Generalized Pigeon Hole Principle and its Applications

R. Sengothai
Ph.D. Research Scholar in Mathematics
University of Madras
Email: kothai1729@yahoo.com
Contact Number: 9382878023

Abstract:- In this paper I shall introduce "The Pigeon Hole Principle" in usual way and then present and prove the general versions of the Pigeon Hole Principle, hereby referred as PHP. I shall introduce several applications of the above mentioned principle by solving some examples.

Keywords: Principle, Pigeons, Holes, Generalized Pigeon Hole Principle

PIGEONHOLE PRINCIPLE (PHP)

If m pigeons occupy n pigeonholes and $m>n$, then at least 1 pigeonhole must contain more than 1 pigeon.

GENERALIZATIONS OF PHP

1. "If m pigeons occupy n pigeon holes, then at least 1 pigeonhole must contain $(\mathrm{p}+1)$ or more pigeons where $\mathrm{p}=[(\mathrm{m}-$ 1)/n]."

PROOF

We prove this principle by the method of contradiction.
Assume that the conclusion part of the principle is not true. Then no pigeonhole contains $(\mathrm{p}+1)$ or more pigeons. This means that every pigeonhole contains p or less number of pigeons.
Thus, the total number of pigeons is less than or equal to $n p=n *[(m-1) / n]$ which is less than or equal to $n *((m-1) / n)=(m-1)$ This is a contradiction ,because the total number of pigeons is m Hence our assumption is wrong., and the principle is true.
2. "Suppose $m=\left(p_{1}+p_{2}+\ldots \ldots \ldots .+p_{n}-n+1\right)$ pigeons occupy n pigeonholes $H_{1}, H_{2}, \ldots \ldots, H_{n}$ Prove that some pigeonhole H_{j} contains p_{j} or more pigeons."

PROOF

Assume that the conclusion part of the given statement is false. Then every hole H_{j} contains $\mathrm{p}_{\mathrm{j}}-1$ or less number of pigeons, $\mathrm{j}=$ $1,2, \ldots n$. Then the total number of pigeons would be less than or equal to $\left(p_{1}-1\right)+\left(p_{2}-1\right)+\ldots \ldots \ldots+\left(p_{n}-1\right)=\left(p_{1}+p_{2}+\ldots . p_{n}-n\right)=m-1$. This is a contradiction, because the number of pigeons is equal to m . Hence the assumption made is wrong, and the given statement is true.

PROBLEMS

1. ABC is an equilateral triangle whose sides are of length 1 cm each. If we select 5 points inside the triangle, prove that at least 2 of these points are such that the distance between them is less than 0.5 cm
Solution: consider triangle DEF formed by the mid-points of the sides BC, CA and AB of the given triangle ABC . Then the triangle ABC is partitioned into 4 small equilateral triangles, each of which has sides equal to $1 / 2 \mathrm{~cm}$.
Treating each of these portions as pigeonhole and 5 points chosen inside the triangle as pigeons, we find by using the PHP that at least 1 portion must contain 2 or more points. Evidently, the distance between such points is less than $1 / 2 \mathrm{~cm}$.
2. Prove that in any set of 29 persons at least 5 persons must have been born on the same day of the week.

Solution: treating the 7 days of a week as 7 pigeonholes and 29 persons as 29 pigeons, we find by using the generalized PHP that at least 1 day of the week is assigned to $[(29-1) / 7]+1=5$ or more persons. In other words, at least 5 of any 29 persons must have been born on the same day of the week.

3. How many persons must be chosen in order that at least 5 of them will have birth days in the same calendar month?

Solution: Let n be the required number of persons. Since the number of months over which the birthdays are distributed is 12 , the least number of persons who have their birthdays in the same month is by the generalized PHP , equal to [(n1)/12]+1.But this number is 5 if $[(\mathrm{n}-1) / 12]+1=5$ or $\mathrm{n}=49$.
Thus the number of persons is at least 49 .
4. Show that if any 5 numbers from 1 to 8 are chosen, then 2 of them will have their sum $=9$

Solution: Let us consider the following sets
$\mathrm{A}_{1}=\{1,8\}$
$\mathrm{A}_{2}=\{2,7\}$
$\mathrm{A}_{3}=\{3,6\}$
$\mathrm{A}_{4}=\{4,5\}$
These are the only sets containing 2 numbers from 1 to 8 , whose sum is 9 . Since every no. from 1 to 8 belongs to 1 of the above sets ,each of the 5 numbers chosen must belong to 1 of the sets. Since there are only 4 sets, 2 of the 5 chosen numbers have to belong to the same set(according to PHP).
These 2 numbers have their sum $=9$.
5. Prove that every set of 37 positive integers contains atleast 2 integers that leave the same reminder upon division by 36 .

Solution: When a positive integer is divided by 36 , the possible reminders are $0,1,2 \ldots 35$. Let A_{r} denote the set of all positive integers that leave the reminder r when divided by 36.Thus, every positive integer belongs to one or the other of the 36 sets: $\mathrm{A}_{0}, \mathrm{~A}_{1}, \ldots . . \mathrm{A}_{35}$. Hence if we take any 37 positive integers then atleast 2 of them must belong to 1 of these A_{r} 's.
(Note: treat Ar's as pigeonholes and 37 as the number of pigeons).This proves the result.
6. Show that every set of 7 distinct integers includes 2 integers x and y such that atleast 1 of ($x+y$) or ($x-y$) is divisible by 10.

Solution: Let $X=\left\{x_{1}, x_{2}, \ldots \ldots, x_{7}\right\}$ be a set of 7 distinct integers and let r_{i} be the reminder when x_{i} is divided by 10 .
Consider the following subsets of X :
$A_{1}=\left\{x_{i}\right.$ belonging to X such that ri=0\}
$A_{2}=\left\{x_{i}\right.$ belonging to X such that $\left.r_{i}=5\right\}$
$A_{3}=\left\{x_{i}\right.$ belonging to X such that $r_{i}=1$ or 9$\}$
$A_{4}=\left\{x_{i}\right.$ belonging to X such that $r_{i}=2$ or 8$\}$
$A_{5}=\left\{x_{i}\right.$ belonging to X such that $r_{i}=3$ or 7$\}$
$A_{6}=\left\{x_{i}\right.$ belonging to X such that $r_{i}=4$ or 6$\}$
Now, the 7 elements of X play the role of pigeons and the 6 subsets listed
above play the role of pigeonholes. As such atleast 2 elements x, y of X
must be in the same subset .
If x and y are in A_{1} then x and y are multiples of 10 so that both $x+y$
$x-y$ are multiples of 10 . If x and y are in A_{2} then x and y are of the forms
$x=10 k_{1}+5$ and $y=10 k_{2}+5$ where k_{1} and k_{2} are integers, so
that $\mathrm{x}+\mathrm{y}=10\left(\mathrm{k}_{1}+\mathrm{k}_{2}+1\right)$ and $\mathrm{x}-\mathrm{y}=10\left(\mathrm{k}_{1}-\mathrm{k}_{2}\right)$ are both multiples of 10 .
If x and y are in any of the other 4 subsets, then it is easily seen that either $x-y$ or $x+y$ is a multiple of 10 , but not both. This proves the result.
8. Prove that if 101 integers are selected from the set $S=\{1,2,3, \ldots \ldots, 200\}$, then at least 2 of these are such that one divides the other.
Solution: Let $X=\{1,3,5, \ldots 199\}$.then every integer between 1 and 200 (inclucive) is of the form $n=\left(2^{\wedge} k\right)^{*} x$ where k is an integer ≥ 0 and x belongs to X. Thus the set X has 100 distinct elements and therefore, if 101 elements of S are selected, then atleast 2 of them say a and b, a different from b must correspond to the same x belonging to x. Thus,
$\mathrm{a}=\left(2^{\wedge} \mathrm{m}\right)^{*} \mathrm{x}, \mathrm{b}=\left(2^{\wedge} \mathrm{n}\right)^{*} \mathrm{x}$, for some integers $\mathrm{m}, \mathrm{n} \geq 0$. Clearly, a divides b if m is $<$ or $=\mathrm{n}$ and b divides a if $\mathrm{n}<\mathrm{m}$. This proves the required result.
9. Prove the statement: if $\mathrm{m}=\mathrm{kn}+1$ pigeons (where $\mathrm{k} \geq 1$) occupy n pigeonholes then atleast 1 pigeonhole must contain $\mathrm{k}+1$ or more pigeons.
Solution: assume that the conclusion part of the given statement is false.then every pigeonhole contains k or less number of pigeons. Then, the total number of pigeons would be $n k$. This is a contradiction. Hence, the assumption made is wrong, and the given statement is true.
10. Prove that in a set of 13 children atleast 2 have birthdays during the same month.

Solution: Let us treat the 13 children as pigeons $(\mathrm{m}=13)$ and the 12 months as 12 pigeon holes $(\mathrm{n}=12)$. clearly $\mathrm{m}>\mathrm{n}$.hence by the PHP, atleast 1 month has 2 or more children 's birth days in it. This implies that atleast 2 children have birthdays during the same month .Hence the proof.
11. If 5 colours are used to paint 26 doors, show that atleast 6 doors will have the same colour.

Let us treat the 26 doors as 26 pigeons $(m=26)$ and the 5 doors as 5 pigeonholes $(n=5)$. Then by generalized PHP atleast 1 door will have
$[(m-1) / n]+1=[(26-1) / 5]+1=6$ or more doors corresponding to it. This the same as saying that at least 6 doors will have the same colour. Hence the proof.
12. Prove that if 30 dictionaries in a library contain a total of 61327 book pages, then atleast 1 of the dictionaries must have atleast 2045 pages.
Solution: treating the pages as pigeons and dictionaries as pigeonholes, we find by using the generalized PHP that atleast 1 of the dictionaries must contain ($\mathrm{p}+1$) or more pages where
$\mathrm{p}=[(61327-1) / 30]=[2044.2]=2044$
hence the proof.

REFERENCES

1. Graph Theory and Combinatorics, Dr. D.S.Chandrasekharaiah, Prism Books Pvt., Ltd.
2. A course in Combinatorics, Second Edition, J.H. van Lint \& R.M. Wilson, Cambridge
