
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 1 60 - 68

60

IJRITCC | January 2016, Available @ http://www.ijritcc.org

Analysis Design and Outcome for Mobile Cloud Computing On Various

Platforms

Mr. Rushi Raval 1st

Research Scholar, Department of Computer Sci.

Saurashtra University,

Rajkot, India

rushionline@ymail.com

Dr. Atul Gonsai 2nd

Associate Professor, Department of Computer Sci.

Saurashtra University,

Rajkot, India

atul.gosai@gmail.com

Abstract— Now-a-days web services (WS) are essential part to interact communication between internet and mobile clients. To build WS,

researcher use SOAP based WS and REST based WS Architecture as well. Here, researcher carries out work and developed both WS with

different parameters on to different cloud platforms. We were design cloud web services model with SOAP and RESTful applying with JSON

based Cloud Web Services respectively in both of the CWS. The CWS are used by entirely different CWS application-based model to interact

data context using diverse cloud servers/platforms. We have conducted different test cases on both and tested on web servers and on cloud

servers such as Apache-Server, Windows Phones, Heroku and Google App Engine (GAE). Further, researcher also developed two models for

mobile clients such as Native app model and Web work app model. Result of research suggestions that the REST based CWS is better in

performance than SOAP based CWS and web work app model is to do better with cross compatibility features.

Keywords- Mobile Cloud Computing; Cloud Web Services; Cloud Platforms; CWS Communication; Android; Windows Phone;

__*****___

I. INTRODUCTION

Cloud platforms provide wide range of features for

computer related terms. Cloud computing usage will enhance

the robustness, reliability, and scalability. Web-Services (WS)

is a utility written as an application or module and established

with consumption of differ technologies such as, JSON, CSV,

RESTful CWS placed on cloud-server which can re-claimed

via difference protocols / methods such as, HTTP; GET; PUT;

POST; HEAD in another application such as a client-server or

in distributed architecture manner. As CWSs are platform-

unbiased and in general data context represent as text-based

this can proposal, run as responsive resource and access on

numerous platforms with dissimilar technologies.

With this paper, researcher explores a reasonably new

methodology for REST and SOAP based API to communicate

and transfer data context from “r-restful-client” as an app

model to “r-restful-ws” another app model using cloud servers

such as, G.A.E. and Heroku. The REST, SOAP, CSV and

JSON (Java-Script Object Notation) are the standards which

are used to join up with each-other over cloud computing

platforms. These types of cloud web services are identically

dynamic and economical as well. The CWSs can be functional

in various different differ architecture methods and styles and

frame as per mobile clients characteristic. For example, REST

is lightweight as associated to SOAP standards and is

frequently based on URL; numerous IT companies have used

REST based WS for their architecture such as, Amazon-

(AWS-S3), e-Bay, Flickr, and Yahoo pipes.

The leading concentration of this paper is to Analysis &

Design of a REST and SOAP CWS application-based model
for apps grouping on cloud-server/platforms. This paper is
projected to design a cloud web services for mobile client with
the implementation of several app based model such as, r-
restful-client / r-soap-client apps. The CWS app models are
designed and coding into PHP and C#.NET. For data storage
point of view researcher also use data content format for ex,

CSV and JSON into cloud platforms. Furthermore, as growing
number of mobile clients and obtainability of CWS also drives
the essentials of adapting and personalizing service-based mash
ups.

II. CONTEXTUAL OF CLOUD WEB SERVICES

Many IT enterprises and commercial industries are being

implemented cloud-services as their part of the organizations,

since cloud computing offers several services to above kind of

organisations such as, IaaS, DaaS, SaaS, MaaS and PaaS.

Cloud platforms offer to host resources such as, WS, Web API,

and other applications model as well.

WS is presently the foremost technology for delivering

services to the end-users. In a mobile environment, most of the

challenges are interrelated to platform and resource /

infrastructure restrains. Because RESTful WS only requires

HTTP protocol, it uniforms the mobile environment in better

way. Caching and enhancing / compressing are two

approaches to deal with bandwidth restrain. In our approach,

the middle ware provides RESTful interfaces for mobile users.

It also caches and optimizes service results from Cloud

Service for e.g., Google App Engine, Microsoft Windows

Azure, and Heroku.

Web Service is a broadly implemented methodology for

given that services, but most prevailing web services in the
Cloud are not attentive of mobile clients [3]. REST-WS is
specifically designed for light-weight and elastic interfaces,
such as, mobile web service communication. In this paper
researcher has implemented cloud web services with proposed
app model UI into cloud environment.

III. OBJECTIVE AND PROPOSED DESIGN FOR CWS APP

MODEL

The objective of this paper is to do Analysis and Design of

a cloud web services model for mobile clients based on SOAP

and REST CWS structures and provide service mash up

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 1 60 - 68

61

IJRITCC | January 2016, Available @ http://www.ijritcc.org

concept as well, hence design several application based

models for e.g., “r-restful-ws” CWS app-model with added

mash up concept and for mobile client design r-restful-client

and r-soap-client CWS app models. To achieve objective,

researchers have intended above said CWS application models

with SOAP and RESTful based CWSs and also use JSON and

CSV data format for storing and parsing data, communicate

with CWSs uses JSON format as light-in-weight and support

for thin clients such as mobile users, smart-phone clients, as

well.

Researcher has select Native app model for windows based

clients and Web work app model for android based clients and

also for implement cross compatibility for mobile users.

Following is the CWSs modules shown with their functions.

Native CWS App Models:

 Built upon specific platform or device dependent

 Rich GUI features

 Use C#, Windows Phone SDK, and Silverlight

 Here use a Windows platform 7.1 as Native CWS app

model

Web-work CWS App Models:

 Built upon cross-platform or device independent

 Additional method to implement the mobile CWS

 The user app runs on a Web browser

 Use PHP, JS, HTML, and CSS

 Here use an Android platform 4.4.4 as Web-work CWS

app model.

IV. IMPLEMENTATION OF CWS APP MODELS

The aim of this paper is to design CWS app models for

Mobile-clients, for validate the mobile users design;

Researcher involved the proposal with a various types of apps

are developed. Starting from initial level we have created an

app for providing private service mash up platform in which

mobile users have facility to see live map, mark the locations

into app, and also tag that locations with user defined remarks

using android based app. Figure 1 is the screenshot which

displays that app screens [1]:

Live map (Normal view)

Live map (Hybrid view)

Figure 1: Live Map on Android based Smart-phone

Researcher has designed another app for described the CWS

interrelated work with keep records of the students, and

students can see the updates related to admission criteria, fees

structure as day-to-day operation. Admin side also developed

to download the students’ data as information in JSON or CSV

format as well; figure 2 is illustrating the mobile client design

for app named “r-gkck-msc” [2]:

Main Screen (Student as

User)

Inquiry Screen (Student as

User)

Figure 2: Displays student inquiry procedure at college

campus using Mobile App

Furthermore, researcher implemented current Native app

model for Windows-phone and also project for android as web

work app-model to support added mobile clients as well,

consider mobile user perception as college-students, defined as

r-restful-client. The app is re-functional with the mobile user

design on Windows Phones platform. By the usage of this app

model, student as mobile users can do following things:

 Check their class information, course and college

information

 Check the updated news information course wise

 Check their results from particular departments and also

able to getting news of their department via an email

only for those students who are registered.

Figure 3 is some screenshots of the r-restful-client on

Windows platform and Figure 4 is some screenshots of the r-

restful-client on GAE platform with Android mobile client [4]:

Home Screen (Student as

User)

Registration Frame

(Student as User)

Figure 3: Mobile client UI design of r-restful-client on

Windows-Phone Platform

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 1 60 - 68

62

IJRITCC | January 2016, Available @ http://www.ijritcc.org

Home Screen (Student as

User)

Registration Screen

(Student as User)

Figure 4: Mobile client UI design of r-restful-client on GAE

Platform

Next researcher to do comparison with SOAP CWS with

REST CWS app model for that another one web work model

created for that purpose and deploy on to cloud platform

named Heroku. Figure 5 is some screenshots for illustrated the

procedure of SOAP CWS app model.

Home Screen (Student as

User)

Registration Screen

(Student as User)

Figure 5: Mobile client UI design of r-soap-client on

Heroku Platform

Researcher also include a mash up concept with

administrative purpose, for that we have developed one more

CWS app model with motive to store student registration data,

course information, news context, result information named as

r-restful-ws. In this app model researcher have interrelated

SOAP to REST CWS communication and windows phone

client (r-restful-client) plus android (r-restful-client) client

communication to this mash up app model. By the use of this

CWS app model administrator can do following things, for

e.g.:

 See the registered student data

 Download that data in JSON or in CSV data context

format

 Add, Edit, Delete the news or updates stream wise

 Send an e-mail to particular group of students (stream

wise)

 Add, Edit, Delete the result information stream wise

Following figure 6 is demonstrates the mash up CWS app

model with the administrative level purpose

Student information Screen

(Admin as User)

Send E-mail Screen

(Admin as User)

Figure 6: Mobile client UI design of r-restful-ws on GAE

platform

Researcher has implemented above mentioned Web-work

CWS app models on GAE and Heroku cloud-platform as well
to achieve optimum results for the mobile users. Furthermore,
researcher procedures JSON and CSV data-context formats for
data storage and parsing comparison analysis as well.

V. TEST AND OUTCOMES OF CWSS APP MODEL

Researcher has tested CWS app models with different

experimentations. Aimed at, researcher implements RESTful

and SOAP based CWS and set up them on different servers for

e.g., the Apache web server, cloud servers such as G.A.E. and

Heroku. Apache-WAMP server runs on DELL-I-5110x

companionable Workstation with 2.30-GHz Intel® Core™ i3-

2350-M processor with 4GB-RAM, where OS operates as

Windows 7 Ultimates with SP1, and for smartphone apps

(mobile-user) functional with Windows Phone 7.0, MS-

Silverlight for Windows Phone Toolkit (MSS-WPT), and

running on Windows-Phone OS 7.1 Emulator. Heroku and

GAE service platform was occupied on free-quota origin to

deploy and test our CWS app model.

Consuming REST CWS App Model for Native UI:

To dimensions RESTful CWS for mobile clients,

Researcher has used tools and editors for developed Native UI,

VS-2010 IDE. RESTful based CWSs are designed by

Windows Phone SDK 7.0 version and RESTful API with C#

as native language.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 1 60 - 68

63

IJRITCC | January 2016, Available @ http://www.ijritcc.org

Consuming REST CWS App Model for Web-work UI:

To dimensions REST CWS, Researcher has used

Notepad++ with v6.8.6 (Freeware) IDE. RESTful based CWSs

are designed by RESTful API with PHP server-side language.

For consuming RESTful CWS in Android smart phone

platform and several other mobile clients for e.g., laptop,

Researcher has as well advanced REST CWS with Web-Work

UI design support. This CWS app models created and hosted

from a cloud platforms that makes data to and forward from

CWSs. For storing data context point-of-view, Researcher has

used JSON plus CSV data format, for data parsing and

communication used JSON format. Moreover, it uses REST

CWS that is receiving and sending data to and forward using

http-request (URI). It usages POST method as request for

acquiescing students’ particulars, to get informed by e-mail

info / data shown to mobile-users is in point of fact, JSON data,

which has been make out using PHP scripts.

For consuming SOAP CWS with Web-Work design support,

researcher has also established SOAP CWS app model, named

as r-soap-client. It uses SOAP CWS with nuSOAP API that

requests SOAP showed method by calling soap-client object's

call process that agrees arguments as an array. This CWS app

models usage JSON as request-response, data contexts show to

the mobile clients.

Consuming RESTful and SOAP based CWSs over the

middle ware, in this experimentations associate the above

accompanying with app considered r-restful-client and r-soap-

client CWS app model interfaces as a client. r-restful-ws offer

both REST and SOAP CWS interfaces for educational-service.

The “r-restful-ws” CWS reoccurrence outcome in either CSV

or JSON format for registered students’ facts and for other

procedures such as News / Updates, Results return outcome in

JSON format. The established CWS is as following:

 About us: This will returns CWS app information.

 Stream: returns a list of contents match with the keywords

BBA / BCA / MSC.

 Register: registered student info, which will stores at

CWS app model named, r-restful-ws and precedes a

reactive communication at mobile user side.

 Updates/ News: returns a list of news/updates associated

to contest with the keywords BBA / BCA / MSC.

 Results: returns a list of marks occupied by the

appropriate stream to match with the keywords MSC /

BCA / BBA.

For Administrative standpoint:

 Form registration records and similarly capable to take

those students data who have recorded via CWS app

models such as, Native / Web-work in JSON / CSV

design.

 Add, Edit, and Delete Updates/ News.

 E-mail the most recent Updates/ News to the students

relevant to specific stream.

 Add, Edit, and Delete Results.

To test comparison between REST and SOAP CWS app

model also middle ware and local web server as well. For that

different parameters are set. The 6000 (MS) time set as

maximum page load time and 3000 (MS) time is maximum

time to first byte. The middle ware is runs on the GAE,

Heroku, and local web server [4].

The load initiator gives directions HTTP-request based on

defined virtual user profiles with testing tool LoadUIWeb.

Researcher has defined detailed experimentation details in

previous work [4]. Figure 7 and 8 indications a column graph

associating the outcome times of dissimilar experiments.

There is in the clouds related with the middle ware. Still,

outcome optimization provocatively declines the bandwidth

phase.

0
5

10
15
20

Lo
ca

l

W
e

b

H
e

ro
ku

Different Platforms

R
e

su
lt

 T
im

e
 (

M
S) r-restful-

client_local

r-soap-client_local

r-restful-ws_local

r-restful-client

r-soap-client

r-restful-ws

Figure 7: Column graph for Outcome time to first byte

receive (MS)

0
5

10
15
20
25
30

Lo
ca

l

W
e

b

H
e

ro
ku

Different Platforms

R
es

u
lt

 T
im

e
(M

S)

r-restful-
client_local

r-soap-client_local

r-restful-ws_local

r-restful-client

r-soap-client

r-restful-ws

r-restful-
client_heroku

Figure 8: Column graph for Outcome time to Page Load

Time (MS)

 Middle ware v/s. Local: Associate the experiments 1 to

9 [4] for equally views such as outcome time to first

byte receive and outcome time to Page Load Time,

whether the r-restful-ws_local and r-restful-ws CWSs

return JSON data format, the middleware addition a

certain extent of overhead (on an middling 1.050s to

3.700s) on the outcome time for dissimilar middle ware

platform. By way of the middle ware, it doesn’t see to

any kind of processing of the CWS outcomes; specific

extent of in the clouds is habitually originated by

network prospect amongst the middleware and mobile

clients.

 REST CWS v/s. SOAP CWS: By way of the

experiments 7, 8, and 9 presented [4], SOAP CWS has

great extent of outcome times than the rest of the

experiments 4, 5, and 6 [4] with RESTful CWS. SOAP-

CWS is longwinded procedure, which means there are

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 1 60 - 68

64

IJRITCC | January 2016, Available @ http://www.ijritcc.org

certain additional content requests to be communicated.

In addition, processing time pre-mandatory for the

middle ware producing nuSOAP object from the SOAP

CWS message / communication. The lead of SOAP

CWS is result access is easy, however RESTful CWS is

also produce outcome in an enhance way.

For next experiments researcher has studied the different

data format to storing a message for a request-response parsing

through the app UI models and determines to concentrate only

on JSON and CSV formats. Researcher also include test case

for bandwidth and parsing time association of JSON and CSV.

Furthermore, Researcher defines that CSV and JSON are two

extensively used formats for transmitting CWS messages but

as CSV is a slightest easy-going data formats for transferred

message over CWS app UI model. As mobile users have

inadequate processing power and limited bandwidth,

Researcher has studied JSON format for transmitting CWS

messages and for storing data studied JSON and CSV format

as CSV uses fixed format for ex., Tabular view to store data

context and consequently CSV consume less bandwidth. This

experiment calculates the use of CSV and JSON. As JSON is a

light-weight context for parsing message as well as for storing

a data through the CWS app model and CSV similarly do

same thoughtful but only for storing a data. To added define

that, Researcher use an “r-restful-ws” CWS app model which

returns the utmost current students registration updates in both

JSON and CSV format. The mobile client describes the CSV

result and JSON result with PHP DOM parser. Besides,

Researcher test some experiments related to JSON and CSV

parsing from Apache J-Meter v2.13 [5].

Mobile

platform

Usage Format Data context

size (KB)

Avg.

Parsing

time

(MS)

Android

Phone

Data

storage

CSV 2.71 2955

 JSON 5.05 1074

Windows

Phone

Data

storage

CSV 2.71 2948

 JSON 5.05 1776

Table 1: Parsing time and size of CSV and JSON data

context on different mobile clients

Table 1 demonstration the data context size and avg.

parsing times for the JSON and CSV messages (data context

range about 55 to 60) determined 50 autonomous trials on an

Android and a Windows Phone. 1
st
 associating the size, the

size of CSV outcome is 2.71KB and 5.05KB for JSON. To

indicate the same kind of data, the CSV format requires less

bandwidth. 2
nd

 subsequently the parsing time, parsing CSV

message is additional resource over-whelming than parsing

JSON message on both Android Phone and Windows Phone.

So, for data storing consequence CSV format consume less

space as compare to JSON format. Although for data context

parsing consequence CSV format consume more space as

compare to JSON format. At this point slowness is due to

complication of parsing and also CSV format is not fit for

transferred data context as request-response over CWS app UI

model. To conclude, JSON format has identical flexible for

transferred data context as request-response and

correspondingly stable parsing time. And yet, it is very hard to

signify compound data structure in JSON component format.

Figure 9: Push and Pull using CWS app UI

Further test case implementations update the mobile clients

with Notification such as, Incoming e-mail features.

Researcher has been analyse that short of updates sending to

the mobile clients CWS app UI model is not deliver full-fledge

functionality as well as for CWS app model require a mash up

feature and with the additional this researcher are able to send

the latest news / updates to the registered mobile clients (here,

consider the registered students). Here (See figure 9), two

approaches to request data framework from a cloud server

with the CWS app model, pull and push. Pulling means that

mobile users irregularly connects to the cloud server with the

CWS app model, checks for and pulls (gets) newest updates

and then later wind-ups the current connection and disconnects

from the cloud server. The mobile client reappearances this

entire process to catch updated about new info / events. In this

methodology, the mobile clients intermittently PULLs the new

updates / events from the cloud server. Pushing means the

mobile users open a current connection to the cloud server and

preserves it continually active. The cloud server will push

(send) all news / updates to the mobile client consuming that

CWS app model. In other words, the cloud-server PUSHES

the new updates / news to the mobile clients.

Researcher show e-mail pathway for incoming e-mail (see

figure 10), the server drives the alteration via the email

account setup on the mobile client when the news / updates

add, edit or update.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 1 60 - 68

65

IJRITCC | January 2016, Available @ http://www.ijritcc.org

Figure 10: Incoming email pathway for mobile client

To compute and assessment pull and push, Researcher

extent the subsequent values in his experimentation test case

also using testing tool named Fiddler [6]. Fiddler is a HTTP-

based debugging and proxy-server application, it

apprehensions several protocols such as http and https

movement and generate logs.

a) Bandwidth usage: The total data transferred for the

mobile client through the test case consist of upload &

download for dissimilar data format. Larger bandwidth

means that more extent of the file is being relocated at

any given time.

b) RTT used: The time needed for a network packets or

messages to transportable from the source to the

destination and back as of the destination to the source.

Round-Trip-Time is used by assured routing algorithms

to backing in scheming optimal routes.

c) Energy consumption: Network edges for ex., HTTPS,

HTTP and SMTP consumes energy. The additional

amounts of network interfaces are involved; as a result

the added energy is used up.

d) Response-bytes by Content Type: The bytes are

receiving as a response and considered as content such

as HTML, CSV and JSON with its headers info.

Cloud

Service

Data

Format

Bandwidth Used

(Bytes) Overall

Elapsed

(MS)

Energy

Consumption

(No. of send

req. and get

No. response)

Upload Download

GAE JSON 451 1579 01.240
1 (Response

Count: 60)

 CSV 456 1444 01.831
1 (Response

Count: 60)

Heroku JSON 451 558 00.321
1 (Response

Count: 03)

 CSV 456 430 00.325
1 (Response

Count: 03)

Table 2: Experiment case for Pull investigation

Table 2 indications the bandwidth used (bytes) and energy

consumption of the mobile user during the online activity such

as 15 to 20 minutes. Figure 11 indicate the Response bytes of

total 56-60 update for GAE and total 4-5 update for Heroku

and also recognize Push investigation.

a) Bandwidth usage: To assessment pulling investigation

on GAE for JSON, the user sends 451Bytes as headers

information and receives 1,579Bytes data with

241Bytes as headers information and 1,338Bytes as

body in total. Aimed at mobile users the bandwidth

difference is affected by the message headers of be

different protocols such as SMTP, HTTP, and HTTPS.

b) Energy consumption: Aimed at the pulling investigation,

the user sends 1 HTTP GET request and receives 60

responses for GAE and 03 responses for Heroku in total.

The pull investigation consumes further energy. At this

point, keep in mind that the energy consumption can be

reduced or compact by cumulative the pull intervals.

And yet, fewer recurring pulling increases the overall

elapsed time.

Figure 11: Estimated World-Wide RTT Performance

chart using Fiddler [6]

c) RTT used (see Figure 11): For the pulling investigation,

the RTT time is nearly constant for above stated regions

with various devices, as the middle ware (CWS App

Model) receives update at continual rate, the time differ

amongst each thin client pulls and fresh updates in the

middle ware is also recurrent. Still, it is exact

improbable the update occurs next to a constant rate in

perceptible circumstances. The rate of fraction for pull

essentials is aware permitting to the time circulation of

updates, if any. For the push investigation, the RTT and

elapsed time fluctuates a lot, as quite a lot of e-mails are

batched into one pushing message.

GAE

JSON Download

Response bytes

CSV Download

Response bytes

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 1 60 - 68

66

IJRITCC | January 2016, Available @ http://www.ijritcc.org

(Response Count: 60) (Response Count:

60)

HTML Email

Response bytes (Push)

HTML Email

Response bytes

(News/Updates-

Pull)

Heroku

JSON Download

Response bytes

(Response Count: 03)

CSV Download

Response bytes

(Response Count:

03)

HTML Email

Response bytes (Push)

HTML Email

Response bytes

(News/Updates-

Pull)

Figure 12: Response bytes by Content-Type and Push

investigations

d) Response-bytes by Content Type (see Figure 12): For

the GAE, JSON download investigation, the response

bytes acknowledged as Application / JSON: 1338,

Headers: 241 and CSV download experiment, the

response bytes received as Application/CSV: 1205,

Headers: 239, For the pushing testing (r-restful-

ws.appspot.com/admin/), whole e-mail message is

getting HTML Electronic mail response bytes

acknowledged as Text/HTML: 31,871, with headers

266Bytes and for the pulling carrying out tests (r-

restful-client.appspot.com/), each news/updates is

getting response bytes acknowledged as Text/HTML:

6,192 with headers 152Bytes. For the Heroku, JSON

download experiment, the response bytes acknowledged

as Application/JSON: 295, Headers: 263 and CSV

download experiment, the response bytes acknowledged

as Application/CSV: 261, Headers: 169, Aimed at the

pushing conducting tests (r-restful-

ws.herokuapp.com/admin/), whole electronic message

is getting HTML Email response bytes acknowledged

as Text/HTML: 11,369, with headers 352Bytes and for

the pulling testing (r-restful-client.herokuapp.com/),

each news/updates is getting response bytes

acknowledged as Text/HTML: 5,968 with headers

214Bytes.

Moreover investigation, Researcher has study related to

performance, scalability and robustness concerns for the CWS

app model design which were hosted on different cloud-

services (Heroku and GAE). The key task of proposed middle

ware has distinction and service-mash up which associates

some goings-on such as, CPU share, multi-tenant, RAM and

network I-O operations. When the middle ware gets service-

outcomes from dissimilar cloud-services, it procedures out-

bound network connections. After the middle ware receives

the responses, it studies and pools them. In defined method, it

demos the response-time of the middle ware for dealing out a

service-mash up request, how the outcome time of a mash up

req. variations when the capacity of the middle ware rises and

at which request-rate the middle ware go wrong to response.

The examination server is Heroku “railgun” Dynos instance

and load designer is on Heroku 1x-4x with 512MB-RAM, 1x

CPU segment with multitenant instance and for GAE server is

standard 1 CPU with 3.75GB-RAM, 2.3GHz Intel Xeon E5 v3

with 2.75 GCEUs.

Figure 13 demos how the middle ware measures a mash up

call response thru usage CWS app model. When the middle

ware takings a HTTP(S) GET request, this one first achieves

service-based outcomes from the Cloud-Services. For

pretending CPU share totalling, the middle ware sending a

GET request via “r-restful-client” app model with “J-Meter”

[5] tool and create request up to 1 -to-5000 users as a user-

group (Thread). J-Meter is a testing tool established in Java

and considered for load test, ration performance as well as

other test purposes such as Cloud web services, web dynamic

lang. it can be similarly used for simulate a heavy load on to

the server, objects (CWSs) or grids to analyse their strength

and overall performance. Final, it precedes a response with the

designed outcome to the mobile users.

Figure 13: Process way of a mash up request

The interval of each load assessment case is 5, 10 to 20

minutes. Response time is planned every 1 sec. The working

outcome is presented in figure 14 for GAE and figure 15 for

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 1 60 - 68

67

IJRITCC | January 2016, Available @ http://www.ijritcc.org

Heroku. Variety engaged for this experiment case is 1-500, 1-

1000, and 1-5000 samples for each cloud services, See Table 3

for details of sample outlines.

Table 3: Study of sample outcome for GAE and Heroku

CWS App Model

500 Users (Samples):

1000 Users (Samples):

5000 Users (Samples):

Figure 14: Response time for GAE

500 Users (Samples):

1000 Users (Samples):

5000 Users (Samples):

Figure 15: Response time for Heroku

The outcome of experiment cases shows that GAE balances.

The avg. and median response time is lower for GAE. The

throughput is 456.844 / min. for 500 request rates, 1007.489 /

min. for 1000 request rates, and 645.605 / min. for 5000 all

request rates displays high accessibility excluding some

exceptions. Though, there are certain ideas where the

maximum response is unrivalled. As resources use by App

Engine is of Google’s substructure, the span of resources for

an app model is not determined at all the time. Such as, when

Google understandings a high-volume of load origin, a GAE

app model may acquire less resource, therefore response

becomes slower.

Heroku with Web dynos, with 450 trials, the average

response time is 2122 and nearby about half of the requests
failed or dropped. The median time 1429 with throughput of
208.98 / min. and deviation is 3026, with other trial case, such
as with 1000 samples, the average response time is 38020. The
median time 21190 with throughput of 417.602 / min. and
deviation is 23053, and for 5000 samples, the average response
time is 17315. The median time 21066 with throughput of
760.671 / min. and deviation is 9665. This can be defined by
the dynos for cloud mode of Heroku. A Heroku dynos free
occurrence sleeps minimum 6HRS / Day. Heroku dynos
doesn’t share resource with each other, in added words free
Heroku dyno type can only use with the free Heroku dyno type

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 1 60 - 68

68

IJRITCC | January 2016, Available @ http://www.ijritcc.org

for both web and worker Heroku dynos, it can’t be mix up with
other Heroku dynos type. With the similar amount of resource,
thus, it is feasible as the response time is increases as the load
turn into increases.

VI. CONCLUSIONS

Researcher has developed the App UI Models for RESTful

CWS and for SOAP CWS. For succeed the purpose of

performance, as student mass will more or less uses a smart-

phone. Regularly a huge number of students are revised to

work under the Mobile environment. Execution this point in

mind researcher has developed a PHP based web work app

model and also developed a native app model based on

windows phone platform named r-restful-client for the front-

end UI purpose. This proposed work more relating to the

mobile users with estimated the cross platform capability,

researcher has proposed directing CWSs request from the

mobile users, this assessment case investigation done on

Window Phone and Android Phone as well, which can able to

send a request as RESTful through the r-restful-client app to

the middle ware.

Researcher has focus on data formats for mobile users such

as CSV and JSON, as they are the light-weight processing,

straightforwardness to produce a request-response from the

CWSs App Model to the mobile user. Table 1 shows the

parsing time and size of JSON and CSV data context. In this

investigational work researcher has compare the outcome size

for the corresponding data formats as outcome CSV format

consume less bandwidth, additional analyse parsing time for

both of the data formats as outcome JSON format consume

less space as compare with CSV data format.

Researcher has an objective to classify component based

energy optimization and similarly recognize scalable platform

for the mobile client’s environment. Aimed at this researcher

has applied a Pull and Push using CWS App Model. In the

tentative work for Push and Pull, researcher usages an

electronic-mail as the push method to send updates / news to

the registered users and associates it to the HTTP pull method

on Android phone / Windows-phone. Towards analyse and

experiment pull and push, Researcher scope the specific

parameters such as, Energy consumption, Bandwidth used,

RTT used, and Response bytes by Content-Type. Table 2

demonstrations the Experiment case for Pull investigation and

Figure 11 show the estimated RTT for worldwide.

Furthermore measure the response bytes by Content-Type

such as for Application/CSV, Application/JSON, and

Text/HTML. As an outcome of bandwidth experiments,

inclusive JSON data format consume less bandwidth as

compare to CSV data format on to the cloud environment,

further JSON consume less total elapse time as compare to

CSV over cloud platforms. Additionally, pull research

consumes additional energy and it can be reduced by

cumulative the pull intervals. At this point elapsed time and

RTT are almost constant for stated regions with a number of

devices established on different operation specifically push

investigation implicates less network interfaces. Besides,

response bytes for communication (GAE investigates)

consume more bytes (31,871) as compare to regular pull

investigates getting response bytes acknowledged as

Text/HTML: 6,192 (updates/ news) and for communication

(Heroku investigates) consume more bytes (11,369) as

compare to consistent pull investigates getting response bytes

acknowledged as Text/HTML: 5,968 (updates/ news), at this

point noted that pull investigates are only one request, if user

requests are cumulative then received bytes are multiply with

that request numbers.

The research has made known the following design of the

mobile user and CWSs App Model identify as middle ware.
Such as, Mobile User is capable to consume SOAP based and
RESTful CWS as well over the CWS App Model, The mobile
user can be realistic on diverse mobile clients platforms
(Windows Phone, Android), the Mobile User can be fulfilled as
a Web work app model as well as Native app model, JSON
format workings more proficiently than CSV format in mobile
background, CWSs App Model pushes to saves energy and
bandwidth in mobile surroundings, The mobile user can able to
implement mash up services from the CWS App Model, It is
more in effect to create mash up with merge of one or
supplementary functionalities on the middle ware than the
systematic client-side, The CWSs app model can be hosted on
GAE and on Heroku. To conclude, Projected CWSs App
Model is establish to be reasonable for interrelate with mobile
users to the cloud platforms / services.

ACKNOWLEDGMENT

Researcher would like to express sincere gratefulness to all
those who provided the prospect to complete this research
work. Besides researcher would also alike to recognize with
much appreciation the crucial role of the staff of computer
science department, who provided the authorization to use all
essential tools and the required materials’ to complete the job
“CWSs App Models”. Distinctive thanks a lot go to my
research guide, Dr. Atul Gonsai, who helps me to give
suggestion around the task “CWSs App Models”.

REFERENCES

[1] Dr. Atul M. Gonsai, and Mr. Rushi R. Raval, Analysis and
Development of a Service mash up application for mobile users,
International Journal of Computer Engineering and Technology,
Volume 4, Issue 6, November - December 2013, pp. 262-268.

[2] Dr. Atul M. Gonsai, and Mr. Rushi R. Raval, Enhance the
Interaction between Mobile Users and Web Services using
Cloud Computing, Oriental Journal of Computer Science &
Technology, Vol: 7, No: 3, December 2014, pp. 416-424.

[3] Dr. Atul Gonsai, and Mr. Rushi Raval, Mobile Cloud
Computing: A Tool for Future, International Journal of
Computer Science & Engineering Technology, Vol: 4, No: 7,
July 2013, pp. 1084-1090.

[4] Mr. Rushi Raval, and Dr. Atul Gonsai, Performance Analysis
and Design of a Mobile Web Services on Cloud Servers,
International Journal of Emerging Technology and Advanced
Engineering, Volume 5, Issue 9, September 2015, pp. 104-113.

[5] Apache JMeter, last retrieved from http://jmeter.apache.org/
(2015)

[6] Fiddler web debugger, last retrieved from
http://www.telerik.com/fiddler/ (2015)

http://www.ijritcc.org/

