
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 6 619 – 623

__

619

IJRITCC | June 2016, Available @ http://www.ijritcc.org

A Survey of Hashing Techniques for High Performance Computing

G M Sridevi
Asst. Professor, Dept. of ISE

SJBIT, Bengaluru, India

e-mail: sridevi.gereen87@gmail.com

M V Ramakrishna
Professor, Dept. of ISE

SJBIT, Bengaluru, India

e-mail: mvrama@yahoo.com

Abstract— Hashing is a well-known and widely used technique for providing O(1) access to large files on secondary storage and tables in

memory. Hashing techniques were introduced in the early 60s. The term hash function historically is used to denote a function that compresses a

string of arbitrary input to a string of fixed length. Hashing finds applications in other fields such as fuzzy matching, error checking,

authentication, cryptography, and networking. Hashing techniques have found application to provide faster access in routing tables, with the

increase in the size of the routing tables. More recently, hashing has found applications in transactional memory in hardware. Motivated by these

newly emerged applications of hashing, in this paper we present a survey of hashing techniques starting from traditional hashing methods with

greater emphasis on the recent developments. We provide a brief explanation on hardware hashing and a brief introduction to transactional

memory.

Keywords- Bloom Filters, Transactional Memory, Universal Hash Functions, Hardware Hashing

__*****___

I. INTRODUCTION

Traditional hashing techniques used hash tables to provide

constant access to files. Dynamic hashing techniques were

developed in late 70s to deal with dynamic files that keep

changing in size: extendible hashing [8], linear hashing [16]

and dynamic hashing [11]. Much of the research during 60s

and 70s dealt with overflow handling techniques and perfect

Hashing for large files was developed in 80s [22]. Not much

work was done on the implementation of the different methods

in real time applications. Sprugnoli was the first to envision

perfect hashing with an ideal goal of 1 access retrieval to files.

Perfect Hashing can be achieved when the key set is of fixed

size and known in advance [28]. Ramakrishna and Portice

proposed a simple trial-and-error method to achieve perfect

hashing for Hardware applications [25]. Perfect Hashing is

now being used for networking applications. Hashing also

finds multiple applications in hardware like translation look

aside buffer, transactional memory systems, networking

hardware [30, 13, 27]. Hash functions are used to implement

Bloom filters. A Bloom filter is a data structure that is used to

check if a given element is a in a set or not. Bloom Filters are

currently being used in Google File System, Big Table, HBase,

etc. A more recent application is in transactional memory

which makes use of hardware hash functions, to keep track of

read/write sets to detect conflicts between different

transactions [13], [17].

Our aim is to survey the area with emphasis on modern

developments. Hashing has come a long way since early days

when ’hashing’ was not considered a decent print word [10].

In the following section, we provide a brief description of

different dynamic hashing schemes. This will be followed by a

description of Hashing in Hardware. We describe the concept

of universal hashing and a particular class of functions called

H3. We give a brief explanation about the use of hashing in

transactional memory followed by Perfect Hashing. Lastly we

present the use of hashing in the implementation of bloom

filters which has found its applications in various fields.

II. TRADITIONAL HASHING SCHEMES

In the early days, the main issue was how to handle

overflows while storing data in memory. Many hashing

techniques were introduced to address the issue. Linear

probing or progressive overflow was proposed as a solution.

This method looked for a free slot in consecutive memory

spaces to store the overflow record. This method had some

drawbacks where the average search length increased rapidly

with the increase of packing density. In double hashing, when

collision occurs, a second hash function was applied to the key

to get a number c which was added to the original address to

obtain the overflow address. The drawback of this method was

that it moved the keys far away from their home address.

Chained progressive overflow used pointers to link the keys

having same home address together. Two pass loading was

needed to ensure that a home address was occupied by a home

record. To avoid overflow records from occupying home

addresses, a separate overflow area was used to store the

overflow records. To provide the advantage of simple indexing,

scatter tables were used which had pointers to records and

acted as an index. Research was done to improve the average

access performance. Many papers were published with

different techniques including repositioning the overflow

records. Such methods include Robin Hood hashing in which

the overflow record which probed to a longer distance was

stored in the address space and the one with shorter probe

distance was made to probe for the next free slot available [24].

These techniques were used both for main memory tables and

large secondary storage which typically has b > 1 number of

records/address.

III. DYNAMIC HASHING SCHEMES

In order to reduce the access time to files from secondary

storage devices, many techniques have evolved over time such

as indexing, B-Trees, B+ Trees and hashing. Among those,

hashing is the most efficient file organization technique that

provides O(1) access to files stored on secondary storage.

While Hashing provides efficient access for unchanging files,

Dynamic Hashing is used for files that grow and shrink

dynamically.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 6 619 – 623

__

620

IJRITCC | June 2016, Available @ http://www.ijritcc.org

A. Extendible Hashing

Extendible hashing is a technique that increases or

decreases the number of slots in a hash table in proportion to

the number of elements in the table. The directory size needs

to be a power of 2. Hash addresses are obtained by a hashing

function that gives a sequence of bits. Overflows are handled

by doubling the directory which logically doubles the number

of buckets. The overflow bucket is split. Extendible hashing

allows insertions and deletions to occur without resulting in

poor performance after many such operations. Fagin, et al

states that extendible hashing can be used for reducing the

number of page faults for accessing any data from dynamic

files [8]. They analyzed and simulated the performance of

extendible hashing and conclude that it is an attractive

alternative to other access methods such as balanced trees and

radix search trees.

B. Linear Hashing

Linear hashing is a dynamic hashing technique for disk-

based files. The file grows or shrinks, one bucket at a time.

Like Extendible hashing, it uses more bits of the hashed key as

the address space grows but unlike Extendible Hashing, it does

not make use of an explicit directory. A chain of overflow

pages are maintained at the overflow bucket to handle the

overflow. The address space is extended linearly, one bucket

at a time. Litwin made a comparative study of the performance

of various file access techniques like classical hashing, trees

and virtual hashing and concludes that linear hashing provides

best performance in comparison [16]. Larson proposed a

simple method based on linear probing for handling overflow

records in connection with linear hashing. He also presented a

new method offering one-access retrieval for large dynamic

files and necessary address computation, insertion and

expansion algorithms are simulated [12].

IV. PERFECT HASHING

Perfect Hashing refers to hashing without

overflows/collisions. Perfect hash functions are used for

efficient storage of data in memory and fast access of items

from static sets like words in human languages, reserved

words in programming languages and routing tables.

Sprugnoli used Direct Perfect hashing method to deal with

small static sets [28]. He presented a hash function of the form

 where c and N are constants which were

determined by Quotient Reduction Method. For keys with

non-uniform distribution, he proposed the use of hash

functions of the form to achieve

better performance. He described a method called Remainder

Reduction Method to evaluate the constants and .

Direct Perfect Hashing is not suitable for larger sets. Fredman

et. al used a scheme that implemented Sprugnoli’s idea of

segmentation for handling larger sets [33]. Du, Hsieh et. al

proposed the use of Composite perfect hashing scheme in

which the hash function was a composite of a set of hash

functions } [32].Perfect Hashing has been

investigated as a technique for large file organizations and for

hardware applications like associative memory

implementation [23, 26]. Most recently, different Perfect

Hashing Techniques have received patents from US patent

office for their application in different areas. Perfect hashing is

used for faster pattern search, memory efficient storage, and

faster access to static sets and so on. Perfect hashing can be

used when the data set is known beforehand and it is possible

to hash the data without collisions. Zhou et.al have proposed a

IPV6 lookup approach based on hierarchical perfect hashing to

provide faster access to routing tables [32]. Hierarchical

perfect hashing was used to provide faster IP lookup. The

authors have conducted experiments and concluded that

perfect hashing improves the performance of the search even

for large routing tables. Botelho et. al received a US patent for

memory efficient cleansing of a de-duplicated storage system

with the use of a perfect hash function [2]. They proposed a

method to remove sensitive information from the memory to

avoid misuse of the data. They presented a comparison of the

memory requirement using different techniques like Reference

counts, Bloom Filter, Perfect Hash and Bit Vector.

V. HARDWARE HASHING

Hashing is fundamental for achieving a high performance in

computer architecture. In 1967, IBM hardware used hash

tables for page address translation using bit extraction.

Hashing is used extensively in hardware applications, such as

page tables, for address translation. Hashing is also applied in

bloom filters, Transactional Memory and networking

applications. Different versions of hash functions like SHA

(Secure Hash Algorithm) and MD(Message Digest) may be

used to implement bloom filters. Bloom Filters may be used in

different applications such as weak password dictionary, SPIE

(Source Path Isolation Engine) Trace-back, cache sharing,

networking and also in Transactional Memory [19, 3].

A. Transactional Memory

Multicore processors were introduced in the early 2000s

and have become a necessity to handle the increasing

workload. Now most systems are multi-core, such as, Intel

Xeon E7-2850 which is a ten core processor. Multicore

systems have two or more processing units called cores

integrated onto a single chip package. The basic idea behind

the use of multiple cores is to divide the workload among the

cores that process the instructions in parallel thereby

decreasing the overall computation time. The cores are

interconnected to one another via different network topologies

like bus, ring, mesh and crossbar. Multiple cores may share the

memory with independent cache memory for each core. Data

from main memory is fetched and stored in the cache. One of

the issues faced in implementing a multicore system is to

maintain data consistency between the shared data in multiple

caches. Transactional Memory (TM) has emerged as a

powerful notion which allows an effective concurrency

management [9, 13]. A transaction is a block of computations

that presents itself as being atomic and executed in isolation.

TM systems ease multithreaded application development by

allowing the programmer to define that some regions of code,

called transactions, must be executed atomically.

In order to make the system highly efficient, TM systems

implement concurrent execution of multiple transactions

concurrently. In case of a conflict, some of the transactions

may be aborted or stalled for some time. A conflict occurs if

two or more transactions access to the same memory location

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 6 619 – 623

__

621

IJRITCC | June 2016, Available @ http://www.ijritcc.org

and at least one of the accesses is a write. Transactional

Memory (TM) systems must track the read and write sets to

detect conflicts among concurrent transactions. An important

aspect of conflict detection is recording the addresses that are

read or written during a transaction at some granularity (e.g.,

memory block/word). Some TMs use signatures to summarize

unbounded read/write sets in bounded hardware at a

performance cost of occurrence of false positives (detection of

a conflict that is not present). Each signature is implemented

with a single k-hash function Bloom filter (True Bloom

signature). Led by Bulk [6], several systems including

LogTM-SE [31] and SigTM [18], have implemented

read/write sets with per-thread hardware signatures built with

Bloom filters [1]. ROCK was a multithreading, multicore,

SPARC microprocessor developed at Sun Microsystems

which was the first processor to support Transactional

Memory in Hardware [7].

B. Perfect Hashing Hardware

Perfect Hashing is also being used to improve the

performance in hardware. Perfect Hashing can be used to

develop hardware-friendly applications to improve the overall

performance of a system. Networking applications use perfect

hashing for faster lookup. Some of the applications of perfect

hashing has already been explained in the earlier section.

VI. UNIVERSAL HASH FUNCTIONS

Carter and Wegman introduced Universal Classes of

Hashing Functions which consisted of classes of hash

functions [4]. H1, H2 and H3 class of universal class functions

were introduced. Among these H1 and H2 class of functions

are applicable to file structures and H3 class of hash functions

can be used for hardware implementation.

A. H1 Class of Hash Functions

 class of hash functions can be defined as follows:

Let be the given set of keys and

 be the memory range available.

class of hash functions is a composition of 2 hash functions

 and defined as

 where p is a prime

number,

B. H3 Class of Hash Functions

H3 class of hash functions can be defined as follows:

Let Q denote the set of all Boolean matrices.

For a given and , let be the row of the

matrix q and and the bit of x. The hashing

function is defined as

where . denotes the bit by bit AND operation and the

exclusive OR operation. The class H3 is the set .

The following example illustrates the hashing functions and

hash address calculations. Example: Let be 8 and be 3.

Then the address space is and the key

space is . We randomly choose an 8 × 3

matrix q:

Then the hash addresses for keys 53 and 100 are

This class of hashing functions is universal. A class H of

hashing functions is said to be universal if no pair of keys

collide under more than of the functions in the class.

Here is the number of hashing functions in and is the

size of the address space.

Fig 1. Hardware Hash Address Generator

Hashing functions from this class can be easily

implemented in hardware. Figure 1 shows a circuit

implementation. When presented with the key the hash

address is the output. The matrix q can be generated in

software and then loaded into the bank of registers. The circuit

is self-explanatory and we will not elaborate further.

Ramakrishna studied the performance of class of hash

functions and concluded that by choosing hashing functions at

random from a class of hashing functions, the performance

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 6 619 – 623

__

622

IJRITCC | June 2016, Available @ http://www.ijritcc.org

in analysis of hashing can be achieved in practice on real-life

data [22, 24].

VII. BLOOM FILTER

A Bloom filter is a data structure that is used to check if a

given element belongs to a set or not [1]. A search for an

element returns a response as ‘not in the set’ with probability 1

removing the possibility of a false negative. There is

possibility of false positive where it responds with ‘may be in

the set’. Elements can be added to the set, but not removed.

For a given vector size, as more elements are added to the set,

the probability of false positives increases. Bloom filter was

first developed by Bloom in 1970s to separate words based on

some predefined rules [1]. He proposed a method to hyphenate

words from English dictionary depending on whether they

belong to a set or not. Mullin and Margoliash used bloom filter

to develop Spell Checking programs which suggested

corrections for words that were incorrect [21]. In the earlier

days, bloom filter was largely used for database applications to

provide faster access to files. Mullin found the use of a bloom

filter in predicting the size of a join in a relational database

which improved the performance in distributed databases [20].

Originally proposed to reduce the number of accesses to disk,

bloom filter finds a number of applications in networking

hardware [3, 29]. Some of the applications of Bloom filter in

networking includes routing table lookup [32], classification

of packets [15], per-flow traffic measurement [14] and so on.

To start with, the Bloom filter is a bit array of m bits, all

set to 0. There are k different hash functions, each of which

maps or hashes a set element to one of the m array positions

with a uniform random distribution. To add an element x, we

compute and set the corresponding

bit positions to 1. To query if y is present, we compute

 and check to see if the bit is set. If

any of the bits at these k positions happens to be 0, then the

element is definitely not in the set. If all are 1 then y is in the

set with a very high probability.

Table 1. Hash Values for keys x,y,z

Fig 2. Example for Bloom Vector

Consider the Fig. 2 which shows the structure of a Bloom

filter, representing the set . The table 1 shows the

positions in the bit array that each element is mapped to. For

this figure, and where m is bloom vector

size and is number of hash functions. For example, consider
the element w, which hashes to 4, 13 and 15. As the bit at
address 15 is 0, we can conclude that the element w does not
belong to the set. For an element , suppose the hash values are
3, 5 and 11. All the bit positions are 1 and we will falsely

conclude that belongs to the set. It is called a false positive If
all are 1, then either the element is in the set, or the bits have by
chance been set to 1 during the insertion of other elements,
resulting in a false positive.

VIII. CONCLUSION

Hashing was a very active area of research during 70s and
80s. Since new applications emerged in the areas of Bloom
filters and hardware applications, research in this area has
invigorated with a large number of publications appearing in
recent years. A simple query of "Hashing" to
scholar.google.com yielded over 14600 publications in the last
two years indicating the current momentum of research in the
area. The second author having worked for his Ph.D. thesis
over 30 years back is surprised as well as happy for this area to
be so active. Given the past, we foresee more applications
emerging for hashing techniques and corresponding
publications.

REFERENCES

[1] Burton H Bloom. ‘Space/time trade-offs in hash coding with
allowable errors. Communications of the ACM’ , 13(7):422–
426, 1970.

[2] Fabiano C Botelho, Nitin Garg, Philip N Shilane, and Grant
Wallace. ‘Memory efficient sanitization of a deduplicated
storage system using a perfect hash function’, April 19 2016. US
Patent 9,317,218.

[3] Andrei Broder and Michael Mitzenmacher. ‘Network
applications of bloom filters: A Survey’. Internet mathematics,
1(4):485–509, 2004.

[4] J Lawrence Carter and Mark NWegman. ‘Universal classes of
hash functions’. In Proceedings of the ninth annual ACM
symposium on Theory of computing, pages 106–112. ACM,
1977.

[5] Luis Ceze, James Tuck, Josep Torrellas, and Calin Cascaval.
‘Bulk disambiguation of speculative threads in multiprocessors’.
ACM SIGARCH Computer Architecture News, 34(2):227–238,
2006.

[6] Shailender Chaudhry, Robert Cypher, Magnus Ekman, Martin
Karlsson, Anders Landin, Sherman Yip, Hoakan Zeffer, and
Marc Tremblay. ‘Rock: A high-performance sparc cmt
processor’. IEEE micro, 29(2):6–16, 2009.

[7] Ronald Fagin, Jurg Nievergelt, Nicholas Pippenger, and H
Raymond Strong. ‘Extendible hashing, a fast access method for
dynamic files’. ACM Transactions on Database Systems
(TODS), 4(3):315–344, 1979.

[8] Maurice Herlihy and J Eliot B Moss. ‘Transactional memory:
Architectural support for lock-free data structures’, volume 21.
ACM, 1993.

[9] Donald E Knuth. ‘The art of computer programming’, vol. 3,
sorting and searching Addison wesley. Reading, Mass, pages
578–579, 1973.

[10] P.A. Larson. ‘Dynamic hashing’. BIT Numerical Mathematics,
18(2):184–201, 1978.

[11] P.A. Larson. ‘Linear hashing with separators:a dynamic hashing
scheme achieving one access’. ACM Transactions on Database
Systems (TODS), 13(3):366–388, 1988.

[12] James R Larus and Ravi Rajwar. ‘Transactional memory.
Synthesis Lectures on Computer Architecture’, 1(1):1–226,
2007.

[13] Tao Li, Shigang Chen, and Yibei Ling. ‘Per-flow traffic
measurement through randomized counter sharing’. IEEE/ACM
Transactions on Networking, 20(5):1622–1634, 2012.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 6 619 – 623

__

623

IJRITCC | June 2016, Available @ http://www.ijritcc.org

[14] Hyesook Lim and Ha Young Byun. ‘Packet classification using
a bloom filter in a leaf pushing area-based quad-trie’. In
Architectures for Networking and Communications Systems
(ANCS), 2015 ACM/IEEE Symposium on, pages 183–184.
IEEE, 2015.

[15] Witold Litwin. ‘Linear hashing: a new tool for file and table
addressing’. In VLDB, volume 80, pages 1–3, 1980.

[16] Yi Lu, Balaji Prabhakar, and Flavio Bonomi. ‘Perfect hashing
for network applications’. In 2006 IEEE International
Symposium on Information Theory, pages 2774–2778. IEEE,
2006.

[17] Chi Cao Minh, Martin Trautmann, JaeWoong Chung, Austen
McDonald, Nathan Bronson, Jared Casper, Christos Kozyrakis,
and Kunle Olukotun. ‘An effective hybrid transactional memory
system with strong isolation guarantees'. In ACM SIGARCH
Computer Architecture News, volume 35, pages 69–80. ACM,
2007.

[18] Michael Mitzenmacher. ‘Compressed bloom filters’. IEEE/ACM
Transactions on Networking (TON), 10(5):604–612, 2002.

[19] James K. Mullin. ‘Optimal semijoins for distributed database
systems’. IEEE Transactions on Software Engineering,
16(5):558–560, 1990.

[20] James K Mullin and Daniel J Margoliash. ‘A tale of three
spelling checkers. Software: Practice and Experience’,
20(6):625–630, 1990.

[21] M. V. Ramakrishna. ‘Hashing practice: Analysis of hashing and
universal hashing’. In Proceedings of the 1988 ACM SIGMOD
International Conference on Management of Data, SIGMOD
’88, pages 191–199, New York, NY, USA, 1988. ACM.

[22] M. V. Ramakrishna and P.A. Larson. ‘File organization using
composite perfect hashing’. ACM Trans. Database Syst.,
14(2):231–263, June 1989.

[23] M.V. Ramakrishna, E. Fu, and E. Bahcekapili. ‘Efficient
hardware hashing functions for high performance computers’.
Computers, IEEE Transactions on, 46(12):1378–1381, Dec
1997.

[24] Celis, Pedro, Per-Ake Larson, and J. Ian Munro. "Robin hood
hashing." Foundations of Computer Science, 1985., 26th Annual
Symposium on. IEEE, 1985.

[25] M.V. Ramakrishna and GA Portice. Perfect hashing functions
for hardware applications. In Data Engineering, 1991.
Proceedings. Seventh International Conference on, pages 464–
470. IEEE, 1991.

[26] Haoyu Song, Sarang Dharmapurikar, Jonathan Turner, and John
Lockwood. Fast hash table lookup using extended bloom filter:
an aid to network processing. ACM SIGCOMM Computer
Communication Review, 35(4):181–192, 2005.

[27] Renzo Sprugnoli. Perfect hashing functions: a single probe
retrieving method for static sets. Communications of the ACM,
20(11):841–850, 1977.

[28] G.M. Sridevi, T.V. Rohini, K Kameswari, and M.V.
Ramakrishna. ‘Bloom vector join for sensor query processing’.
In Proc.2nd Internatinal Conference on Computing, Engineering
and Information Technology(ICCEIT), Sept, 2013.

[29] Paulus Stravers. ‘Translation lookaside buffer’, March 18 2004.
US Patent 20,040,054,867.

[30] Luke Yen, Jayaram Bobba, Michael R Marty, Kevin E Moore,
Haris Volos, Mark D Hill, Michael M Swift, and David A
Wood. Logtm-se: ‘Decoupling hardware transactional memory
from caches’. In High Performance Computer Architecture,
2007. HPCA 2007. IEEE 13th International Symposium on,
pages 261–272. IEEE, 2007.

[31] Shijie Zhou and Viktor K Prasanna. ‘Scalable gpu-accelerated
ipv6 lookup using hierarchical perfect hashing’. In 2015 IEEE
Global Communications Conference (GLOBECOM), pages 1–6.
IEEE, 2015.

[32] Du, Min Wen, et al. ‘The study of a new perfect hash scheme’.
IEEE Transactions on Software Engineering 9.3 (1983): 305.

[33] Fredman, Michael L., János Komlós, and Endre Szemerédi.
"Storing a sparse table with 0 (1) worst case access time."
Journal of the ACM (JACM) 31.3 (1984): 538-544.

http://www.ijritcc.org/

