, then using the

proposed ontology, one can filter out categories which

contain the potential candidates for retrieval. For example,

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 12 218 – 225

223

IJRITCC | December 2016, Available @ http://www.ijritcc.org

__

consider the query “Find all the restaurants within 5 km

from Dadar railway station”. Here, only the objects from the

category threshold-10 are considered while the rest are

discarded. Then among these objects, the objects within 5

km distance from Dadar railway station are found using a

normal GeoSPARQL query. Thus by using the proposed

ontology and GeoSPARQL, required geographic

information can be efficiently retrieved with low query

execution time.

3.2 Polygon Determination for a Particular Region

Consider the query, “find all the restaurants in Texel island”.

Listing 3 represents a GeoSPARQL query to retrieve all the

restaurants in Texel island. The required results can be

fetched by using the POLYGON which approximately

represents the geographical boundary of the Texel island.

The query extracts all the objects which are of the type

lgeodata:Restaurant first by triple matching. The solutions

which match with the triple patterns stated between line 5 to

8 are bound to the respective variables by join operations.

The solutions which are bound to the variable

?geometry_texel, are filtered (line 9) further by using

geof:sfWithin function. This function needs a spatial join

and literal parsing to determine the objects which lie within

the polygon mentioned in the query.

Listing 3: Query using GeoSPARQL Polygon

1 #Find all the restaurants in Texel island.

2 SELECT DISTINCT

3 ?thing ?thingLabel

4 WHERE {

5 ?thing

6 a lgeodata:Restaurant;

7 rdfs:label ?thingLabel;

8 :geometry [geo:asWKT ? geometry_texel].

9FILTER (geof:sfWithin(?geometry_texel ,

"POLYGON((53.1 4.8,53.1 4.8,53.1 4.8,53 4.8,53 4.7,52.9

4.7,53 4.7,53.1 4.7,53.1 4.8))"^^geo: wktLiteral))

10 }

Conventionally to get the result of such queries, current

systems approximately construct a square or a polygon

around the region under consideration. The latitude and

longitude of the vertices of polygon are found either

manually or using the Google maps API. With these set of

points in hand, a polygon of type geo:wktLiteral can be

formed which is then used to retrieve the objects inside it

using GeoSPARQL function - geof:sfWithin. The Google

maps API can give the polygon in the form of a predefined

shape like rectangle, square etc. which is not accurate most

of the times because of the irregularities in the geographical

shape of different places. Manual approach will be quite

accurate but time-consuming, inconsistent and laborious.

The task of determining a polygon which encloses the

region under consideration is challenging. It might give

erroneous results due to wrong polygon approximation such

as getting places which are actually outside the region. This

paper proposes an algorithm to automate the process of

determining the vertices of the polygon which encloses the

required region. The steps below represent a schematic of

the algorithm for constructing a polygon. The detailed

process is explained in following paragraphs.

1. Firstly, all the objects which are part of the region

under consideration are obtained along with their

latitude-longitude information which is stored in

the form of a point.

2. A central point is then obtained by taking the

average of all the obtained points.

3. All the points are divided into eight categories

according to their direction with respect to the

central point.

4. For each region, one point is obtained which is

having the largest distance from the central point.

5. Each farthest point represents one of the vertex of

the required polygon.

In order to obtain information required in step 1, one of the

way is to use the geonames API [5] which is a collection of

various RESTful webservices built on the geonames data set

[4]. The geonames API provides a webservice,

http://api.geonames.org/contains?geonameId=

<id>&username=<uname>, which returns list of objects in

XML or JSON format which are part of the region. The

query string contains two variables, geonamesId and

username. The geonamesId is an identifier assigned to the

region under consideration in the geonames data set, while

username is the name of the user who is availing the

webservice. Another way to get the latitude-longitude

information is by using the gn:parentFeature property

present in the geonames ontology. The predicate connects

two entities where one object is part of the other

geographically. For example, if objects which are part of

Texel island are to be considered then the required query

can be realized as shown in Listing 4.

Simple average can not be employed in step 2 because the

surface of the earth follows elliptical geometry thus making

latitude-longitude points non-cartesian. At the antimeridian,

the longitude values wrap around, while the latitude values

wrap around at the poles thus giving an incorrect simple

average. In order to obtain the central point, all the latitude-

longitude points are first converted to 3-D cartesian points

and then their average is taken.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 12 218 – 225

224

IJRITCC | December 2016, Available @ http://www.ijritcc.org

__

Listing 4: Places inside Texel island

1 #find all the places which are part of Texel island 2

SELECT DISTINCT

3 ?thing ?long ?lat

4 WHERE {

5?object_texel gn:name "Texel".

6?thing

7gn:parentFeature ?object_texel;

8 w3cGeo:long ?long ;

9 w3cGeo:lat ?lat.

10 }

This average value is then projected back to the surface to

get the central latitude-longitude point.

In Step 3, points are distributed among the different

categories, by calculating their angular separation with

respect to the central point. For example, if the angular

separation is between 67.5
0
 to 112.5

0
, then the point is added

to the north category. The points can be added to the

categories of the other directions in a similar way. Same

process is repeated for each point.

Step 4 determines a latitude-longitude point which is

farthest from the central point. For calculating the distances,

we use haversine formula [8]. A polygon enclosing the

region under consideration is constructed in step 5. Figure 3

shows the polygon obtained for Texel island using the

proposed approach where the points are divided into eight

categories corresponding to the eight standard directions.

Figure 3: Constructing Polygon for Texel island

 using 8 categories

The polygon formed for the region is not as accurate as the

actual boundary of the corresponding geographical region

because the physical boundaries of geographical regions are

highly irregular in shape. However, the accuracy of the

polygon will depend upon the accuracy with which places

inside the region are obtained using API or geonames data

set. Considering more number of categories will also

improve the accuracy of the polygon which is evident from

Figure 4. It shows the polygon obtained for Texel island

when the points are divided into 16 categories. This will add

to the computational overhead in the case where the number

of objects lying inside some of the regions could be very

large. Thus proposed approach automates the process of

determination of a polygon which approximately encloses a

particular region under consideration.

Figure 4: Constructing Polygon for Texel island us

-ing 16 categories

IV. EXPERIMENTATION

We have computed the time required to fetch the required

information using the proposed ontology and compared it

with that of the conventional systems.We have then

calculated the speed up achieved and averaged it over 1000

queries. All the quantities are in milliseconds. The

experiments were performed on Intel core i3-2130 CPU

(@3.40 GHz), 4 GB RAM, 64-bit Windows 8.1 OS. The

average speed up with our proposed ontology was 23.8

times as compared to the conventional method

Table 2: Time Required for GIR

Direction Current Proposed Speedup

southof 15715 822 19.12

southwestof - 750 -

westof 20116 900 22.5

northwestof - 650 -

northof 12632 420 30.8

northeastof - 807 -

eastof 17798 453 23.64

southeastof - 685 -

Average speedup 23.8

Polygon constructed for Texel island matches very closely

to the Texel island which is evident from Figure 3. Polygon

construction for the given example requires 1450

milliseconds at runtime which is quite less compared to the

manual process.

V. CONCLUSION

Geographic information retrieval and storage is the crux of

sharing spatial information across the web. Geographic

semantic web helps in retrieving suitable information

compared to the systems which rely only on keyword based

search. However, querying geospatial information using

GeoSPARQL has inherent limitations like, difficulties in

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 12 218 – 225

225

IJRITCC | December 2016, Available @ http://www.ijritcc.org

__

finding appropriate spatial indices, loosely connected RDF

data, need of spatial joins etc. Ontologies can be employed

for the task of efficient retrieval of geospatial information.

We have successfully created additional triples and stored

them with the help of the proposed ontology by

preprocessing the data from the existing ontologies. This

additional information removes the need of the spatial joins

or spatial indices. We have observed average speed up of

23.8 times compared to the conventional way of querying

using GeoSPARQL. We have also proposed a technique for

automatic construction of a polygon for a region under

consideration. This is an important problem since the

boundary for a region might be highly irregular. The

automated polygon construction can be done in much less

time as compared to the manual process. It is more accurate

than using techniques such as using Google maps APIs since

specifying a polygon for the irregular boundary might be

problematic.

This work focuses on two types of queries as mentioned in

section 3. Our future work will consider more geospatial

queries for which implicit information can be made

explicitly available in order to reduce the retrieval time.

Listing 5: RDF Prefixes

1 rdf:<http://www.w3.org/1999/02/22-rdfsyntax -ns#>

2 rdfs:<http://www.w3.org/2000/01/rdfschema#>

3 geo:<http://www.opengis.net/ont/ geosparql#>

4 geof:<http://www.opengis.net/def/ function/geosparql/>

5 uom:<http://www.opengis.net/def/uom/OGC /1.0/>

6 geovocab:<http://geovocab.org/geometry #>

7 w3cGeo:<http://www.w3.org/2003/01/geo/ wgs84_pos#>

8 owl:<http://www.w3.org/2002/07/owl#>

9 lgeodata:<http://linkedgeodata.org/ triplify/>

10 lgdo:<http://linkedgeodata.org/ontology />

11 gn:<http://www.geonames.org/ontology#>

6. REFERENCES

[1] Apache jena - home. https://jena.apache.org/.

[2] Geographic information retrieval - wikipedia, the free

encyclopedia. https://en.wikipedia.org/wiki/

Geographic_information_retrieval.

[3] Geography markup language | ogc.

http://www.opengeospatial.org/standards/gml.

[4] Geonames. http://www.geonames.org/.

[5] Geonames web service documentation.

http://www.geonames.org/export/web-services.html.

[6] Geosparql - a geographic query language for RDF data |

OGC.

http://www.opengeospatial.org/standards/geosparql.

[7] Get direction (compass) with two longitude/latitude

points - stack overflow.

http://stackoverflow.com/questions/8502795/ get-

direction-compass-with-two-longitude-latitude-points.

[8] Haversine formula - wikipedia, the free encyclopedia.

https://en.wikipedia.org/wiki/Haversine_formula.

[9] linkedgeodata.org : About.

http://linkedgeodata.org/About.

[10] Owl - semantic web standards.

https://www.w3.org/2001/sw/wiki/OWL.

[11] Parliament high-performance triple store.

http://parliament.semwebcentral.org/.

[12] RDF - semantic web standards.

https://www.w3.org/RDF/.

[13] RDFS - semantic web standards.

https://www.w3.org/2001/sw/wiki/RDFS.

[14] SPARQL query language for RDF.

https://www.w3.org/TR/rdf-sparql-query/.

[15] Triplestore - wikipedia, the free encyclopedia.

https://en.wikipedia.org/wiki/Triplestore.

[16] Welcome to the OGC | OGC.

http://www.opengeospatial.org/.

[17] Well-known text representation of coordinate reference

systems | OGC.

http://www.opengeospatial.org/standards/wkt-crs.

[18] R. Battle and D. Kolas. Enabling the geospatial semantic

web with parliament and geosparql. Semantic Web,

3(4):355–370, 2012.

[19] S. Bhattacharjee, R. R. Prasad, A. Dwivedi, A. Dasgupta,

and S. K. Ghosh. Ontology based framework for

semantic resolution of geospatial query. In Intelligent

Systems Design and Applications (ISDA), 2012 12th

International Conference on, pages 437–442. IEEE,

2012.

[20] M. Kun and B. Fuling. An ontology-based approach for

geographic information retrieval on the web. In Wireless

Communications, Networking and Mobile Computing,

2007. WiCom 2007. International Conference on, pages

5959–5962. IEEE, 2007.

[21] W. Liu, H. Gu, C. Peng, and D. Cheng. Ontology-based

retrieval of geographic information. InGeoinformatics,

2010 18th International Conference on, pages 1–6. IEEE,

2010.

[22] D. Ping and L. Yong. Building place name ontology to

assist in geographic information retrieval. In Computer

Science-Technology and Applications, 2009. IFCSTA’09.

International Forum on, volume 1, pages 306–309.

IEEE, 2009.

[23] M. Sanderson and J. Kohler. Analyzing geographic

queries. In SIGIR Workshop on Geographic Information

Retrieval, volume 2, pages 8–10, 2004.

https://jena.apache.org/
http://www.opengeospatial.org/standards/gml
http://www.geonames.org/
http://www.opengeospatial.org/standards/geosparql
http://linkedgeodata.org/About
https://www.w3.org/2001/sw/wiki/OWL
http://parliament.semwebcentral.org/
https://www.w3.org/RDF/
https://www.w3.org/2001/sw/wiki/RDFS
https://www.w3.org/TR/rdf-sparql-query/
https://en.wikipedia.org/wiki/Triplestore
http://www.opengeospatial.org/

