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Abstract: Internet of Things (IoT) is the developing technologies that would be the biggest agents to modify the current world. Machine-to-

machine communications perform with virtual, mobile and instantaneous connections. In IoT system, it consists of data-gathering sensors 

various other household devices. Intended for protecting IoT system, the end-to-end secure communication is a necessary measure to protect 

against unauthorized entities (e.g., modification attacks and eavesdropping,) and the data unprotected on the Cloud. The most important concern 

hereby is how to preserve the insightful information and to provide the privacy of user data. In IoT, the encrypted data computing is based on 

techniques appear to be promising approaches. In this paper, we discuss about the recent secure database systems, which are capable to execute 

SQL queries over encrypted data.  

__________________________________________________*****_________________________________________________ 

I . INTRODUCTION 

IoT is the most important part for improving 

communication, because in order to interconnect different 

devices and it could be able to communicate with each 

other. Security and privacy is proven one of the most 

challenging areas in IoT. Even though, the aspects of oT 

cryptography and security are not completely defined. 

Different and Alternative and definitions have been 

recommended by both research sectors and industrial parts. 

Size and Heterogeneity are two major factors that describe 

the IoT technologies.  All other properties, like 

maneuvering, sensing, storing, being able to capture, and 

process data are unnecessary manner; if it is not working 

with your device particularly needs one of these properties. 

However, the ability to communicate is essential when 

labeling a device as an IoT device. Security is necessary to 

implement efficiently by using protocols and algorithmic 

schemes, in a great number of applications, and in different 

devices. In other case, it is able to adopt IoT services not 

possible at large scales.  

The usability of IoT technologies should be kept as high as 

possible. In this way, applied methodologies have to be 

improved, in order to help scalability and heterogeneity. The 

methodology is developed to take care of personal data 

protection and to protect user‟s anonymity. IoT supports the 

challenge of security that can also implicate a great principle 

for trust by the usability of both services and applications. 

Cyber attacks are recorded almost day-to-day life; mainly 

happen due to the low security of the services, applications 

and devices [1]. At last, we discuss end points are proven 

also in terms of privacy, weak designed. 

 

 

Encrypted Query Processing 

A DBMS is to update or retrieve the exact data to/from the 

physically stored medium. The desired information is 

determined in a reliable manner that is the scientific art of 

Query Processing from a database system. Database system 

should be able to respond to requests for information from 

the user i.e. process queries [2]. Database security is always 

obtained the information to the user securely when requires 

user queries. Database security has been provided by 

operating system security and physical security. These 

methods provide a secure support for processing and storing 

the sensitive data. Cryptographic support is a vital part of 

database security [3]. Database is getting down while 

several organizations cannot work properly, so that they 

require its protection. The confidential data are securely 

stored and protected in a repository database. Likewise, the 

information should not fail into the unauthorized hands of 

those who misuse it [4]. Efficient algorithms are necessary 

part as protected that provides the ability to allow 

encryption/decryption of data and query over encrypted 

database query. 

A plaintext SQL query is sent to an encrypted query where 

the cloud cannot learn about the values in the query by 

performing an encrypted query processing system. After the 

query process is executed over encrypted data and thereafter 

the encrypted result is transmit to the user side. A medical 

data system considers as an example. If the heart rate is 

larger than 200 after that it transmitted into an encrypted 

query, where 200 is replaced with its order-preserving 

encryption and then the heart rate with the encrypted 

column name:  
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SELECT * FROM tab WHERE heart rate > 100  

Encrypted query, 

SELECT * FROM tab WHERE column-043 > 

0x19  

In fact, the encrypted data is operated by the encrypted 

database (EDB) systems. It has the database queries based 

on mathematical operations and then has motivated 

researchers to create the encrypted database (EDB) systems. 

Internal structure of DBMS is not modified because of 

Crypt-DB proposes a database proxy layer to encrypt and 

decrypt data, namely Crypt-DB utilizes native DBMS [5]. 

After that it proposes three main key ideas. They are, 

 Initial to execute SQL query on encrypted data 

 Second one to adopt adjustable encryption strategies for 

different queries 

 Finally to chain encrypted keys to user passwords.  

Crypt-DB hardly supports queries including 

analytical query and computation process [6]. For that 

reason, Crypt-DB which can process the large data set and 

complex analytical query because of that MONOMI is 

established based on the design of Crypt-DB. The analytical 

load is more difficult to execute the encrypted data on the 

server; MONOMI proposes an executing technique to split 

between the client and server. Different encrypting 

algorithms are utilized to different queries by using different 

from the Crypt-DB and MONOMI. Group of security 

operators (e.g.,× , ±, 𝜋, ⊕, ⋈S ) is realized a secure query 

processing system(SDB) referred in [8] with data 

interoperation which can competently maintain a quantity of 

difficult SQL query involving whole TPC-H benchmark 

queries on the server. The encrypted query system that 

hardware encryption is better than software encryption [7].  

II. ENCRYPTION SCHEME FOR EQP 

The following encryption schemes can be utilized for the 

encrypted query processing. 

a. Random (RND) 

The RND scheme provides powerful security assurances: It 

is probabilistic, that means the same plaintext can be 

encrypted to a different cipher-text. On the other hand, it 

does not allow the feasible computation process in a 

reasonable amount of time. For highly confidential data 

seems like medical diagnosis, private messages or credit 

card numbers that cannot required to be compared with 

other entries for equality. Random implementation exploits 

Advanced Encryption Standard (AES) to encrypt strings and 

the Blowfish to encrypt integers. Both implementations 

make use of the Cipher Block Chaining (CBC) mode with a 

random Initialization Vector (IV) and ability under chosen-

plaintext attack (IND-CPA) secure by the previous author‟s 

research view [9]. Size of blocks has the two ciphers. 

Blowfish has a block size of 64 bit, whereas AES is used 

with a block size of 128 bit [10]. After using Blowfish needs 

to store integers and AES only needs half of that space. 

b. Deterministic (DET) 

Deterministic encryption permits for equality checks that it 

can perform chooses with, equality joins, equality 

predicates, COUNT, GROUP BY, DISTINCT, etc. The 

plaintext m results are encrypted into the same cipher-text c. 

AES in electronic codebook (ECB) mode is a block-cipher 

encryption with such a property. Because of this 

deterministic property, it is in general advised ECB not only 

use for encryption of bulky packets. An attacker has to 

modify the order of the blocks or replace a block in an 

indistinguishable manner (i.e., substitution attack), or learn 

information about the plaintext with a histogram of repeated 

blocks. AES-CBC is applied twice on the input, where 

AES-CMC is a tweaked combination of AES-CBC with a 

zero initialization vector. The second CBC round is initiated 

in the reverse order, i.e., from the last block to the first 

block. By this way, the first blocks become deterministically 

random and do not leak equality within a data item. As a 

result, AES-ECB should be only used for plaintexts smaller 

than or equal to 16 bytes but maximum security in DET. 

AES in CMC mode can be utilized for large plaintexts [16].  

c. Homomorphic Encryption (HE) 

Homomorphic encryption (HE) HE performs arbitrary 

arithmetic operations over cipher-texts without decryption 

[13] to provide semantic security. As an example, with an 

additive HE scheme, for two encryptions E(x) and E(y), 

there exists a function f like f(E(x),E(y)) = E(x + y). Totally 

homomorphic encryption (FHE) is prohibitively slow 

process and needs computing power that it cannot be 

utilized nowadays. El Gamal's [11] and Paillier‟s [12] are 

examples of PHE schemes. For example, with Paillier's 

PHE, the product of two encryptions encrypts the sum of the 

encrypted values, i.e., E(x) X E(y) = E(x+y). Partially 

homomorphic encryption (PHE) is efficient for specific 

operations and may be utilized in practice. PHE performs 

either multiplication or addition over cipher-texts and 

guarantees semantic security. 

d. Join (JOIN, OPE-JOIN) 

 JOIN and OPE-JOIN schemes are signified both “sub 

schemes” of DET respective of OPE. The JOIN and OPE-

JOIN schemes are determined the computational abilities of 

their “parent schemes” (i.e. to check whether a plaintext a is 

equal to plaintext b, respective identifying the order of the 

column entries). This type works represented over multiple 

columns and allows to check whether a plaintext in column 

a is equal to a plaintext in column b for JOIN, if a plaintext 

in column a is smaller or bigger than a plaintext in column b 

for OPE-JOIN. Both operators work with multiple columns 

allowing for constructs like: SELECT * FROM test_table 

WHERE name1=name2 AND name2=name3. All three 

name columns consequence that the same plaintext will be 

encrypted in the same cipher-text across all three columns. 

Hence, it is more revealing than OPE or DET alone. 
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e. Order-preserving encryption (OPE) 

Order comparison is a general operation such as for ranking, 

range checks, sorting in SQL-like databases. The plaintext 

inputs m1, m2, and m3 has preserved the order relationship 

between them, after encryption, i.e., if m1 ≤ m2 ≤ m3, then 

c1 ≤ c2 ≤ c3. The way of order information among the 

encrypted data items ci is revealed, but the data itself is 

not.OPE schemes is one of the first provably secure 

approach introduced by Boldyreva. This OPE scheme is 

computationally intensive as Paillier encryption. The 

interactive OPE approach by Popa. Solely relies on trades 

computation and symmetric cryptography overhead for 

latency (i.e., it includes more communication process) [15]. 

The mutable order-preserving encoding (mOPE) is referred 

by utilizing lightweight OPE scheme, as the order encodings 

are mutable. mOPE fulfills the ideal security (IND-OCPA) 

prove by Popa, after that no additional information than the 

order is revealed. mOPE is highly secure compare than any 

other OPE approach and, however, magnitude less 

computationally intensive than traditional OPE schemes. 

Even though mOPE appears to be more suitable secure for 

the IoT and that the status of opportunistic connectivity 

might have an impact on the performance of this protocol. 

f. Word search (SEARCH) 

SEARCH [14] is used to perform searches on encrypted text 

to support operations like MySQL‟s LIKE operator. The 

text divided into keywords by using standard delimiters (or 

using a special keyword extraction function identified by the 

schema developer), for each column requiring SEARCH 

operation. After that the remove repetitions in these words, 

the positions of the words are randomly permuted. Then 

encrypt each of the words using Song (researcher) scheme, 

padding each word into the same size. The encryption 

process does not reveal to the DBMS server whether a 

certain word repeats in multiple rows. However, it leaks the 

number of keywords encrypted with SEARCH that has 

nearly as secure as RND. Using a user-defined function, the 

DBMS server checks if any of the word encryptions is any 

message match the token. All the server learns from 

searching is whether a token matched a message or not, and 

this happens only for the tokens requested by the user. The 

server would learn the same information when returning the 

result set to the users, so the overall search scheme reveals 

the minimum amount of additional information needed to 

return the result. An adversary may be able to estimate the 

number of distinct or duplicate words (e.g., by comparing 

the size of the SEARCH and RND ciphertexts for the same 

data). 

III. ENCRYPTED QUERY PROCESSING SYSTEMS 

1. CryptDBs 

In CryptDB, it has an encrypted system that affords 

incontestable confidentiality of these attacks for applications 

backed by using SQL databases [17]. CryptDB is a library 

file system dynamically linked whereas installing MYSQL 

database. It adds new components, besides MYSQL server 

such as parser, key table, MYSQL proxy encrypted data etc. 

By using a collection of efficient SQL-aware encryption 

schemes, it works by executing SQL queries over encrypted 

data. CryptDB sequences to perform encryption and 

decryption keys by using the user passwords, so that the 

data item can be allowed to access the password of one of 

the users to access that data. Its architecture is shown in 

Figure 1.A Data Base Administrator (DBA) never gets 

access to decrypted data, and yet but all servers are 

compromised, an adversary cannot decrypt the data of any 

user who is not logged in [18].  CryptDB performs by 

interrupting all SQL queries in a database proxy. It has 

rewrites queries to execute on encrypted data (CryptDB 

assumes that all queries go through the proxy). The proxy 

encrypts and decrypts all data, and modifies various query 

operators, while preserving the semantics of the query. In 

DBMS server process, it may never receive decryption keys 

to the plaintext, so that it never notices sensitive data. 

DBMS server compromises the procedure and then 

developers explain their SQL schema to describe different 

principals, whose keys can allow decrypting different parts 

of the database. To provide encryption keys to the proxy, 

they also make a small change to their applications.  The 

proxy determines which parts of the database ought to be 

encrypted under which key. Therefore, CryptDB guarantees 

the data confidentiality to users that are not logged in during 

a compromise (e.g., user 2 in Figure 1). 

 
Figure 1: CryptDB architecture [20] 

2. MONOMI 

MONOMI is an advance system that runs analytical queries 

over encrypted data in large databases. Instead of shipping 

large pieces of encrypted data retransmit from the server. 

MONOMI evaluates queries on encrypted data at the 

database server as much as is practical, without providing 

the information server allowed to access the decoding keys. 

MONOMI is that the earliest system that may with securely 

and improve efficiency to execute analytical workloads over 

encrypted data. MONOMI [19] introduces split client/server 

query execution depend on CryptDB to help encrypted data 

under arbitrarily complicated queries.  Additionally, a 

number of techniques that improve performance certainly 

types of queries, including spec-efficient encryption, pre-

row computation, grouped homomorphic addition, and pre-

filtering, are introduced. MONOMI architecture is shown in 

Figure 2, where MONIMI prototype is classified into three 

major components, designer, ODBC library, and encryption 

database. 

 Designer- trusted client machine but un-trusted server 

during system setup. 

 ODBC library- unmodified SQL queries during normal 

operation and uses the planner to determine the best 
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split client/server execution plan for the application‟s 

query.  

 Encryption database- final point, library issues handle 

one or more queries to the encrypted database. 

 

 
Figure 2: MONOMI architecture 

1. SDB 

SDB [22] provides a database proxy between the 

service provider and data owner, composed of database 

parser, rewriter, connector, and executor. In Query rewriter 

process, it has communicated with secret metastore for 

rewriting. The Connector is an interface where applications 

or users submit query and receive query results. The 

executor is fully responsible for passing results back to 

users or applications, handling all execution flow, through 

the connector interface. SDB submits and rewrites client-

side query to SDB proxy parses the query and accesses the 

secret metastore to check whether if any operation data 

owner, over and above server-side query to service provider, 

as defined in the client and server protocols. These queries 

are rewritten with user-defined functions according to the 

operators included, like multiplication and key update. 

When the cloud server concludes operations, encrypted 

query results are transmitted back to SDB proxy, decrypted 

to original plaintext values and transmit back to data owner. 

The system architecture of SDB [21] is clearly given below. 

The architecture consists of two divisions [23]: (1) a 

lightweight SDB proxy at the data owner (DO) and (2) a 

relational engine with a collection of UDFs provided 

through SDB at the service provider (SP). This new 

architecture pushes the entire computations return back to 

the underlying engine through UDFs. Accordingly, SDB 

now enjoys whole the benefits like parallel-execution, fault-

tolerance, and scalability determined by the underlying 

Spark SQL engine. Two categories of data reside on cloud 

database: encrypted values of sensitive data and plaintext of 

non-sensitive data. The data owner reserves the column 

keys to sensitive data in secret metastore. User-defined 

functions are registered on both cloud database and client 

database. At the SP process of the engine is responsible for, 

1.Storing the secrete shares of sensitive data and the 

plaintext values of insensitive data. 2. Processing queries 

rewritten. 3. Returning back to the SDB proxy of the 

encrypted results [24]. 

 

Figure 3: SDB Architecture[25] 

IV.EXPERIMENTAL RESULTS 

To implement the different experiments perform to setup a 

lab environment, if two computers are setup to act as a 

client and a server. Ethernet cable provides 1000 Mbps 

bandwidth while two computers are directly connected 

using an Ethernet cable. Presently, two 2 machines runs 

Ubuntu 12.04 and each machine has Intel processor i7-3770 

CPU @ 3.40GHz x 8, with 16GB RAM capacity. One 

machine runs using the client layer at the same time as the 

server layer runs another machine; both are written in C++ 

using the GMP library. The client holds querying records 

from the database and the server also holds the database to 

keep the entire information.  

To implement the version of platform is on Apache Hadoop 

2.4.1, Spark 1.1.0 and Hive 0.12.0 in respective manner and 

to analyze the different parameters that may affect the 

overall performance of encrypted query database systems. 

The parameters perform such as overhead performance, 

latency of the link, bandwidth, throughput, execution time, 

distribution of data in the database, size and number of 

records within the database, query result size and the use of 

multiple-condition queries. Etc.  

The default values and their parameters in the experiments 

are considered with the performance result like Bandwidth - 

1000 Mbps, Latency - 10 milliseconds, Database Size - 

50000 records, Query Size - 1000 records, Record Size - 10 

bytes, Data Distribution – equivalent performance. When 

compare to MONOMI database (represented as MDB), SDB 

and CryptDB using a simple synthetic dataset on that a 

range of queries are executed. Encrypted database system is 

to evaluate using query efficiency then illustrates with 

running time performance, computational overhead and 

throughput both implement on server side and client side. 

To compare the performance of our prototype by running a 

TPC-H 2.14 benchmark based query over a TPC-H scale 10 

data set. The eight kinds of queries are clearly described as 

below. The complex analytical queries are composed with 

the support of the TPC-H query workload for performing 

aggregates over expressions, sub-selects, complex 

expressions in the FROM, GROUP BY, WHERE, and 

HAVING clauses. To rapid up the performance of 

decryption process on the client side is to utilize by using 

multiple cores and homomorphic multiplication acts on the 

server side. Decryption process is speed up on the client 

side by caching the decryptions of repeating cipher-texts. A 
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cache size of 512 elements performs with a random eviction 

policy. The dataset is a table which denotes T with three 

sensitive columns such as A, B, and C. In each column is 

randomly generated the integer values with a uniform 

distribution over the range [0, 1M]. To execute 8 queries 

that cover the different secure operators of three encrypted 

database systems: 

 

Query 1 (Range): SELECT A, B, C from T WHERE A + B 

< q. 

Query 2 (Count): SELECT COUNT (*) from T WHERE 

A+B < q. 

Query 3 (Sum): SELECT SUM (A*B) from T WHERE 

A+B < q. 

Query4 (Range):  SELECT A, B FROM T WHERE A < 100 

Query 5 (Join): SELECT SUM (t1.B * t2.A) FROM T as 

t1, T as t2 WHERE t1.A = t2.B. 

Query 6 (Sum):  SELECT SUM (c3-Hom) AS average 

FROM DBMS Table2 

Query 7 (Range): SELECT A, B FROM T WHERE A < B 

Query 8 (Count):  SELECT count (A) FROM T WHERE A 

< 100 

 

Bandwidth: 

The bandwidth of the link modifies between the client and 

server that had a direct consequence on the execution time. 

The execution time reduces from an average range of 0.963 

seconds for performing with a 0.5 Mbps link to 0.684 

seconds for a 1 Mbps link, the reduction continues also for a 

10 Mbps link where the time reaches 0.390 seconds. On the 

other hand, this point of results increases within no net gain 

performance, because on this bandwidth range; the latency 

of the link becomes the only dominant factor affecting time.  

In figure 4 effects can be clearly seen which depicts the 

execution time vs. the bandwidth of the link. 

 

Figure 4: Correlation between the execution time and client 

bandwidth 

 

 

 

Latency: 

The latency differs in the experiments yielded a pronounced 

effect on the time required for performing a query to be 

transmitted. It results to be return back to the client side – 

from this time forth is known as execution time. To evaluate 

the execution time by subtracting the time of the first packet 

then the TCP three way handshake and the final packet 

carries data corresponding to the query. The client and 

server is exchanged messages using Roundtrips, sequence of 

the messages are transmitted within one direction as the 

number of times and one or more messages are returned as a 

response. The effect of latency amplifies by the number of 

roundtrips, because for each roundtrip, the latency value 

should be added to the execution time. The increase of 

latency versus the increase in execution time for the three 

databases as shown in figure 5.2; notice the linear 

relationship between the two variables. 

 

Figure 5.2: The correlation between the client latency and 

the execution time 

Execution Time: 

The queries selectivity controls by the parameter q. A 

smaller q provides a smaller query result and a more 

selective query. The execution times are compared with 

SDB, MONONI (MDB) and CryptDB. Three components 

of the cost are explained as follows. 

 Client cost: the client layer executes at the time 

taken by using in executing client protocols, any 

post decryption processing and result decryption 

performance. 

 Server cost: the server layer executes at the time 

taken by using the executing server protocols. 

 DB Access: the DBMS handle the time taken for 

processing queries and retrieving the data from the 

server layer.  

 

When the table size increases from 100K to 500K rows, 

figure 6 depicts the results for the eight queries.  To observe 

the performances about figure 6, 
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 DB access times take place at very small. Because of 

about 1% query selectivity, the secure index is 

moderately effective in filtering away several irrelevant 

rows. 

 The server cost of SDB is faster than that of MDB. Two 

reasons for handle MDB: 

a. The server is only computing parts of a query 

for MDB. 

b. MDB utilizes different homomorphic 

encryption schemes which allow computation 

on encrypted data to be done in an efficient 

manner. 

 The client cost of MDB is higher than that of SDB for 

the first three queries, for the reason that the 

computation involved for evaluating a query and it has 

to be carried out by the client under MDB. The client 

cost of MDB is higher than that of CryptDB, as a few 

of the homomorphic encryption functions. 

 SDB  and MDB demonstrate comparable total costs for 

the join query.  

 

 

 
 

 
 

 

   

 
Figure 6: Execution times of SDB ,MDB and CryptDB 

for the 8 sample queries 
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Figure 7: Execution times vs. selectivity 

 

In figure 7 depicts the execution times of SDB, CryptDB 

and MONOMI (MDB) for about the range of query as  

perform the selectivity of the query that modify (by 

adjusting the parameter q) from 0 1.5 % (more selective) to 

3.5 % (less selective). In Figure 6 observe that the relative 

costs of the three components remain. Particularly, SDB 

provides much smaller query execution times as well as 

most of the costs under SDB are borne by the server.  

 

Overall efficiency: 

 

To the most excellent of our facts, MONOMI is the first 

system that knows how to efficiently execute encrypted data 

under the TPC-H queries, it difficult to make a head-to-head 

comparison with state-of the- art schemes for encrypted 

query processing. For instance, the only TPC-H queries that 

CryptDB be capable of execute are 2, 4, 1, and 7. However, 

to provide a few form of comparison, to make a highly 

developed version of SDB that can able to execute the same 

TPC-H queries at the same time as MONOMI. This highly 

developed version of SDB called Secure DataBase, executes 

as much of the query on the server as possible, using only 

techniques establish in the original SDB design, and 

executes the rest of the query on the client side. The 

MONOMI bars in Figure 8 show the slowdown imposed by 

MONOMI. The bar SDB in Figure 4 shows that MONOMI 

outperforms this approach by query execution times.  

 
 

Figure 8: Execution time of TPC-H queries under various 

systems (8 queries) 

 

Throughput: 

The throughput of TPC-C queries perform multiple cores on 

the server differs from one to eight in figure 9. CryptDB‟s 

overhead, the server throughput is to measure for eight 

kinds of SQL queries seen in TPC-H. The results shown in 

figure 11 for handling MONOMI design, CryptDB, and 

SDB. The MONOMI carry out each query over data 

encrypted with RND by decrypting the relevant data using a 

UDF, re-encrypting the result (if updating rows) and 

executing the plaintext under the query. As a result of SDB 

throughput penalty is much enormous for queries that 

involve a SUM and for incrementing UPDATE statements; 

HOM addition queries that occupy at the server side. 

Intended for the other kinds of queries that form a superior 

part of the TPC-H mix, the throughput overhead is modest. 

For almost all queries, the MONOMI design performs poor 

for the reason that the DBMS‟s indexes lying on the RND-

encrypted data are ineffective performance for operations on 

the plaintext data. It is agreeably astonishing that the higher 

security of SDB over CryptDB and MONOMI also carries 

superior performance. 

 

 
Figure 9: Throughput of different kinds of SQL queries 

from the TPC-H query mix running under SDB, the 

MONOMI design and CryptDB. 

 

V.CONCLUSION 

The effort of realizing theoretical cryptographic approaches 

under real-world conditions sheds light on undiscovered 

weaknesses and creates opportunities for improvements in 

cryptosystems. IoT applications need a more suspicious 

system design due to the challenges of the ecosystem with 

regard to resource constraints. From this paper reviews, 

SQL queries execute over encrypted data performing with 

the encrypted database systems. Compare to encrypted 

query system with the purpose of hardware encryption 

database system is much better than software encryption 

database system like Chiperbase, TrustedDB, 
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