
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 3 62 – 66

62
IJRITCC | March 2017, Available @ http://www.ijritcc.org

Design of Arithmetic and Logic Coprocessor based on Logarithmic Number System

Abraham N R Singh M.Sc.
Assistant Professor, Department of Electronics

St. Johns College,

Palayamkottai, Tamilnadu, India

abrahamsingh@gmail.com

T.K. Sethuramalingam M.Tech., (Ph.D)
Associate Professor, Department of ECE

Karpagam College of Engineering,

Coimbatore, Tamilnadu, India

tksethuramalingam@gmail.com

Abstract—3D Graphical computing requires more complicated operations such as multiplication , division, square root, power etc., that are

computed more faster than conventional method by means of using logarithmic number system (LNS).The proposed implementation is

supported in a new set of linear equations, which allows calculating the approximation of the logarithm and antilogarithm binary functions. This

design deals with study of logarithmic number system and implementation of an arithmetic and logic unit based on the logarithmic number

system.

Keywords-Arithmetic logic unit, binary antilogarithm, binary logarithm,hybid number system, logarithmic number system.

__*****___

I. INTRODUCTION

With the remarkable progress in the very large scale
integration (VLSI) circuit technology, many complex circuits
unthinkable yesterday become components easily realizable
today. Algorithms that seemed impossible to implement now
have attractive implementation possibilities for the future. This
means that not only the [17] conventional computer arithmetic
methods, but also the unconventional ones are worth
investigation in new designs.

Numbers play an important role in computer systems.
Numbers are the basis and object of computer operations. The
main task of computers is computing, which deals with
numbers all the time [17]. Representing numbers in computer
systems is a new issue. The logarithmic number system (LNS)
has been studied to simplify arithmetic computations for lower
computation complexity [16], high computation speed, and
small gate counts however

LOGARITHMIC ARITHMETIC

OPERATION NORMAL

ARITHMETIC
LOGARITHMIC

ARITHMETIC

Multiplication MUL z = x.y X+Y

Division DIV z = x/y X-Y

Reciprocal RCP z = 1/x -X

Square Root SQRT z =√x X >> 1

Reciprocal

SQRT

RSQ z =1/√x -X >> 1

Square SQR z = x2 X<<1

II. MITCHELL APPROXIMATION

Mitchell introduced the binary logarithmic converting
algorithm Mitchell’s logarithm and antilogarithm calculations
require only shifting and counting operations [16],[5]. The zero
detector is to ensure a zero output if any of the inputs is zero.
The position of the leading 1 bit in each input is identified by
shifting the input bits left until the most significant bit is a “1,”
decrementing a counter each time, which is initially loaded
with the word size. The final values of these counters is known
as characteristic, remaining input bits is known as mantiza.

A. Realizing Mitchell approximation

The above normalization procedure can be formulated as
follows. Let

 𝑏𝑚𝑏𝑚−1 ⋯ 𝑏0. 𝑏−1 ⋯ 𝑏−𝑝 (1)

be the binary representation of number B where bm is the
most significant nonzero bit. By factoring out the weight
carried bybm, the rest becomes in between of 1 and 2. That is,

 𝐵 = 2𝑚 + 2𝑖𝑏𝑖

𝑚−1

𝑖=−𝑝

 (2)

 = 2𝑚 1 + 𝑥 (3)

Where i – m < 0and 1 ≤ 1+ x < 2. Hence,

 𝑙𝑜𝑔2𝐵 = 𝑚 + 𝑙𝑜𝑔2 1 + 𝑥 , (4)

In the Taylor series of log2(1 + x) taking only the linear
term and let log2(1 + x) ≈ x then

 𝑙𝑜𝑔2𝐵 = 𝑚 + 𝑥 (5)
In binary

 𝑙𝑜𝑔2𝐵 = 𝑎𝑛 ⋯ 𝑎0 . 𝑏𝑚−1 ⋯ 𝑏−𝑝 (6)

where an ∙∙∙ a0is the binary representation of m, and bm-1∙∙∙b-

p is the binary representation of fraction x, from the lower order
part of B in its binary representation. m in the above is referred
to as characteristic and is actually the number of bits between
the most significant nonzero bit and the binary point in number
B. One can see later that m can be easily obtained by simple
shifting and counting operations

The error resulted from this method is

 𝜀 𝑥 = 𝑙𝑜𝑔2 1 + 𝑥 − 𝑥. (7)

Fig. 1 - Architecture of ALU

Clearly x) is independent of m and depends only on x. Let

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 3 62 – 66

63
IJRITCC | March 2017, Available @ http://www.ijritcc.org

𝜕𝜀 𝑥

𝜕𝑥
= 0, (8)

𝑙𝑜𝑔2𝑒

1 + 𝑥
− 1 = 0, (9)

 𝑥 = 𝑙𝑜𝑔2𝑒 − 1 = 0.44 (10)
when the maximum error occurs. Thus in the Mitchell
approximation the maximum error is 0.086. Then we go instead
of using single straight line approximation [1],[3]. to several
straight line approximation can be used. In this paper we
describe the thirty two region piecewise linear straight line
approximation to find logarithm and antilogarithm.

III. LOGARITHMIC ARITHMETIC LOGIC UNIT

Moreover, the algorithm of Mitchell does not require any
storage of coefficients, because this estimate is based on the
approximation according to most significant bit position of the
argument to be evaluated [2]. The LAU computes the complex
functions such as multiplication, division, and square-root
operations by using only simple addition, subtraction, and shift
operations [5].The top architecture of the proposed LAU is
shown in following figure The unit is composed of two binary
logarithmic converters (LOG2s) in the first stage, a simple
calculation unit (SCU), and a binary antilogarithmic converter
(antilog2) in the second stage. The SCU is composed of an
inverter, an adder / subtractor (ADD/SUB), and a barrel shifter
(BSH). x and y are the operand for the LAU and op selects the
required operation. Since the logarithmic converter takes a
longer time than the exponential converter does [11], [12], the
SCU is located in the second stage to distribute the time budget
to each pipeline stage evenly. While the lookup table-based
methods involve memory overhead, Mitchell’s algorithm does
not require memory however, it incurs some loss of accuracy.
Thus, several researchers have proposed methods to improve
the accuracy in Mitchell’s algorithm.

A. Logarithmic Converter Block

In general, the piecewise interpolation methods were used
in the binary logarithm conversion algorithms In this study, we
divide the fraction part into thirty two regions to further reduce
its error rate and use the straight linear interpolation in each
region. shows the proposed architecture of the logarithmic
converter block. x is an operand to be converted into the
logarithmic number, and n is the number range selection bit.
The logarithmic converter block is composed of 32-bit count

Fig. 3 - Error analysis for logarithmic converter

leading zero (CLZ).Let be a fixed-point 32-bit input which has
the variable number range of Qm.n. Its value can be written as

 𝑥 = 2𝑘 1 + 𝑓 , (11)

Where k is the characteristic value of the logarithm in
Mitchell’s equation and n is the number range decision value
[14]. Executing the variable number range operation, the
characteristic value k is replaced by the new value ofk’, which
is equal to k – n is the fraction parts in the range [0, 1] located
on the right-hand side of the leading bit. Taking the binary
logarithm for both sides of, the following equations[15], can be
obtained

 log2 𝑥 = 𝑘′ + 𝑛 + log2(1 + 𝑓) , 𝑤𝑒𝑟𝑒 𝑘′ = 𝑘 − 𝑛 (12)

 log2(1 + 𝑓) ≅ 𝑎𝑖 ∙ 𝑓 + 𝑏𝑖 , 𝑤𝑒𝑟𝑒 𝑖 = 0,1, ⋯ 7 (13)

where log2(1 + f)is the fractional part after the binary
logarithmic conversion. This term is calculated by piecewise

interpolation represented in ai and bi𝑏𝑖 are the coefficients
which have 10 and 16-bit resolution

Architecture of the logarithmic converter block.xis an
operand to be converted into the logarithmic number, andn is
the number range selection bit. The logarithmic converter block
is composed of 32-bit count leading zero (CLZ), BSH, a
characteristic generator (CGen), and fractional part generation
block (FPGen) The CLZ block calculates the number of the
leading zero bits of the input. The five bits of the CLZ block
output decide the characteristic value and the amount of shift
value of BSH. BSH converts the input number range of Qm.n.
Since the fractional part is divided into thirty two regions, thirty
two different coefficients are necessary for thirty two regions.
Each coefficient is obtained through fitting to the real value by
varying and in order to reduce the complexity because they
have a direct effect on the hardware implementation. Since the
coefficients[9], are the fraction numbers with powers of two as
their denominators, they can be calculated by only shifters and
adders. When defining the coefficients, the error range should
be considered as well. After shifting operation, the fractional
part is generated by the FPGen block and the characteristic part
is generated by the CGen block. The above two values are
combined to give the logarithmic conversion result.

To calculate the 2’s complement subtraction operation, the
inverters and the adders are necessary. In this study, the
coefficients consist of only the addition operations so that the
internal overhead of the inverters and the adders can be
removed. detailed architecture of the proposed FPGen is shown
in Fig 4. FPGen generates the approximated fractional value of
It is implemented by a hardwired shifter, MUX, carry save

Fig. 1 - Architecture for logarithmic converter

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 3 62 – 66

64
IJRITCC | March 2017, Available @ http://www.ijritcc.org

adder (CSA), and carry propagating adder (CPA). The final
result is calculated by adding these compensation values to the
value of the original fraction part .Although the fractional part
has very high resolution, the coefficients and are selected to
minimize the number of MUXes and the adders in order to
reduce the latency and power consumption. Therefore, the APP
carries out the summation of five terms using the CSA tree and
CPA [8]. Since this converter receives input values with
variable precision of the actual characteristic value is computed
by Qm.n. The conversion result is obtained by packing the
zero, sign, characteristic value, and the approximated fraction
value

After shifting operation, the fractional part is generated by
the FPGen block and the characteristic part is generated by the

CGen block. The above two values are combined to give the
logarithmic conversion result. Since the delay time of FPGen is
the longest, it is important to optimize the FPGen to get the
high operating frequency.

B. Antilogarithmic Converter Block

In general, the piecewise interpolation method is also used
for the antilogarithmic converting algorithm The fixed point
representation of the antilogarithm is composed of the six most
significant bits representing the integer part 2

k
and the

remaining bits of the fractional part representing 2
f
 . Fig. 4

shows the architecture of the antilogarithmic converter block. is
an operand to be converted into antilogarithmic number, and is
the number range selection bit as it is in the logarithmic
converter. The antilogarithmic converter is composed of the
integer part generation block, FPGen, and BSH. The
computation time is shorter than the logarithmic converter
because the integer part and the fractional part are calculated
separately. CGen calculates the integer part by using simple
addition of , sign bits, and . FPGen is composed of a lookup
table (LUT), carry save adders (CSAs), and a CPA similar to
the logarithmic converter’s. The final BSH shifts the fractional
part value by the result value of the CGen block and then
makes the output number range from Q6.31 to Qm.n as
specified by the number range decision input.

Radix two: assesses whether the input data is a power of
two. This block receives as input the approximate fractional
Mitchell. Based on this information and with the help of a
comparator with evaluates zero mantissa [5], This, to
determine whether the input data or not a power of two. If the

mantissa of the input data is equal to zero, concludes that the
data is a power of two and at therefore not necessary to make
any approach regions [7]. This is because when assessing the
binary logarithm base on a number that is power of two, the
result of this logarithm always is an integer. If, however, the
input data is not power two, we proceed to make the approach
by region, and that this result is composed of an integer part
and a fractional part. The architecture and operation is the same
block used to approximate the function

Fractional unit: making the approximation [10], antilog of
the value of the fractional part of input value. The architecture
and operation is equal to the block used to approximate the
function.

TABLE I.

LALU OPCODE

Selection (op) Operation

000 MUL

001 DIV

010 RCP

011 SQRT

100 RSQ

101 SQR

 2𝑥 = 2𝑘+ 𝑓 =
2𝑓 ∙ 2𝑘 , x ≥ 0

2𝑘−1 ∙ 21−𝑓 , x < 0
 (14)

TABLE II.

APPROXIMATION ERROR FOR THIS WORK

64 Region Approximation logarithm antilogarithm

Maximum positive error 0.017% 0.0098%

Maximum negative error 0.029% 0.0049%

Fig. 4 - Architecture for FPGen

Fig. 5 - Architecture for anti log

Fig. 6 - Error analysis for anti log converter

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 3 62 – 66

65
IJRITCC | March 2017, Available @ http://www.ijritcc.org

Decoder: receiving as input, the value of the entire log and

returns a vector output zeros, except for the bit position input
value. This value corresponds to the bit more significant value
of the integer part of the antilog Binary. A barrel shifter is a
combinational logic device/circuit that can shift or rotate a data
word by any number of bits of decoder in a single operation.

Concatinater: is responsible for concatenating the result
obtained between the integer and fractional part binary
logarithm. Taking as reference signal entry, it determines how
many bits correspond to the integer and fractional result
respectively.

IV. SIMULATION RESULTS

Designed ALU takes addition subtraction in normal and
other process in logarithmic domain. Logarithmic converter
converts inputs into log domain which is lout0 and
lout1.TABLE II describe the opcodes (opc) for LAU din0 and
din1 are 32bit input which is given to logarithm converter.
Logarithmic converter output is given to simple calculation unit
which is capable of calculating the simple addition, subtraction,
shift instead for multiplication, division, and square root. Based
on given opcode. In logarithmic and antilogarithmic converter
has 32 bit barrel shifter that capable for shift any direction
either left or right depends on direction (dir)input, and number
position can be shifted by using another control data port
(nop)In the logarithmic converter has 32 bit input (din) the
count leading zero block is used find the position of first MSB
non zero bit which is reperesented as 5 bit (cout) ,the input
number range(nin) also 5 bit. The number of position in barrel
shifter is taken as 5 bit cin = 31 – cout , the characteristic of
logarithmic number is calculated as cg = cout – nin. The
mantisa of the logarithmic number was calculated using
floating point generation (FPGen) block. Thisis 31 bit and also
characteristic is 6 bit thus the output of log

has 37 bit. Antilogarithmic converter has input from simple
calculation unit. Antilogarithmic converter is completely
reverse process of Logarithmic converter block. The
characteristic of input is 6 bit, which is given to the decoder
that decodes the characteristic into first leading MSB non zero
position of the output Then the barrel shifter is used to
concatinate the mantisa by means of left shifting and the
number of position shifted(cg) is depends on the input number
range (nin) and characteristic(din[36:31]).A 32-bit ALU was
designed and simulated based on logarithmic number system
using modelsim simulator. Fig. 7shows the simulation output of
LALU for multiplication of two inputs data as din0, din1 and
number range nin opcode opc and also output as dout. The
Table II represents the maximum positive and negative

approximation error of both logarithm and antilogarithm of this
work.

V. CONCLUSION

A 32-bit Logarithmic arithmetic unit was designed
successfully. A 32-bit Logarithmic arithmetic unit consists of a
binary logarithmic converter, an adder, a shifter, and a binary
exponential converter. It uses sixty four-region piecewise-linear
interpolation approximation algorithms and supports a variable
number range to compute complex functions fast and
accurately. In future my works towards to modify that design
for high speed.

REFERENCES

[1] M.G. Arnold, S. Collange, “A Real/Complex Logarithmic

Number System ALU,” IEEE Trans. Comput., vol. 60, no. 2, pp.
202-213, Feb. 2011.

[2] T. Filippov, M. Dorojevets, A. Sahu, A. Kirichenko, C. Ayala,
O. Mukhanov, “8-Bit Asynchronous Wave-Pipelined RSFQ
Arithmetic-Logic Unit,” IEEE Trans. Applied
Superconductivity, vol. 21, no. 3, pp. 847-851, June 2011.

[3] P. Kornerup, J.-M. Muller, A. Panhaleux, “Performing
Arithmetic Operations on Round-to-Nearest Representations,”
IEEE Trans. Comput., vol. 60, no. 2, pp. 282-291, Feb. 2011.

[4] M. Azarmehr, M. Ahmadi, G.A. Jullien, R. Muscedere, “High-
speed and low-power reconfigurable architectures of 2-digit two-
dimensional logarithmic number system-based recursive
multipliers,” IET Circuits Devices Syst., Vol. 4, Iss. 5, pp. 374–
381, Feb. 2010.

[5] S. Carrillo, H. Carrillo, F. Viveros, discussed about “Design and
Implementation of an Arithmetic Processing Unit Based on the
Logarithmic Number System,” IEEE Latin America Trans., vol.
8, no. 6,pp. 605-617, Dec 2010.

[6] H. Fu, O. Mencer, W. Luk, “FPGA Designs with Optimized
Logarithmic Arithmetic,” IEEE Trans. Comput., vol. 59, no. 7,
pp. 1000-1006, July 2010.

[7] C. Chen, “Error analysis of LNS addition/subtraction with
direct-computation implementation,” IET Comput. Digit. Tech.,
vol. 3, Iss. 4, pp. 329–337, Oct. 2008.

[8] K. Johansson, O. Gustafsson, L. Wanhammar, “Implementation
of elementary functions for logarithmic number systems,” IET
Comput. Digit. Tech., Vol. 2, No. 4, pp. 295–304, Sep. 2007.

[9] T. Stouraitis, M. Olivieri, S. Smorfa, F. Pappalardo and G.
Visalli “Analysis and Implementation of a Novel Leading Zero
Anticipation Algorithm for Floating-Point Arithmetic Units,”
IEEE Trans. Circuits and Systems-II: Express Briefs, Vol. 54,
No. 8, pp. 685-689, Aug. 2007.

[10] H. Kim, B. Nam, H. Woo and J.Sohn“A 231MHz, 2.18mW 32-
bit Logarithmic Arithmetic unit for Fixed-Point 3D Graphics
system”IEEE Journal of solid State Circuits, vol. 41, Nov. 2006.

[11] R. Muscedere, W.C. Miller, V. Dimitrov, G.A. Jullien,
“Efficient Techniques for Binary-to-Multidigit Multidimensional
Logarithmic Number System Conversion Using Range-
Addressable Look-Up Tables,” IEEE Trans. Comput., vol. 54,
no. 3, pp. 257-271, March 2005.

[12] E.M. Schwarz, M. Schmookler, S. Dao Trong, “FPU
Implementations with Denormalized Numbers,” IEEE Trans.
Comput., vol. 54, no. 7, pp. 825-836, July 2005.

[13] J.-H. Sohn, Y.-H. Park, C.-W. Yoon, R. Woo, S.-J. Park, and H.-
JYoo, “Low-power 3D graphics processors for mobile
terminals,” IEEE Commun. Mag., vol. 43, no. 12, pp. 90–99,
Dec. 2005.

[14] K. H. Abed and R. E. Siferd, “CMOS VLSI implementation of a
low powerlogarithmic converter,” IEEE Trans. Computers, vol.
52, no. 11,pp. 1421–1433, Nov. 2003.

[15] J. Coleman, E. Chester, C. Softley, and J. Kadlec, “Arithmetic
on the European Logarithmic Microprocessor,” IEEE Trans.
Computers, vol. 49,no. 7, pp. 702-715, July 2000.

Fig. 7 - simulated output for 32 bit ALU

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 3 62 – 66

66
IJRITCC | March 2017, Available @ http://www.ijritcc.org

[16] J. N. Mitchell, “Computer multiplication and division using
binarylogarithms,” IRE Trans. Electronic Computers, vol. 11,
pp. 512–517,Aug. 1962.

[17] Mi Lu, “Arithmetic and Logic in Computer Systems,” Wiley-
Interscience A John Wiley & Sons, Inc., Publication

Abraham N R Singh, This author was born in Tamil
Nadu, India, in 1983 and received the UG degree from the
Manonmaniam Sundaranar University, India, in 2003.
Further he received his PG degree from Annamalai
University, India, in 2005. He is working as an Assistant
Professor in the Department of Electronics, St. Johns

College, Palayamkottai, Tamilnadu. His area of interest in Embedded
systems.

T.K. Sethuramalingam, This author was born in Tamil
Nadu, India, in 1981 and received the UG degree from the
Manonmaniam Sundaranar University, India, in 2001.
Further he received his PG degree from Bharathidasan
University, India, in 2003. He received his M.Tech
(Embedded Systems) in PRIST University in 2013. He is

working as an Associate Professor in the Department of ECE, Karpagam
College of Engineering, Coimbatore, Tamilnadu, India. He visited
foreign countries and presented his research publications. He is a
Member in IEEE, ISSS, IACSIT, IAENG. His research interests and
publications have been in the areas of Embedded systems, VLSI design
and MEMS.

