Split Middle Domination in Graphs

${ }^{1}$ M. H. Muddebihal, ${ }^{2}$ Naila Anjum and ${ }^{3}$ Nawazoddin U. Patel
Department of Mathematics Gulbarga University, Kalaburagi - 585106, Karnataka, India. mhmuddebihal@gmail.com, sanjum.anjum133@gmail.com, nawazpatel. 88 @ gmail.com

Abstract

The middle graph of a graph G, denoted by $M(G)$ is a graph whose vertex set is $V(G) \cup E(G)$ and two vertices are adjacent if they are adjacent edges of G or one is a vertex and other is an edge incident with it. A dominating set D of $M(G)$ is called split dominating set of $M(G)$ if the induced subgraph $\langle V[M(G)]-D\rangle$ is disconnected. The minimum cardinality of D is called the split middle domination number of G and is denoted by $\gamma_{S M}(G)$.

In this paper many bound on $\gamma_{S M}(G)$ were obtained in terms of the vertices, edges and many other different parameters of G but not in terms of the elements of $M(G)$. Further its relation with other different parameters are also developed.

Key Words: Middle Graph/ Domination Number/ Independent domination/Edge domination/Connected domination number.

Subject Classification Number: AMS - 05C69, 05C70

1. INTRODUCTION

In this paper, all the graphs consider here are simple and finite. For any undefined terms or notation can be found in Harary [1]. In general, we use $\langle X\rangle$ to denote the subgraph induced by the set of vertices X and $N(v)$ and $N([v])$ denote open (closed) neighborhoods of a vertex v. The notation $\alpha_{o}(G)\left(\alpha_{1}(G)\right)$ is the minimum number of vertices (edges) in vertex (edge) cover of G. The notation $\beta_{o}(G)\left(\beta_{1}(G)\right)$ is the maximum cardinality of a vertex (edge) independent set in G. A set $S \subseteq V(G)$ is said to be a dominating set of G, if every vertex in $V-S$ is adjacent to some vertex in S. The minimum cardinality of vertices in such a set is called the domination number of G and is denoted by $\gamma(G)$. The concept of edge dominating sets were also studied by Mitchell and Hedetniemi in [4,5,6 and 7]. An edge dominating set of G if every edge in $E-F$ is adjacent to at least one edge in F. Equivalently, a set F edges in G is called an edge dominating set of G if for every edge $e \in E-F$, there exists an edge $e_{1} \in F$ such that e and e_{1} have a vertex in common. The edge domination number $\gamma^{\prime}(G)$ of graph G is the minimum cardinality of an edge dominating set of G. The middle graph of a G, denoted by $M(G)$, is a graph whose vertex set is $V(G) \cup E(G)$, and two vertices are adjacent if they are adjacent edges of G or one is a vertex and other is an edge incident with it. A set S of vertices of graph $M(G)$ is an independent dominating set of $M(G)$ if S is an independent set and very vertex not in S is adjacent to a vertex in S. The independent middle domination number of G, denoted by $i_{M}(G)$ is the minimum cardinality of an independent dominating set of $M(G)$. The
concept of independent middle dominating sets were also studied by in [2].

The middle graph of a G, denoted by $M(G)$, is a graph whose vertex set is $V(G) \cup E(G)$, and two vertices are adjacent if they are adjacent edges of G or one is a vertex and other is an edge incident with it. A dominating set D of $M(G)$ is called connected dominating set of $M(G)$ if the induced subgraph $\langle\mathrm{D}\rangle$ is connected. The minimum cardinality of D is called the connected middle domination number of G and is denoted by $\gamma_{c}[M(G)]$. The concept of connected middle dominating sets were also studied by in [3]. Let $S(G)$ be the subdivision graph of G. The independent graph $i[S(G)]$ of $S(G)$ is a graph whose set of vertices is the union of the set of edges of $S(G)$ in which two vertices are adjacent if and only if the corresponding edges of $S(G)$ are adjacent. A dominating set D of the subdivision graph $S(G)$ is an independent dominating set if $\langle\mathrm{D}\rangle$ is independent in $S(G)$ minimum cardinality of the smallest independent dominating set of $i[S(G)]$ is called the independent subdivision dominating set of G and is denoted by $i[S(G)]$.

In this paper, many bounds on $\gamma_{S M}(G)$ were obtained in terms of elements of G but not the elements of $M(G)$. Also its relation with other domination parameters were established.

We need the following theorem for our further results.

Theorem: $\mathbf{A}[3]$: for any non trivial connected (p, q) graph $G, \gamma_{c}[M(G)]=P-1$.

Theorem: B[2]: Let G be any connected graph, then $i_{M}(G)=\alpha_{1}(G)$.

First we list out the exact values of $\gamma_{S M}(G)$ for some standard graphs.

2. MAIN RESULTS:

Theorem 1:

a. For any path P_{p},

$$
\begin{aligned}
& \gamma_{S M}\left(P_{p}\right)=\frac{p}{2} \text { If } p \text { is even. } \\
& \gamma_{S M}\left(P_{p}\right)=\left\lceil\frac{p}{2}\right\rceil \text { If } p \text { is odd }
\end{aligned}
$$

b. For any path C_{p},

$$
\begin{aligned}
& \gamma_{S M}\left(C_{p}\right)=\frac{p}{2} \text { If } p \text { is even. } \\
& \gamma_{S M}\left(C_{p}\right)=\left\lceil\frac{p}{2}\right\rceil \text { If } p \text { is odd. }
\end{aligned}
$$

c. For any path $K_{1, p}$,

$$
\gamma_{S M}\left(K_{1, p}\right)=p-1
$$

d. For any path W_{p},

$$
\gamma_{S M}\left(W_{p}\right)=p-1
$$

Theorem 2: A split middle dominating set $D \subseteq V[M(G)]$ is minimal if and only if for each vertex $x \in D$, one of the following condition holds:
a. There exists a vertex $y \in V[M(G)]-D$ such that $N(y) \cap D=\{x\}$.
b. $\quad x$ is an isolate in $\langle D\rangle$.
c. $\langle V[M(G)]-D\rangle \cup\{x\}$ is connected.

Proof: Suppose D is a minimal split middle dominating set of G and there exists a vertex $x \in D$ such that x does not holds any of the above conditions. Then for some vertex v, the set $D_{1}=D-\{v\}$ forms a split middle dominating set of G by the conditions (a) and (b). Also by (c), $\langle V[M(G)]-D\rangle$ is disconnected. This implies that D_{1} is a split middle dominating set of G, a contradiction.

Conversely, suppose for every vertex $x \in D$, one of the above statement hold. Further, if D is not minimal, then there exists a vertex $x \in D$ such that $D-\{x\}$ is a split middle dominating set of G and there exists a vertex $y \in D-\{x\}$ such that y dominates x. That is $y \in N(x)$. Therefore, x does not satisfy (a) and (b), hence it must satisfy (c). Then there exists a vertex $y \in V[M(G)]-D$ such that $N(y) \cap D=\{x\}$. Since $D-\{x\}$ is a split middle
dominating set $\operatorname{of} G$, then there exists a vertex $z \in D-\{x\}$ such thatz $\in N(y)$. Thereforew $\in N(y) \cap D$, where $w \neq x$, a contradiction to the fact that $N(y) \cap D=\{x\}$. Clearly, D is a minimal split middle dominating set of G.

Theorem 3: For any $(p, q) \operatorname{graph} G, \gamma(G)+\gamma_{S M}(G) \leq p$.
Proof: Let $C=\left\{v_{1}, v_{2} \ldots \ldots \ldots \ldots v_{n}\right\} \subseteq V(G)$ be the set of all non-end vertices in G.Further let $D \subseteq C$ be the set of vertices with $\operatorname{diam}\left(u_{i}, v_{i}\right) \geq 3, \forall u_{i}, v_{i} \in D, 1 \leq i \leq$ k.Clearly, $N[D]=V(G)$ and D forms a $\gamma-$ set of G, Suppose $\operatorname{diam}\left(u_{i}, v_{i}\right)<3$, then there exists atleast one vertex $x \in V(G)-D$ such that either $x \in N(v)$ or $x^{\prime} \in$ $N\left(v^{\prime}\right)$, where $v \in D$ and $v^{\prime} \in D \cup\{x\}$. Then $D \cup\{x\}$ forms a minimal dominating set of G.Now in $M(G), V[M(G)]=$ $V(G) \cup E(G)$.Let $S=\left\{s_{1}, s_{2}, s_{3} \ldots \ldots \ldots \ldots \ldots s_{k}\right\}$ be the set of vertices sub dividing each edge in $M(G)$.Again let $S_{1} \subseteq S$ be the minimal set of vertices such that $N\left[S_{1}\right]=$ $V[M(G)]$.Then S_{1} forms the minimal dominating set in $M(G)$.If $\left\langle V[M(G)]-S_{1}\right\rangle$ contains atleast two components then $\left\langle S_{1}\right\rangle$ itself forms the minimal split dominating set of $M(G)$.Otherwise , there exists atleast one vertex $\{u\} \in$ $V[M(G)]-S_{1}$ such that $\left\langle V[M(G)]-\left(S_{1} \cup\{u\}\right)\right\rangle$ has more than one component. Clearly, $S_{1} \cup\{u\}$ forms a minimal split dominating set of $M(G)$.Therefore it follows that $\mid D \cup$ $x \cup S 1 \cup u \leq V G$ and hence $\gamma G+\gamma S M G \leq p$.

Theorem 4: For any non-trivial connected graph $G, \gamma_{S M}(G) \geq \alpha_{1}(G)$.

Proof: Let $E_{1}=\left\{e_{1}, e_{2} \ldots \ldots \ldots \ldots \ldots e_{n}\right\}$ be the minimal set of edges in G such that $\left|E_{1}\right|=\alpha_{1}(G)$.since $V[M(G)]=$ $V(G) \cup E(G)$, let $S=\left\{s_{1}, s_{2}, s_{3} \ldots \ldots \ldots s_{i}\right\}$ be the set of vertices sub dividing each edge in $M(G)$.Now, let $S_{1}=$ $\left\{s_{k} \backslash 1 \leq k \leq i\right\} \subseteq S$ be the set of vertices sub dividing each edge $e_{k} \in E_{1}, 1 \leq k \leq i$ in $M(G)$. Clearly $N\left(S_{1}\right)=$ $V(G)$ and also in $M(G), N\left(S_{1}\right)=V\left(S-S_{1}\right)$.Hence $N\left[S_{1}\right]=$ $V(G) \cup V\left(S-S_{1}\right)=V[M(G)]$.Thus $\left\langle S_{1}\right\rangle$ forms a minimal dominating set in $M(G)$.If the subgraph $\left\langle V[M(G)]-S_{1}\right\rangle$ contains atleast two components, then S_{1} itself forms the minimal split dominating set in $M(G)$.Otherwise there exists atleast one vertex $\left\{s_{j}\right\} \in V[M(G)]-S_{1}, 1 \leq j \leq i$ such that the subgraph $\left\langle V[M(G)]-\left(S_{1} \cup\left\{s_{j}\right\}\right)\right\rangle$ is disconnected. Clearly $S_{1} \cup\left\{s_{j}\right\}$ forms a minimal split dominating set in $M(G)$.Thus $\left|E_{1}\right| \leq\left|S_{1} \cup\left\{s_{j}\right\}\right|$ which gives $\gamma_{S M}(G) \geq$ $\alpha_{1}(G)$.

Theorem 5: For any non-trivial connected (p, q) graph $G, \gamma_{S M}(G) \leq p-1$.
Proof : We consider the following cases:
Case 1: Let $G=T$ be any non-trivial tree.The vertex set and edge set of T are $V(T)=\left\{v_{1}, v_{2}, \ldots \ldots \ldots v_{p}\right\}$ and $E(T)=$ 197
$\left\{e_{1}, e_{2} \ldots \ldots e_{q}\right\}$.Let $S=\left\{s_{1}, s_{2} \ldots \ldots \ldots s_{q}\right\}$ be the vertices subdividing the edges in $M(T)$, which is also the set of cut vertices in $M(T)$.Suppose $S_{1} \subseteq S$ be the minimal set of vertices such that $N\left[S_{1}\right]=V[M(T)]$.Hence S_{1} forms the minimal dominating set in $M(T)$. Since S_{1} is the set of cut vertices, the subgrap $\left\langle V[M(T)]-S_{1}\right\rangle$ is disconnected. Hence S_{1} forms the minimal split dominating set in $M(T)$.Therefore $\left|S_{1}\right| \leq|E(T)|=|V(T)|-1$, which gives $\gamma_{S M}(G) \leq p-1$.

Case2: Let $G \neq T$, then consider a spanning tree H of G. Let $E_{1}=\left\{e_{1}, e_{2}, \ldots \ldots \ldots \ldots e_{i}\right\}$ be the edges in H.Let $S_{1}=$ $\left\{s_{1}, s_{2}, \ldots \ldots \ldots \ldots s_{i}\right\}$ be the vertices subdividing the edges of E_{1} in $M(H)$.Again let $S_{2} \subseteq S_{1}$ be the minimal set of vertices in which covers all the vertices in $M(H)$ and the subgraph $\langle V[M(H)]-D\rangle$ is disconnected. Thus $N\left[S_{2}\right]=$ $V[M(H)]$.By adding the edges $E_{2}=E(G)-E_{1}$ of G to H.Again we consider $S_{2}^{\prime}=\left\{s_{1}^{\prime}, s_{2}^{\prime} \ldots \ldots \ldots \ldots \ldots s_{i}^{\prime}\right\}$ be the vertices subdividing the edges $E_{2}=\left\{e_{1}^{\prime}, e_{2}^{\prime}, \ldots \ldots \ldots \ldots e_{i}^{\prime}\right\}$ in $M(G)$. Now since $\left(s_{i}\right) \cap N\left(s_{i}^{\prime}\right) \neq \phi, \forall s_{i} \in S_{2}$ and $s_{i}^{\prime} \in S_{2}^{\prime}$ in $M(G)$.Clearly $N\left[S_{2}\right]=S_{2}^{\prime} \cup V[M(H)]=V[M(G)]$.Thus S_{2} forms a minimal split dominating set of $M(G)$ with $\left|S_{2}\right|=$ $\gamma_{S M}(G)$.Since $S_{2} \subseteq E_{1}$, then $\left|S_{2}\right| \leq\left|E_{1}\right| \leq p-1$. Therefore $\gamma_{S M}(G) \leq p-1$.

Theorem 6: For any connected graph $G, \gamma_{S M}(G) \leq$ $\gamma_{c}[M(G)]$.
Proof: By Theorem A $\gamma_{c}[M(G)]=p-1$ and also by Theorem $5 \quad \gamma_{S M}(G) \leq p-1$. Hence we have $\gamma_{S M}(G) \leq$ $\gamma_{c}[M(G)]$.
Theorem 7: If G is a connected graph, then $\left\lfloor\frac{\operatorname{diam}(G)+1}{2}\right\rfloor \leq$ $\gamma_{S M}(G)$.
Proof: Let $S=\left\{e_{1}, e_{2} \ldots \ldots \ldots \ldots \ldots \ldots e_{j}\right\}$ be the set of edges in G which constitute the diametral path in G. Clearly $|S|=$ $\operatorname{diam}(G)$. Now without loss of generality, let D_{1} be a minimal dominating set in $M(G)$.If $\left\langle V[M(G)]-D_{1}\right\rangle$ contains atleast two components then $\left\langle D_{1}\right\rangle$ itself forms the minimal split dominating set of $M(G)$.Otherwise , there exists atleast one vertex $\{u\} \in V[M(G)]-D_{1}$ such that $\left\langle V[M(G)]-\left(D_{1} \cup\{u\}\right)\right\rangle$ has more than one component. Clearly, $D_{1} \cup\{u\}$ forms a minimal split dominating set of $M(G)$.Further since $S \subseteq V[M(G)]$ and $D_{1} \cup\{u\}$ is a γ_{s} setin $M(G)$, the diametral path includes at most $\gamma_{M S}(G)-1$ edges joining the neighbourhoods of the vertices of $D_{1} \cup$ $\{u\}$. Hence $\operatorname{diam}(G) \leq \gamma_{S M}(G)+\gamma_{S M}(G)-1$ which gives $\left[\frac{\operatorname{diam}(G)+1}{2}\right] \leq \gamma_{S M}(G)$.

Theorem 8: For any non-trivial connected graph $G, \gamma_{S M}(G) \geq i_{M}(G)$.

Proof : The result follows from Theorem B and Theorem 5.

Theorem 9: For any connected graph $G, \gamma_{S M}(G) \leq p-$ $\gamma^{\prime}(G)$.
Proof: Let $E_{1}=\left\{e_{1}, e_{2}, e_{3}, \ldots \ldots \ldots \ldots \ldots \ldots e_{q}\right\} \subseteq E(G)$ be the minimal set of edges, such that for each $e_{i} \in E_{1}, i=$ $1,2,3, \ldots \ldots \ldots \ldots \ldots \ldots \ldots, N\left(e_{i}\right) \cap E_{1}=\phi$.Then $\left|E_{1}\right|=$ $\gamma^{\prime}(G)$.In $\quad M(G), V[M(G)]=V(G) \cup E(G)$.Let $\quad D=$ $\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots \ldots \ldots v_{i}\right\}$ be the set of vertices subdividing the edges of G in $M(G)$.Let $D_{1} \subseteq D$,such that each $v_{i} \in D_{1}$ subdivides the edges $e_{i} \in E_{1}$ in $M(G)$ and $D_{2} \subseteq D$ be the set of vertices subdividing the edges in $E(G)-E_{1}$ in $M(G)$.Suppose $N\left[D_{1}\right]=V[M(G)]$.Then $\left\langle D_{1}\right\rangle$ forms a minimal dominating set in $M(G)$.Now assume $\left\langle V[M(G)]-D_{1}\right\rangle$ is disconnected. Then D_{1} itself forms the minimal split dominating set in $M(G)$.Otherwise , let $D_{1}^{\prime} \subseteq D_{1}$ and $D_{2}^{\prime} \subseteq D_{2}$ such that $N\left[D_{1}^{\prime} \cup D_{2}^{\prime}\right]=V[M(G)]$ and the subgraph $\left\langle V[M(G)]-D_{1}^{\prime} \cup D_{2}^{\prime}\right\rangle$ is disconnected. Hence $D_{1}^{\prime} \cup D_{2}^{\prime}$ forms a minimal split middle dominating set of G.Clearly it follows that $\left|D_{1}^{\prime} \cup D_{2}^{\prime}\right| \leq|V(G)|-\left|E_{1}\right|$ resulting in $\gamma_{S M}(G) \leq p-\gamma^{\prime}(G)$.
Theorem 10: For any (p, q) graph $G, \gamma_{S M}(G) \leq i[S(G)]$.
Proof: Let $V(G)=\left\{v_{1}, v_{2}, \ldots \ldots \ldots \ldots \ldots v_{i}\right\}$ and $E(G)=$ $\left\{e_{1}, e_{2}, \ldots \ldots \ldots \ldots e_{j}\right\}$.We consider a set $S=\left\{u_{1}, u_{2}, \ldots \ldots \ldots \ldots \ldots u_{k}\right\}$ be the set of vertices which divides each edge of G in $S(G)$.For $S_{1} \subseteq S$,such that $N\left[S_{1}\right]=V[S(G)]$ then S_{1} forms a minimal dominating set in $S(G)$.Also since in $S(G), \forall u_{i}, u_{j} \in S_{1}, 1 \leq i, j \leq k$, $N\left(u_{i}\right) \cap\left(u_{j}\right)=\phi$, hence $\left\langle S_{1}\right\rangle$ itself forms the minimal independent dominating set in $S(G)$.If $N\left[S_{1}\right] \neq V[S(G)]$,we consider a set $I=D_{1} \cup D_{2}$ where $D_{1} \subseteq S_{1}$ and $D_{2} \subseteq$ $V[S(G)]-D_{1}$,such that $N[I]=V[S(G)]$ and for each $u_{i} \in\langle I\rangle, \operatorname{deg}\left(u_{i}\right)=0$,then I forms a minimal independent dominating set of $S(G)$.Further , without loss of generality $S \subseteq V[M(G)]$.Consider a minimal set $S_{2} \subseteq S$ such that $N\left[S_{2}\right]=V[M(G)]$.Then S_{2} forms the minimal dominating set in $M(G)$.If the subgraph $\left\langle V[M(G)]-S_{2}\right\rangle$ is disconnected, then S_{2} forms the minimal split dominating set in $M(G)$. Otherwise there exists a vertex $u_{i} \in S-S_{2}, 1 \leq$ $i \leq k$ such that $\left\langle V[M(G)]-S_{2} \cup\left\{u_{i}\right\}\right\rangle$ contains at least two components. Thus $S_{2} \cup\left\{u_{i}\right\}$ forms the minimal split dominating set in $M(G)$. Clearly $|I| \geq\left|S_{2} \cup\left\{u_{i}\right\}\right|$ which gives $\gamma_{S M}(G) \leq i[S(G)]$.

Theorem 11: Let G be graph such that both G and \bar{G} have no isolated edges, then

$$
\begin{aligned}
& \gamma_{S M}(G)+\gamma_{S M}(\bar{G}) \leq P . \\
& \gamma_{S M}(G)+\gamma_{S M}(\bar{G}) \leq P^{2} .
\end{aligned}
$$

3. References:

[1] Harary F., graph Theory, Adison Wesley,Reading mass, 1969,(61-62).
[2] Muddebihal M.H., and Naila Anjum, Independent Middle Domination In Graphs, International Journal Of

Recent Scientific Research , Vol. 6,Issue, 1, January 2015,pp.2434-2437.
[3] Muddebihal M.H., and Naila Anjum, Connected Middle Domination In Graphs, International Journal Of Mathematics And Computer Application Research, Vol 5, Issue 4. August 2015.
[4] M.H.Muddebihal and Nawazoddin U. Patel, Strong Split Block Domination in graphs, IJESR, 2(2014) 102-112.
[5] M.H.Muddebihal and Nawazoddin U. Patel,et.al. Strong non split Block Domination in graphs, IJRITCC,3(2015) 4977-4983.
[6] M.H.Muddebihal and Nawazoddin U. Patel,et.al. Strong Line Domination in graphs, IJCR,8(2016) 39782-39787.
[7] S.L.Mitchell and S.T.Hedetniemi, Edge domination in tree.Congr.Numer.19(1977) 489-509.

