Convolution Structure of Fractional Quaternion Mellin Transform
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Abstract— The Mellin transform is a basic tool for analyzing the behavior of many important functions in mathematics and mathematical
physics. A quaternion is a 4 dimensional number, a generalization of a complex number. Basically it used in image registration.

This paper is focus on the new convolution structure of Fractional Quaternion Mellin transform. Also the main properties i.e.
associative, distributive, linear, shifting for the convolution of Fractional Quaternion Mellin Transform are proved.
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I INTRODUCTION

Mellin transform is a natural analytical tool to
study the distribution of product and quotients of
independent random variables. Mellin transforms has
application to derive different properties in statistics and
probability densities of single continuous random variable
and also used in deriving densities for algebraic combination
of random variable, it is also applied to fractional
differential equations with a right-sided derivative and
variable potential . Mellin transform also use to establish the
means, variances, skewness, and kurtosis of fuzzy numbers
and applied them to the random coefficient autoregressive
(RCA) time series models [2,3,4].

Convolution is a powerful way of characterizing
the input-output relationship of time invariant linear system.

Quaternion

A quaternion is a four-element vector that can be used to
encode any rotation in a 3D coordinate system. Technically,
a quaternion is composed of one real element and three
complex elements, and it can be used for much more than
rotations.

On October 16th, 1843, while walking with his
wife to a meeting of the Royal Society of Dublin, Hamilton
discovered a 4-dimensional division algebra called the
quaternions.
==K =ijk=-1
Here i, j, k represent 90° degree rotations about three
mutually orthogonal axes. The other basic relationships:

ij = k = -ji
ik =i = -kj;
ki=j=-ik.

Quaternion play an vital role in animation field because it
compose rotation very nicely and mainly it gives spherical
interpolation.

The Quaternion Fourier Transform is well suited
for describing the spectral content of colour images also
can be applied to image registration, edge detection, and
data compression [5].

In our previous work we have proved the operational
calculus, operation transform formulae, applications and
convolution theorem for two dimensional fractional Mellin
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transform [1,7,8,9]. In this work we have discussed the
fractional Quaternion Mellin transform, also the new
convolution structure for fractional Quaternion Mellin
transform is presented. Moreover we have proved some
basic properties of convolution.

. DEFINITIONS

2.1 Definition of Two Dimensional Fractional Mellin
Transform
The two-dimensional fractional Mellin transform with

parameters 0 of f(u, v) denoted by 2DFRMT{ f (u, v)}
performs a linear operation, given by the integral transform.
2DFRMT

2DFRMT{ f (u,v)} = f f Ky (u,v,1,5) f (u, v)dudv
00

where,

2mir 2mis i

Ky(u,v,7,8) = usig vsing _ gtand

(7‘2+s2 +log 2y +log zv)

2.2 Definition of Fractional Quaternion Mellin
Transform

For any two dimensional quaternion function f(u, v) given
by
f(u! U) = fr(u! U) + ifi(ut U) +]fl(uf U) + kfk (u' U)
where f.(u, v), f; (u, v), f; (W, v),
fi (u, v) are real, the quaternion fractional Mellin transform
of f(u,v) is denoted by

FRMy', (r,s) = FRMy", {f (u,v)}

= [ K, (o r)fu,v)K}, (v, )dudv

where
2mir i 2 2
- - r“+log “u T
Ké{l(u'r) = ysing1 etan(ﬂl( 9 ), (pl = 015
2mis mi 2 2
1 _ - - (s“+log “v) _ T
ng(v's) = psingy ~ptan g2 , @, = 025
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Il CONVOLUTION STRUCTURE OF
FRACTIONAL QUATERNION MELLIN
TRANSFORM
For any real scalar or complex signal f(u, v) and
convolution kernel g(u, v) and

h(u,v) = (f * g_)(u. V)
= (efanmlog g ) [f (w,v) * g(u,v)]

where * is the QFRMT convolution operator then
2 $2

Foy0, th(u, v)}(r, ) = e liawo aned)

{Fo .0, f (&, D1}HFy, 0, [9(t, DI}

Proof-

Fy, 6, [h(w, v)](r,s)

o roo 2mir 2mis i 2 410g 2
:f f h(u v)usinq)l psing2 eran<pllr 0g “u]

[s +log v]

em" ?2 dudv
From given we know that

2
=e [tan <p1+tan ®2 f f usine1 psing2 etan ¢1
efan«zz log ?v f fO
[from ref. [1]]
Putting==w, -=z

t q

2mir 2mis 1 i 2

log “u

—f (t,9)g (— —)dtdq]dudv

tq

u v
—=t, ;_q

w
Differentiate with respect to w and z
=>‘—“dw = dt, ‘—"dz =dq

i f—— r2 s2 2mir 2mis

+— -
=e tan @1 tan @ f f usmtpl psing2

7L p (&,2) elimos™torgzios o)

[lo w] [lo 22]
gw, z)e" lanoile™ lan w2l qwdz} dudv
Putting—=m, ~=n
w V4
u=mw, v=nz
du =wdm, dv = Zdn

2mir
tan(pl tan(pz {f f(m)smgal

2mis

f(m n)(n)nez
lamadny

efa"q)l[r +log (m)

etan(p [s +log (n)

2mis

{foofoo(w)m efanm[r +og*w] gw, z)(z)sine2 -

etanwz[s +log 2]

Z S
= o liargr s ([Kk (m,r)f (m, KD, (n, )]

{[KE w,")f W, 2K}, (z,9)]}
= ¢ et (7, [Fm Ry, , low, D}
(3.2)
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2
i [ s

r2
= e ‘tan <ﬂ1+tan <ﬂ2] {Felﬂzl[f(t’ q)]}{Feng‘[g(t, q)]}
(by using change of variable property).

V. SOME BASIC PROPERTIES OF
QUATERNION CONVOLUTION
4.1 Linearity property
Prove that
() (A f +A,9)«h = A (f xh) + Ay(g = h)
(i) h(Aif +A59) = A1 (h=f)+Ay(h*g)
where A;, A,eH

Proof-
0] Consider
LHS = (A.f +4,9) xh
=pxh (< B = (Aif + A;9))
By using equation (3.1) and (3.2) we get
LHS = B*h

2 2
7l [t —]
e tan @1 tan @)

Fy. 0, {,B(m n)}Fal 6, {h(w, 2)}
i [———

e tan ¢ 1 tian (pz] f_w f_w{ﬁ(m n)} Kel 0, (m nr, s)dmdn

f_w f_w{h(w, 2)} Ky, 9,(W, 2,7, 5)dwdz
12 2
e "o a7 [7 (A f(m,m) +
A2gmn]}KE1,62mnr,.sdmdn
f_wm f_ww{h(w, 2)} Ky, o, W, 2,7, ) dwdz------
1)

Now we consider
By using (A)

r2 52
=e " [W+tan wz][A1{F91.92 (f = h)} + AZ{F91»92 (g * h)}

= e [tan o1 tan g7 {Al[j f f(m,n) K91 92(m n,r,s)

dmdn [~ [ h(w,z) Ky, 4,(W,z,7,5)dwdz]
Z[f f g(m,n) Ky, 4,(m,n,7,s)dmdn
J= 17 h(w,2) Ky, 5, (W, 2,7, 5)dwdz]}
By using change of variable

— e [tan ¢1 tan @2 {f f h(W Z) K91 0, (W z,T, S)deZ]

[4, f_w f_wf(m, n) Ky, g, (m,n, 7, s)dmdn
+4; [ [ g(m,n) Ky, 5,(m,n, 7, s)dmdn]

2 $2

=e " [Wer]{f: I~ h(w,2) Ky, 9, W, 2,7,5)dwdz
U2 2 TAf (mm) + 4, g(m,n)]
Kp, o, (m,n,7,s)dmdn}---(2)

From (1) and (2) result (i) is proved.

Similarly we can proved result (ii)

h* (Aif + A;9) = Ay(h = f) + Ay (h* g).

4.2. Shifting Property
Prove that (i) (af * g) = a(f * g)
(i) (f xag) = a(f xg)

Proof-
Consider,
LHS = (af * g)



By using equation (3.1) and (3.2) we get
2 $2
= ¢ "ol Fy g {af (m,n)}Fy, 6, {g(w, 2)}
2 $2
= ™ ltan o1 Ftan rpz]a f_ww f_ww{f(m, n)}
K 9,(m,n,7,)dmdn [~ [~ {g(w,2)}

Ko, 0,(W, 2,7,5)dwdz

2 2
—17i —+—
= ¢ "larer f“"‘/’Z]aFgl_gz{f(m,n)}Fgl_gz{g(w,z)}

=a(f*9)

Similarly we can proved result (ii)

(f xag) = a(f * g)
4.3 Distributive Property

Provethat f x (g+h) =(f*xg) + (f xh)
Proof-
Consider,
LHS = f+(g+h)

=frw (v¢=g+h)

By using equation (3.1) and (3.2) we get
LHS = f*rw

2 $2
= ¢ "o ed Fy o (f (m,n)}Fp, o, (0 (W, 2)}

2 $2
e et @en! [ [ (£ (m,m)} Ky, o, (m,m, 7, 5)dmdn

I2 17 (oW, 2)} Ky, 5, (W, 2,7, 5)dwdz

2 2
i [ L

e et w@nes! [ [ (£ (m,m)} Ky, o, (m,m, 7, 5)dmdn

U2 17 19w, 2} Ky, o, (W, 2,7,5)dwdz
+ 7 7 (h(w,2)} Ky, o, (W, 2,7, 5)dwdz}

e [ﬁJ“ﬁ {f f Jf(m,n)} Ky, o,(m,n,1,s)dmdn
f_m f_m{g (W, 2)} Ky, 9, W, z,7,5)dwdz}
.|.{f_°z0 ffm{f(m, n)} Ky, 5, (m, n,r,s)dmdn
J2 17 h(w,2)} Ky, 6,W, 2,7, 5)dwdz}
=g+ *h

3.4 Associative Property
Prove that-
(fxg)xh=fx(g=h)
Proof-
Consider
LHS = (fxg)=h
=8+*h (6=f=*g)
By using equation (3.1) and (3.2) we get
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72 52
= ¢ "langr Tan ‘”Z]Fel,ez {6(m,n)}Fy, o, {h(w, 2)}

2 2
e "l gr tangg) I I (8(m,m)} Ky, 6, (m,n, 7, s)dmdn

f_ww f_ww{h(w, z)}Kp, 9, (W, 2,7, 5)dwdz
) 2
—e ™ aneittangz) f_ww f_ww{(f * g)(m,n)}
Kp, p,(m,n,7,5)dmdn f f{h(w, z)}Kp, o, (W, 2,1, 5)dwdz
= e [tan @1 tan @2 {f_wf_w[e tan q71+tan (pz]
(F91,92f(mi n))

(Fo, 0,9(m,n))Ky, o, (m,n,7,5)dmdn]

I I {h(w, 2)} Ky, 5, (W, 2,7, 5)dwdz

.[r2|521 .[rzlsz1

= ¢ "langr tangy o "ltan gy tangs

U205 LS 12 Fmm)K,, 6, (mn,7,s)dmdn
f_ww f_ww 9w, 2))Ky, o, W, z,1,5)dwdz] Ky, 5, (m,n, 7, s)dmdn}
f_wm f_ww h(w, 2)} Ky, 9,(W, 2,7, s)dwdz

=™ [ta:2w1+tarszzw z] e ™ [tarrlzw1+tarslz<ﬂ z]
U202, UZ I, f @K, g, (m,n, 7, s)dmdn]
Ko, 0,(m,n,7,)dmdn} [[~ [~ gw,2))Ky, 6,W, 2,7, 5)dwdz
f_ocm f_wm h(w, 2)} Ky, 5,(W, 2,7, 5)dwdz]
2 2 2 2

—7Ti[rls1—m'[rls1
= e tan @1 tanq)zje tan 1 ' tan @1

U U2 S, f Ky, 5, (m,n, 7, s)dmdn]

U2 S, 9w, 2)Ky, 5, (W, 2,7, 5)dwdz
I= 17 h(w,2)} Ky, ,(w, 2,7, 5)dwdz] Ky, 5, (m, 1, 7, 5)dmdn}
=fx(g*h

4.5 Conjugation Property

Prove that-(fxg) = g = f
Proof-
By using equation (3.1) and (3.2) we get

. 7'2 SZ
i [

—_ —+—
xg = ¢ "lhaortmel gy o (F(mn)}Fy, 6, {g(t, 2}

[

—i [:

r2 52
e e @ wdl [ [ (f(m,n)} Ky, 6, (m,m,7,5)dmdn
I~ f_";w(w z)}/rgl 52<w z,7,8)dut

. 2 2
= 6_71 tzm ?1 zm 1] {ff(m an Wl em Wl[r +lyg (m)]
e, 2
Flmm) oy 7 el ) gy
27s

2 2
[ro+tg “w] (WZ)(Z)”” o

0 oo ZL_]_ 7
NN R



e ol ) antz  }
=g*/
Hence proved.

Basic Linearity () 4./ +
properties of | Property A, g)* h =
Quaternion A (fxh)+
convolutionl Ay(g *7)

(i) 2+ (A4, +
4,9) =
A, * f)+
Ay(/ * g)
2 Shifting () (&f *g) =
Property a(f *g)
(i) (fxag ) =
a(f *g)
3 Distributive Sfx(g+7)
Property =/ *g)+(f
)
4 Associative (fxg)xh
Property =/ *x(g=*h)
5 Conjugation Fxg)=g=*f
Property
CONCLUSION

In this paper we have developed the fractional
Quaternion Mellin transform. The new convolution structure
for QFRMT is obtained. Useful properties Quaternion
convolution are proved. It can be useful in animation world.
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