
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 3 19 – 25

19
IJRITCC | March 2017, Available @ http://www.ijritcc.org

Efficient Algorithms for Online Task Placement on Runtime Partially

Reconfigurable FPGA

Dr.Senoj Joseph

Department of ECE

Sri Krishna College of Technology

Coimbatore

senojjoseph@skct.edu.in

Abstract—Recent generations of FPGAs allow run-time partial reconfiguration. One of the challenging problems in such a multitasking systems

is online placement of task. Many online task placement algorithms designed for such partially reconfigurable systems have been proposed to

provide efficient and fast task placement. In this paper two different approaches are being used to place the incoming tasks. The first method is

uses a run-length based representation that defines the vacant slots on the FPGA. This compact representation allows the algorithm to locate a

vacant area suitable to accommodate the incoming task quickly. In the proposed FPGA model, the CLBs are numbered according to Peano

Space filling curve model. The second approach is based on harmonic packing. Simulation experiments indicate that proposed techniques result

in low ratio of task rejection compared to existing techniques.

Keywords-Partial Reconfiguration; Task Placement; Free Space Management; Peano Curve; FPGA; Bin packing

__*****___

I. INTRODUCTION

Reconfigurable devices with partial reconfiguration

capabilities allow multitasking applications on a single chip.

Embedded applications like cryptography, video

communication, image processing etc. can exploit this

capability. Efficient placement and scheduling algorithm can

improve FPGA resources utilization and overall execution time

of applications.

One of the most interesting problems is to decide where to

locate the bitmap of a new task in the FPGA when it must be

run. A data structure is required to keep track of available free

area and the algorithm must find out the best location for the

arriving task, trying to use the reconfigurable area as efficiently

as possible. In online placement system, due to dynamic

addition and deletion of tasks, the empty area of FPGA

becomes highly fragmented and FPGA area cannot be utilized

efficiently.

In this study a new data structure based on one dimension

run-length encoding is developed to manage the empty area.

Using this data structure placement algorithm can locate

suitable location to place the incoming task quickly. A new

fragmentation metric gives an indication of continuity of free

space. The FPGA surface is modeled by a matrix coded

according to Hilbert curve. The results show significant

improvement over placement using well known algorithms like

Bottom left, 2D adjacency based placement, Least interference

fit technique and C Look algorithm.

This study is organized as follows: Section 2 presents an

overview of problem of Scheduling and Placement in Dynamic

Reconfigurable devices. A brief review of various placement

and scheduling techniques are given in Section 3. In section 4,

a new technique called Peano curve based placement is

proposed. Section 5 describes about the bin packing techniques

for online placement algorithm. Section 6 describes about the

experimental setup made for performance analysis. Results and

discussion are presented in section 7, followed by conclusions.

II. SYSTEM MODEL

The proposed online placement system model is as shown

in Figure 1 which consists of Host CPU and partially

reconfigurable FPGA. The reconfigurable resources in FPGA

are a set of CLB organized in a two dimensional array. The

placement module running on the host CPU consists of

scheduler, placer and loader. The scheduler determines which

of the tasks in the module library should be loaded and

executed next. The placer will manage free space and find out

optimum placement for the task. The loader loads the

configuration data of tasks in the FPGA. When a task

completes the resources occupied by it will be released.

Figure 1 System model

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 3 19 – 25

20
IJRITCC | March 2017, Available @ http://www.ijritcc.org

The system assumes that the tasks arrive online, queued and

placed in arrival order. As long as free area is available in the

FPGA the incoming task will be placed on an unoccupied area

on the FPGA. It there is no free space and the task cannot be

delayed then the task is rejected. A good placement algorithm

should reduce rejection rate.

The tasks are non-pre-emptive. Once a task is loaded onto

the FPGA, it runs to termination. The tasks should be

independent without any precedence constraints. These task

parameters are defined as: for a task ti = (hi, wi, ai, si, di, xi,

yi), hi and wi represent its height and width respectively and

are measured in number of cells, ai, si and di are the task arrival

time, execution time and deadline time. The rectangular area

assigned to the task by its top left corner (xi, yi) where xi: row

number and yi: column number. The size, arrival time,

execution time and deadline are uniformly distributed in a

predefined region and a-priori unknown.

III. LITERATURE SURVEY

An algorithm for managing free space by keeping track of

non-overlapping rectangles is proposed in Ahamadenia et al

[1]. The main disadvantage is that the number of empty

rectangles produced quickly increases with more task

insertions. This can lead to some tasks being rejected even

though there is enough space to accommodate them but this

space is divided between two non-overlapping rectangles. To

solve this problem, they presented the idea of allowing

overlapping of the empty rectangles, specifically overlapping

maximal empty rectangles MERs. For n tasks, we can have O

(n) non-overlapping rectangles and in the case of MERs we can

have O (n2) rectangles.

Walder et al [2] proposed three partition algorithms based

on Bazargan method: Enhanced Bazargan, on the fly and

enhanced on the fly. The third is based on a 2D hashing table to

find a feasible task placement with a run time complexity of

O(1), but they did not account for reconfiguration time and also

they did not account for the update time needed to update the

hashing table.

Ahamadenia et al [3] proposed Horizontal line algorithm in

which two horizontal lines are used: one above and another

below the placed tasks. They also presented a free space

management based on contour of union of rectangles

algorithm. Staircase algorithm was suggested by Handa and

Vemuri [4] for finding the maximal empty rectangles.

Bottleneck is time for constructing staircase and finding MERs.

Vertex lists was used to store free space [5] where each vertex

is a possible location for an input task. Module connectivity to

the remainder of the system is taken into account in [6]. Scan

line algorithm was proposed by [7]. But finding maximum key

elements and MER is time consuming. An intelligent merging

technique to speed up Bazargan algorithm without losing its

placement quality was proposed in [8]. It is a combination of

three techniques selected based on the task characteristics. The

techniques are: Merge only if needed, partial merging and

direct combine. Deng et al [9] proposed an algorithm which

packs tasks densely called 2D and 3D adjacency method. A

CLook and CSAF method was proposed in [10]. Senoj and

Baskaran [11-13] proposed space filling curve method for

online placement task.

IV. PROPOSED PEANO CURVE TECHNIQUE

Sophisticated mapping functions have been proposed in the

literature. One, based on interleaving bits from the coordinates,

which is called z-ordering was proposed. By interleaving bits

we get another curve called Gray code curve. A third method,

based on the Hilbert curve has been proposed in literature. All

these curves are having a granularity of 2 and will work for a

square area which has both sides even. In this paper we show a

curve which works on an odd sized area. Figure 2 shows the

steps in Peano space filling curve. In this method the FPGA

area has been labelled in Peano curve order. A novel data

structure called run-length matrix has been introduced in [11-

13] to describe the target area. In the Figure 2 the shaded area

indicates task already placed. The free area can be described

using run-length matrix as shown below: RL

={(6,8),(16,2),(30,18),(50,2),(56,16)}.

Figure 2:Peano curve with some tasks placed

Since the Peano curve is a 3 regular curve, the size of

FPGA should be a multiple of 3. Each block consists of 9 cells,

which are continuous. Working is similar to the other curves,

but differs in the method used to identify the loops inside the

curve. The Figure 3 shows the various loops identified in a

Peano curve. Identifying loop using mask is similar to the

Hilbert technique, but the decision is based on cells X-1, X+1

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 3 19 – 25

21
IJRITCC | March 2017, Available @ http://www.ijritcc.org

and X+5. The sub function has been adjusted to match the

Peano curve. This type of curves can be suitable for odd sized

tasks also. In algorithms based on area matrix methods

whenever a new task is added or deleted the cells have to be

recalculated. This takes considerable amount of time. The run-

length will be smaller in size (worst case will be one eight of

the number of CLB’s) and hence less number of entries only

need to be checked. Updating the run-length is also having less

complexity.

Figure 3: Loops occurring in Peano curve

The quality of placement algorithm can be improved by

finding all feasible solutions and then selecting one based on

fragmentation. Best fit find the fragmentation index for all the

feasible solutions and place the task in a position that reduces

the resulting fragmentation. First fit method tries to place task

in the first available location that can accommodate the

incoming task. It doesn’t guarantee optimal result because it is

a heuristic and the future inputs are unpredictable.

V. PROPOSED BIN PACKING BASED TECHNIQUES

A bin packing problem requires packing of a set of objects

into a finite number of bins of capacity V in a way that

minimize the number of bins used. A bin is empty if no items

are packed into it else it is used. Bin packing is an NP hard

problem. For a general bin packing problem, it is assumed that

number of items and their sizes are known before the packing

begins. A common situation is that the items come in some

order and must be assigned to some bin as soon as they arrive

without any knowledge of the remaining items. This situation

comes under the category called online bin packing problem.

Online bin packing is difficult owing to the fact that

unpredictable item sizes may appear. Therefore the

performance of the online bin packing algorithm is

substantially affected by the permutation of items in a given

list. The online task placement problem on a partially

reconfigurable belongs to this category with a few changes.

The number of bins is kept constant and the fact that items will

be removed from the bin when they complete execution,

creating vacant slot in their place which can be utilised for the

incoming tasks. The FPGA area has to be partitioned into bins.

The widths of bins are not constant, but decided based on the

application problem.

Several algorithms exist in literature for bin packing.

Probably the simplest among them is NextFit algorithm which

looks only at the most recently open bin. If the item fits it is

packed to that bin else it will be put in a new bin and the other

is never considered again. The algorithm FirstFit scans the bins

in the opening order and put the item in the first bin with

sufficient capacity. If no bin is found, then a new bin is opened

to accommodate the item. BestFit works similarly, but puts the

item in the open bin with the least remaining capacity that is

sufficient for the item. The tool used to compare online bin

packing algorithm is competitive analysis. Competitive analysis

compares the performance of a given online algorithm with that

of an optimal offline algorithm. The competitive ratio of

NextFit is 2 and that of BestFit and FirstFit is 1.7. The

Harmonic algorithm by Lee & Lee [14] classifies item by size

and put different items into the same bin if and only if they

belong to the same class. Harmonic algorithm and it extensions

achieve the best known competitive ratio of 1.589 [15].

Consider an FPGA of size 32x32. The inputs are task with

their area specified. The FPGA is divided into bins of equal

width, e.g., 2 CLB. Let the maximum size of the bin be 32

CLB. The task of height ‘i’ will be assigned to a bin ‘i’. Hence

this algorithm is called Fixed height (FH). If it cannot be

accommodated, then the task will get rejected. The maximum

size of task is taken as 32 CLB so that bin can hold at least two

large sized tasks. The advantage is that searching for empty

locations can be restricted to only one bin, and if there exist a

vacant space it will surely fit, because in that bin all the tasks

kept will have the same height. The drawback with this method

is that some of the bins will be heavily used as shown in Fig

4.a.

The second method named Harmonic Height (HH) is based

on harmonic algorithm. The bins are having constant width.

The total number of bin is obtained by dividing FPGA width by

bin width. In this case also the maximum size of the incoming

task is assumed to be 32 CLBs. The height of each incoming

task will be calculated by dividing the area of task with the bin

width. There are four types of bins based on height of the tasks

that can be included in that bin. This classification is done

according to the harmonic algorithm. Type 1 bin will

accommodate tasks with height less than 3, type 2 bin will have

task with height [3 to 4], type 3 bin will accommodate tasks

with height [5 to 7] and type 4 bin will accommodate tasks with

height [8 to 16]. These four types of bin will be repeated ‘N’

times shown in (1) where W is width of FPGA, T is number of

bin types and B is the width of each bin. This method has better

performance than the FH as shown in Figure 4.b.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 3 19 – 25

22
IJRITCC | March 2017, Available @ http://www.ijritcc.org

Figure 4: (clockwise a,b,c,d) : Screenshot for Bin packing

based placement

𝑁 =
𝑊

𝑇 ∗ 𝐵
 (1)

The third method named as Harmonic Bin Width technique

(HBW) is having bins with different width made according to

harmonic algorithm. A FPGA of width 32 will be divided into

bins of width 3, 5, 8, 16. If the task size is greater than 16 put it

in the largest bin. If size is between 8-15 use the bin of size 8.

For task size 5-7 use bin of size 5 and smaller tasks use bin 3.

The simulation is performed using a test bench having 300

tasks. The intertask arrival time is in range [0-50] execution

time range is [0-300], slack [0- 50] etc. The simulation is

repeated with different test set to study the effect of inter-task

arrival time, slack and task size. It is found that the algorithm

leads to internal fragmentation. The screenshot is shown in

Figure 4c.

The HBW method suffers from internal fragmentation. i.e.,

when a task of size 17 arrives, it is assigned to a bin of width

16. Therefore the height of task will be fixed to 2 taking up an

area of 32 CLBs on the FPGA instead of its actual size of 17

CLBs. A solution to this problem is to assign the task to a bin

that reduces the internal fragmentation. The internal

fragmentation resulting while placing tasks of size up to 32 in

bins of different width was estimated. The incoming task will

be assigned to a bin, which produces the least internal

fragmentation. However new problems arise because it is found

that the bins of width 3 and 5 get maximum number of tasks

and will be filled quickly. Therefore, a question arises on how

to maintain each bin equally.

This led to the idea of preparing a look up table, which

gives the order of the bin choices for various task sizes. This

method is named as suitability index method. For a particular

task size, if the bin that comes first in the list does not having

vacant space, then the next choice from the lookup table will be

attempted. If all the choices have exhausted, then the task has

to wait till vacant space is created in any of these bins or get

rejected when it cannot meet the deadline. The screenshot is

given in Figure 4d.

The task is defined by their area. The aspect ratio of the task

will be decided by the algorithm by considering three important

parameters. They are vacant space inside bin, internal

fragmentation if the task placed in that bin, Aspect ratio (G) of

the task if placed in that bin. G is ratio of height to width of

task. The first condition gives more preference to bins having

less internal fragmentation (I). For penalizing tasks having

elongated shape, a parameter F is defined based on the aspect

ratio as shown in (2). The minimum condition is used in (2) to

avoid domination of F in (3). Otherwise the higher width bins

will get less chance for placing tasks. The third parameter

makes sure that all the bins are uniformly utilized. Combining

all, a parameter called suitability index (S) is defined as (3),

where K is percentage of height occupied in that bin and M is

the maximum possible value for internal fragmentation. M will

be calculated as largest bin width minus 1.

𝐹 = min⁡(1, 1 − 𝑔 (2)

𝑆 =
𝐼

𝑀
 + 𝐹 + 𝐾 (3)

To illustrate this method, let us assume an FPGA of size

32x32, let the occupancy level of bin3, bin5, bin 8 and bin16 be

0.312, 0.1875, 0.125 and 0.0625, respectively. Maximum

possible fragmentation is 15, which is for a bin of width 16. Let

the task to be placed have an area 30. For bins with width 3 and

5 internal fragmentation will be zero. If placed in bin8 and

bin16 the internal fragmentation is 2 units and 2 units,

respectively. For bin of width 3 the aspect ratio is 3.3 since the

height is 10. For bin of width 5 the aspect ratio is 1.2 since

height is 6. The aspect ratio value indicates that the best choice

for the task is bin 5. If all the parameters have equal weightage

the suitability index is calculated as given below, which shows

that it is better to put the task in bin5 even though the bin3 have

the least internal fragmentation and bin16 has lowest

occupancy.

Bin3 S=0+1+0.3125=1.3125

Bin5 S=0+0.2+0.1875=0.3875

Bin8 S= (2/15)+0.5+0.125= 0.758

Bin16 S= (2/15) +0.875+0.0625=1.07.

VI. EXPERIMENTAL SETUP

Simulation framework has been done using Matlab 7.8

running on 2.2 GHz Intel core i3 processor. The simulation is

done using randomly generated data for evaluating the

algorithm. This has been done in the past because it is

impossible to generate real data for future technological

advancement. In this section we present two methods: the first

one is a fast placement and another fragmentation aware

placement technique. These techniques are compared with

standard placement techniques like Bottom left, 2D adjacency

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 3 19 – 25

23
IJRITCC | March 2017, Available @ http://www.ijritcc.org

based placement, Least interference fit technique, EAC [16]

and Clook algorithm. Bottom left is a classical bin packing

algorithm which places the incoming task first empty slot

available starting from bottom left corner of FPGA. 2D

adjacency based technique choose the location for the incoming

tasks to make tasks placed ”densely”, in order to have larger

continuous free area remains. The 2D-Adjacency of a

Candidate Cell equals to the number of adjoining

tasks/boundaries of the incoming task if the Base Cell of the

incoming task is placed here. Least interference technique will

select a location which minimize the number of columns

disturbed to minimize the number of running tasks getting

halted while reconfiguration. Clook method is explained in Lee

et al. [10].

In order to evaluate the effectiveness of algorithm

simulation is performed for an FPGA with 27x27 CLB. This

model is adopted because the previous studies most relevant to

this work used FPGA of similar size for their simulations and

the space filling curve works on surface with size power of

two. Sixty sets of 500 tasks each are randomly generated for

each experimental environment and the results shown in next

section are the average over these sets. The height and width of

the tasks are chosen randomly between 1 and a maximum value

of 9 CLBs. Lifetime of the tasks is generated randomly

between 1 and 500 time units. Delay between two consecutive

tasks is also chose between 1 and user defined L time units.

The workload can be controlled using different upper bound L.

A smaller L means that the tasks arrivals are more frequent and

FPGA area utilization is higher. All parameters are assigned by

sampling a uniform random distribution function in their

respective validity intervals

The following assumptions are used in this work. The tasks

are independent and pre-emptive. Pre-emptive task is one if

started cannot be stopped before its expiry. Due to this

relocation of tasks is also not permitted. Since the tasks are

independent they can be scheduled in any order. Rotation of

task is not used. For bin packing methods the incoming task

area will be given. The width and height of the task will be

decided by the algorithm. The following parameters are

measured to test the effectiveness of the proposed algorithm.

Suppose during the simulation interval (0, T), N tasks arrived

and n tasks were rejected. A task may be rejected placement if

sufficient contiguous area is not available currently and it if

cannot meet its deadline if scheduled at a later time. Average

task rejection ratio is the ratio of number of tasks rejected to

total number of tasks.

VII. RESULTS AND DISCUSSION

The simulation for the Peano curve is done on an FPGA of

size 27x27. The granularity (size of the smallest task) of the

task is taken as 3x3block. The size of tasks should be a multiple

of three. If it is not so, the algorithm will round the size to

nearest multiple of 3 thereby allotting more space on the FPGA

than required. The results are similar to the other curves and a

screenshot for the placement is shown in Figure 5. The colored

boxes correspond to tasks that are currently running. Task that

have completed is not shown. The white region indicates empty

region which is already got fragmented due to placement and

removal of tasks. The results are tabulated in Table 1.

The results show that the performance of the proposed

placement matches with conventional method for all cases. The

rejection rate was more for large sized task as expected. The

rejection rate increases with decrease in inter-task arrival time

range. When tasks arrive in quick succession then more number

of tasks will be running on the FPGA leaving less room for the

newly arrived task. When deadline is tight then more tasks get

rejected. If deadline is loose then tasks can wait as late as

possible and get placed whenever a free slot is available. When

slack becomes very large then none of the tasks get rejected.

The simulations of all the algorithms are run with 25 task sets

each having 200 tasks and the average value of each parameter

is shown in Table 2. The task sets are generated with different

values for execution time range, slack and inter-task arrival

time period. HH and SI are found to be having better

performance in all the parameters.

Figure 5: Screenshot of Peano curve

VIII. CONCLUSION AND FUTURE ENHANCEMENT

In this study a new approach for scheduling and placement

of task on a dynamic reconfigurable device based on Peano

space filling curve method is being presented with the goal of

minimizing task rejection ratio and increasing FPGA

utilization. A second approach using bin packing technique is

also proposed. Both methods work well compared with existing

techniques in terms of rejection ratio. They are both scalable to

work on bigger area matrices.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 3 19 – 25

24
IJRITCC | March 2017, Available @ http://www.ijritcc.org

ACKNOWLEDGEMENT

The Author thanks the SKCT management and

acknowledges the immense help received from the scholars

whose articles are cited and included in references of this

manuscript. The author is also grateful to

authors/editors/publishers of all those articles, journals and

books from where the literature for this article has been

reviewed and discussed

REFERENCES
[1] A. Ahmadinia, C. Bobda, M. Bednara and J. Teich, A new

approach for on-line placement on reconfigurable devices,

Proceedings of the 18th International Parallel and Distributed

Processing Symposium, IEEE Xplore Press, pp: 134-140, April.

26-30, 2004

[2] Walder, H., C. Steiger and M. Platzner, Fast online task

placement on FPGAs: Free space partitioning and 2D-hashing,

Proceedings of the IEEE International Parallel and Distributed

Processing Symposium, IEEE Xplore Press, pp: 178-178, Apr.

22-26, 200.

[3] A. Ahmadinia, C. Bobda, S.P. Fekete, J. Teich and J.V.G.Veen,

Optimal free space management and routing conscious dynamic

placement for reconfigurable devices, IEEE Trans. Comput., 56:

pp. 673-680, 2007

[4] M. Handa, and R. Vemuri, An efficient algorithm for finding

empty space for online FPGA placement, Proceedings of the

41st annual Design Automation Conference, San Diego, pp:

960-965, Jun. 07-11, 2004

[5] J. Tabero, J. Septian, H. Mecha and D. Mozos, A Low

Fragmentation Heuristic for Task Placement in 2D RTR HW

Management, Proceedings of the 14th International Conference

field programmable Logic Application, IEEE Xplore Press,

Belgium, pp: 241-250, Belgium, Aug. 30-Sep. 1, 2004.

[6] M. Tomono, M. Nakanishi, S. Yamashita, N. Nakajima and K.

Watanabe, A new approach to online FPGA placement,

Proceedings of the 40th Annual Conference Information

Sciences Systems, IEEE Xplore Press, Princeton, pp: 145-150,

Mar. 22-24, 2006.

[7] J. Cui, Q. Deng, X.Q. He and Z. Gu, An efficient algorithm for

online management of 2D area of partially reconfigurable

FPGAs, Proceedings of the 7th IEEE International Conference

Design, Automation and Test in Europe Conference Exhibition,

IEEE Xplore Press, pp: 1-6, Apr. 6-20, 2007.

[8] T. Marconi, Y. Liu, K. Bertels and G. Gaydadjiev, Intelligent

merging on-line task placement algorithm for partial

reconfigurable system, Proceedings of the 8th Design,

Automation and Test in Europe, IEEE Xplore Press, Munich, pp:

1346-1351, Mar. 10-14, 2008.

[9] Q. Deng, F. Kong, N. Guan, L. Mingsong and W. Yi, On-line

placement of real-time tasks on 2D partially run-time

reconfigurable FPGAs. Proceedings of the 5th IEEE

International Symposium Embedded Computing, IEEE Xplore

Press, Beijing, pp: 20-25, Oct. 6-8, 2008.

[10] T.Y. Lee, C.C. Hu and C.C. Tsai, Adaptive free space

management of on-line placement for reconfigurable systems,”

Proceedings of the International Multi-Conference Engineers

Computer Scientists, Hong Kong, pp: 322-326 Mar 17-19, 2010.

[11] Senoj Joseph & Baskaran, K, An FPGA Task Placement

Algorithm Using Reflected Binary Gray Space Filling Curve,

International Journal on Reconfigurable Computing, vol. 2014

pp.1-7

[12] Senoj Joseph & Baskaran, K, A Temperature Aware Z-Curve

Based Online Task Placement Algorithm for Partially

Reconfigurable FPGAs, Journal of Theoretical and applied

Information technology, vol.66, no.3, pp. 861-866, 2014 ISSN

1992-8645

[13] Senoj Joseph & Baskaran, K, An online task placement

algorithm using Hilbert curve for a partially reconfigurable Field

programmable gate array’, TENCON 2015 IEEE region 10

Conference

[14] Lee, CC & Lee, DT 1985, A simple online bin packing

algorithm, Journal of the ACM, 32(3), pp. 562-572

[15] Benjamin, H & Tjark, V 2011, Probabilistic alternatives for

competitive analysis, ZIB-report 11-55, Berlin, Germany

[16] Iturbe, X, Benkrid, K, Arslan, T, Hong, C & Martinez, , Empty

resource compaction algorithms for real time hardware task

placement on partially reconfigurable FPGAs subject to fault

occurrence’, Proceedings of International Conference on

Reconfigurable computing and FPGAs, pp. 27-34, 2011.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 3 19 – 25

25
IJRITCC | March 2017, Available @ http://www.ijritcc.org

Table 1:Rejection rate for various workloads

 Rejection rateRejection rate (%)on rate(%R

Inter-task

arrival time

period (time

units)
2DA BL CL LIF EAC PFF (proposed)

10 49.00 49.13 48.00 49.17 49.40 48.13

25 33.88 35.20 33.24 35.60 35.44 34.20

50 19.72 20.52 18.80 20.64 20.36 18.28

75 11.08 12.04 10.44 12.20 12.44 10.16

100 7.52 7.88 7.00 8.16 9.04 6.60

125 5.72 6.40 5.24 6.76 6.56 5.12

Table 2:Performance of Bin packing algorithms

 Program execution time Number of task rejected Average waiting time for the

tasks

(Time units)

Total schedule time

(time units)

FH 24 90.16 41.96 1084.40

HH 27.2 6.88 58.68 1116.68

HBW 24.4 21.88 27.12 1113.48

SI 49 8.64 2.6 1073.28

