
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 6 Issue: 7 90 - 97

__

90
IJRITCC | July 2018, Available @ http://www.ijritcc.org
__

Processing Over Encrypted Query Data In Internet of Things (IoTs) : CryptDBs,

MONOMI and SDB

G. Ambika
1
,

PG & Research Scholar
1
, Department of Computer Science,

Marudupandiyar College(Affiliated to Bharathidasan

University), Thanjavur - 613 403, Tamilnadu,India.

Dr. P. Srivaramangai
2

Associate Professor
2
, Department of Computer Science,

Marudupandiyar College(Affiliated to Bharathidasan

University), Thanjavur - 613 403, Tamilnadu,India.

Abstract: Internet of Things (IoT) is the developing technologies that would be the biggest agents to modify the current world. Machine-to-

machine communications perform with virtual, mobile and instantaneous connections. In IoT system, it consists of data-gathering sensors

various other household devices. Intended for protecting IoT system, the end-to-end secure communication is a necessary measure to protect

against unauthorized entities (e.g., modification attacks and eavesdropping,) and the data unprotected on the Cloud. The most important concern

hereby is how to preserve the insightful information and to provide the privacy of user data. In IoT, the encrypted data computing is based on

techniques appear to be promising approaches. In this paper, we discuss about the recent secure database systems, which are capable to execute

SQL queries over encrypted data.

__*****___

I . INTRODUCTION

IoT is the most important part for improving

communication, because in order to interconnect different

devices and it could be able to communicate with each

other. Security and privacy is proven one of the most

challenging areas in IoT. Even though, the aspects of oT

cryptography and security are not completely defined.

Different and Alternative and definitions have been

recommended by both research sectors and industrial parts.

Size and Heterogeneity are two major factors that describe

the IoT technologies. All other properties, like

maneuvering, sensing, storing, being able to capture, and

process data are unnecessary manner; if it is not working

with your device particularly needs one of these properties.

However, the ability to communicate is essential when

labeling a device as an IoT device. Security is necessary to

implement efficiently by using protocols and algorithmic

schemes, in a great number of applications, and in different

devices. In other case, it is able to adopt IoT services not

possible at large scales.

The usability of IoT technologies should be kept as high as

possible. In this way, applied methodologies have to be

improved, in order to help scalability and heterogeneity. The

methodology is developed to take care of personal data

protection and to protect user‟s anonymity. IoT supports the

challenge of security that can also implicate a great principle

for trust by the usability of both services and applications.

Cyber attacks are recorded almost day-to-day life; mainly

happen due to the low security of the services, applications

and devices [1]. At last, we discuss end points are proven

also in terms of privacy, weak designed.

Encrypted Query Processing

A DBMS is to update or retrieve the exact data to/from the

physically stored medium. The desired information is

determined in a reliable manner that is the scientific art of

Query Processing from a database system. Database system

should be able to respond to requests for information from

the user i.e. process queries [2]. Database security is always

obtained the information to the user securely when requires

user queries. Database security has been provided by

operating system security and physical security. These

methods provide a secure support for processing and storing

the sensitive data. Cryptographic support is a vital part of

database security [3]. Database is getting down while

several organizations cannot work properly, so that they

require its protection. The confidential data are securely

stored and protected in a repository database. Likewise, the

information should not fail into the unauthorized hands of

those who misuse it [4]. Efficient algorithms are necessary

part as protected that provides the ability to allow

encryption/decryption of data and query over encrypted

database query.

A plaintext SQL query is sent to an encrypted query where

the cloud cannot learn about the values in the query by

performing an encrypted query processing system. After the

query process is executed over encrypted data and thereafter

the encrypted result is transmit to the user side. A medical

data system considers as an example. If the heart rate is

larger than 200 after that it transmitted into an encrypted

query, where 200 is replaced with its order-preserving

encryption and then the heart rate with the encrypted

column name:

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 6 Issue: 7 90 - 97

__

91
IJRITCC | July 2018, Available @ http://www.ijritcc.org
__

SELECT * FROM tab WHERE heart rate > 100

Encrypted query,

SELECT * FROM tab WHERE column-043 >

0x19

In fact, the encrypted data is operated by the encrypted

database (EDB) systems. It has the database queries based

on mathematical operations and then has motivated

researchers to create the encrypted database (EDB) systems.

Internal structure of DBMS is not modified because of

Crypt-DB proposes a database proxy layer to encrypt and

decrypt data, namely Crypt-DB utilizes native DBMS [5].

After that it proposes three main key ideas. They are,

 Initial to execute SQL query on encrypted data

 Second one to adopt adjustable encryption strategies for

different queries

 Finally to chain encrypted keys to user passwords.

Crypt-DB hardly supports queries including

analytical query and computation process [6]. For that

reason, Crypt-DB which can process the large data set and

complex analytical query because of that MONOMI is

established based on the design of Crypt-DB. The analytical

load is more difficult to execute the encrypted data on the

server; MONOMI proposes an executing technique to split

between the client and server. Different encrypting

algorithms are utilized to different queries by using different

from the Crypt-DB and MONOMI. Group of security

operators (e.g.,× , ±, 𝜋, ⊕, ⋈S) is realized a secure query

processing system(SDB) referred in [8] with data

interoperation which can competently maintain a quantity of

difficult SQL query involving whole TPC-H benchmark

queries on the server. The encrypted query system that

hardware encryption is better than software encryption [7].

II. ENCRYPTION SCHEME FOR EQP

The following encryption schemes can be utilized for the

encrypted query processing.

a. Random (RND)

The RND scheme provides powerful security assurances: It

is probabilistic, that means the same plaintext can be

encrypted to a different cipher-text. On the other hand, it

does not allow the feasible computation process in a

reasonable amount of time. For highly confidential data

seems like medical diagnosis, private messages or credit

card numbers that cannot required to be compared with

other entries for equality. Random implementation exploits

Advanced Encryption Standard (AES) to encrypt strings and

the Blowfish to encrypt integers. Both implementations

make use of the Cipher Block Chaining (CBC) mode with a

random Initialization Vector (IV) and ability under chosen-

plaintext attack (IND-CPA) secure by the previous author‟s

research view [9]. Size of blocks has the two ciphers.

Blowfish has a block size of 64 bit, whereas AES is used

with a block size of 128 bit [10]. After using Blowfish needs

to store integers and AES only needs half of that space.

b. Deterministic (DET)

Deterministic encryption permits for equality checks that it

can perform chooses with, equality joins, equality

predicates, COUNT, GROUP BY, DISTINCT, etc. The

plaintext m results are encrypted into the same cipher-text c.

AES in electronic codebook (ECB) mode is a block-cipher

encryption with such a property. Because of this

deterministic property, it is in general advised ECB not only

use for encryption of bulky packets. An attacker has to

modify the order of the blocks or replace a block in an

indistinguishable manner (i.e., substitution attack), or learn

information about the plaintext with a histogram of repeated

blocks. AES-CBC is applied twice on the input, where

AES-CMC is a tweaked combination of AES-CBC with a

zero initialization vector. The second CBC round is initiated

in the reverse order, i.e., from the last block to the first

block. By this way, the first blocks become deterministically

random and do not leak equality within a data item. As a

result, AES-ECB should be only used for plaintexts smaller

than or equal to 16 bytes but maximum security in DET.

AES in CMC mode can be utilized for large plaintexts [16].

c. Homomorphic Encryption (HE)

Homomorphic encryption (HE) HE performs arbitrary

arithmetic operations over cipher-texts without decryption

[13] to provide semantic security. As an example, with an

additive HE scheme, for two encryptions E(x) and E(y),

there exists a function f like f(E(x),E(y)) = E(x + y). Totally

homomorphic encryption (FHE) is prohibitively slow

process and needs computing power that it cannot be

utilized nowadays. El Gamal's [11] and Paillier‟s [12] are

examples of PHE schemes. For example, with Paillier's

PHE, the product of two encryptions encrypts the sum of the

encrypted values, i.e., E(x) X E(y) = E(x+y). Partially

homomorphic encryption (PHE) is efficient for specific

operations and may be utilized in practice. PHE performs

either multiplication or addition over cipher-texts and

guarantees semantic security.

d. Join (JOIN, OPE-JOIN)

 JOIN and OPE-JOIN schemes are signified both “sub

schemes” of DET respective of OPE. The JOIN and OPE-

JOIN schemes are determined the computational abilities of

their “parent schemes” (i.e. to check whether a plaintext a is

equal to plaintext b, respective identifying the order of the

column entries). This type works represented over multiple

columns and allows to check whether a plaintext in column

a is equal to a plaintext in column b for JOIN, if a plaintext

in column a is smaller or bigger than a plaintext in column b

for OPE-JOIN. Both operators work with multiple columns

allowing for constructs like: SELECT * FROM test_table

WHERE name1=name2 AND name2=name3. All three

name columns consequence that the same plaintext will be

encrypted in the same cipher-text across all three columns.

Hence, it is more revealing than OPE or DET alone.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 6 Issue: 7 90 - 97

__

92
IJRITCC | July 2018, Available @ http://www.ijritcc.org
__

e. Order-preserving encryption (OPE)

Order comparison is a general operation such as for ranking,

range checks, sorting in SQL-like databases. The plaintext

inputs m1, m2, and m3 has preserved the order relationship

between them, after encryption, i.e., if m1 ≤ m2 ≤ m3, then

c1 ≤ c2 ≤ c3. The way of order information among the

encrypted data items ci is revealed, but the data itself is

not.OPE schemes is one of the first provably secure

approach introduced by Boldyreva. This OPE scheme is

computationally intensive as Paillier encryption. The

interactive OPE approach by Popa. Solely relies on trades

computation and symmetric cryptography overhead for

latency (i.e., it includes more communication process) [15].

The mutable order-preserving encoding (mOPE) is referred

by utilizing lightweight OPE scheme, as the order encodings

are mutable. mOPE fulfills the ideal security (IND-OCPA)

prove by Popa, after that no additional information than the

order is revealed. mOPE is highly secure compare than any

other OPE approach and, however, magnitude less

computationally intensive than traditional OPE schemes.

Even though mOPE appears to be more suitable secure for

the IoT and that the status of opportunistic connectivity

might have an impact on the performance of this protocol.

f. Word search (SEARCH)

SEARCH [14] is used to perform searches on encrypted text

to support operations like MySQL‟s LIKE operator. The

text divided into keywords by using standard delimiters (or

using a special keyword extraction function identified by the

schema developer), for each column requiring SEARCH

operation. After that the remove repetitions in these words,

the positions of the words are randomly permuted. Then

encrypt each of the words using Song (researcher) scheme,

padding each word into the same size. The encryption

process does not reveal to the DBMS server whether a

certain word repeats in multiple rows. However, it leaks the

number of keywords encrypted with SEARCH that has

nearly as secure as RND. Using a user-defined function, the

DBMS server checks if any of the word encryptions is any

message match the token. All the server learns from

searching is whether a token matched a message or not, and

this happens only for the tokens requested by the user. The

server would learn the same information when returning the

result set to the users, so the overall search scheme reveals

the minimum amount of additional information needed to

return the result. An adversary may be able to estimate the

number of distinct or duplicate words (e.g., by comparing

the size of the SEARCH and RND ciphertexts for the same

data).

III. ENCRYPTED QUERY PROCESSING SYSTEMS

1. CryptDBs

In CryptDB, it has an encrypted system that affords

incontestable confidentiality of these attacks for applications

backed by using SQL databases [17]. CryptDB is a library

file system dynamically linked whereas installing MYSQL

database. It adds new components, besides MYSQL server

such as parser, key table, MYSQL proxy encrypted data etc.

By using a collection of efficient SQL-aware encryption

schemes, it works by executing SQL queries over encrypted

data. CryptDB sequences to perform encryption and

decryption keys by using the user passwords, so that the

data item can be allowed to access the password of one of

the users to access that data. Its architecture is shown in

Figure 1.A Data Base Administrator (DBA) never gets

access to decrypted data, and yet but all servers are

compromised, an adversary cannot decrypt the data of any

user who is not logged in [18]. CryptDB performs by

interrupting all SQL queries in a database proxy. It has

rewrites queries to execute on encrypted data (CryptDB

assumes that all queries go through the proxy). The proxy

encrypts and decrypts all data, and modifies various query

operators, while preserving the semantics of the query. In

DBMS server process, it may never receive decryption keys

to the plaintext, so that it never notices sensitive data.

DBMS server compromises the procedure and then

developers explain their SQL schema to describe different

principals, whose keys can allow decrypting different parts

of the database. To provide encryption keys to the proxy,

they also make a small change to their applications. The

proxy determines which parts of the database ought to be

encrypted under which key. Therefore, CryptDB guarantees

the data confidentiality to users that are not logged in during

a compromise (e.g., user 2 in Figure 1).

Figure 1: CryptDB architecture [20]

2. MONOMI

MONOMI is an advance system that runs analytical queries

over encrypted data in large databases. Instead of shipping

large pieces of encrypted data retransmit from the server.

MONOMI evaluates queries on encrypted data at the

database server as much as is practical, without providing

the information server allowed to access the decoding keys.

MONOMI is that the earliest system that may with securely

and improve efficiency to execute analytical workloads over

encrypted data. MONOMI [19] introduces split client/server

query execution depend on CryptDB to help encrypted data

under arbitrarily complicated queries. Additionally, a

number of techniques that improve performance certainly

types of queries, including spec-efficient encryption, pre-

row computation, grouped homomorphic addition, and pre-

filtering, are introduced. MONOMI architecture is shown in

Figure 2, where MONIMI prototype is classified into three

major components, designer, ODBC library, and encryption

database.

 Designer- trusted client machine but un-trusted server

during system setup.

 ODBC library- unmodified SQL queries during normal

operation and uses the planner to determine the best

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 6 Issue: 7 90 - 97

__

93
IJRITCC | July 2018, Available @ http://www.ijritcc.org
__

split client/server execution plan for the application‟s

query.

 Encryption database- final point, library issues handle

one or more queries to the encrypted database.

Figure 2: MONOMI architecture

1. SDB

SDB [22] provides a database proxy between the

service provider and data owner, composed of database

parser, rewriter, connector, and executor. In Query rewriter

process, it has communicated with secret metastore for

rewriting. The Connector is an interface where applications

or users submit query and receive query results. The

executor is fully responsible for passing results back to

users or applications, handling all execution flow, through

the connector interface. SDB submits and rewrites client-

side query to SDB proxy parses the query and accesses the

secret metastore to check whether if any operation data

owner, over and above server-side query to service provider,

as defined in the client and server protocols. These queries

are rewritten with user-defined functions according to the

operators included, like multiplication and key update.

When the cloud server concludes operations, encrypted

query results are transmitted back to SDB proxy, decrypted

to original plaintext values and transmit back to data owner.

The system architecture of SDB [21] is clearly given below.

The architecture consists of two divisions [23]: (1) a

lightweight SDB proxy at the data owner (DO) and (2) a

relational engine with a collection of UDFs provided

through SDB at the service provider (SP). This new

architecture pushes the entire computations return back to

the underlying engine through UDFs. Accordingly, SDB

now enjoys whole the benefits like parallel-execution, fault-

tolerance, and scalability determined by the underlying

Spark SQL engine. Two categories of data reside on cloud

database: encrypted values of sensitive data and plaintext of

non-sensitive data. The data owner reserves the column

keys to sensitive data in secret metastore. User-defined

functions are registered on both cloud database and client

database. At the SP process of the engine is responsible for,

1.Storing the secrete shares of sensitive data and the

plaintext values of insensitive data. 2. Processing queries

rewritten. 3. Returning back to the SDB proxy of the

encrypted results [24].

Figure 3: SDB Architecture[25]

IV.EXPERIMENTAL RESULTS

To implement the different experiments perform to setup a

lab environment, if two computers are setup to act as a

client and a server. Ethernet cable provides 1000 Mbps

bandwidth while two computers are directly connected

using an Ethernet cable. Presently, two 2 machines runs

Ubuntu 12.04 and each machine has Intel processor i7-3770

CPU @ 3.40GHz x 8, with 16GB RAM capacity. One

machine runs using the client layer at the same time as the

server layer runs another machine; both are written in C++

using the GMP library. The client holds querying records

from the database and the server also holds the database to

keep the entire information.

To implement the version of platform is on Apache Hadoop

2.4.1, Spark 1.1.0 and Hive 0.12.0 in respective manner and

to analyze the different parameters that may affect the

overall performance of encrypted query database systems.

The parameters perform such as overhead performance,

latency of the link, bandwidth, throughput, execution time,

distribution of data in the database, size and number of

records within the database, query result size and the use of

multiple-condition queries. Etc.

The default values and their parameters in the experiments

are considered with the performance result like Bandwidth -

1000 Mbps, Latency - 10 milliseconds, Database Size -

50000 records, Query Size - 1000 records, Record Size - 10

bytes, Data Distribution – equivalent performance. When

compare to MONOMI database (represented as MDB), SDB

and CryptDB using a simple synthetic dataset on that a

range of queries are executed. Encrypted database system is

to evaluate using query efficiency then illustrates with

running time performance, computational overhead and

throughput both implement on server side and client side.

To compare the performance of our prototype by running a

TPC-H 2.14 benchmark based query over a TPC-H scale 10

data set. The eight kinds of queries are clearly described as

below. The complex analytical queries are composed with

the support of the TPC-H query workload for performing

aggregates over expressions, sub-selects, complex

expressions in the FROM, GROUP BY, WHERE, and

HAVING clauses. To rapid up the performance of

decryption process on the client side is to utilize by using

multiple cores and homomorphic multiplication acts on the

server side. Decryption process is speed up on the client

side by caching the decryptions of repeating cipher-texts. A

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 6 Issue: 7 90 - 97

__

94
IJRITCC | July 2018, Available @ http://www.ijritcc.org
__

cache size of 512 elements performs with a random eviction

policy. The dataset is a table which denotes T with three

sensitive columns such as A, B, and C. In each column is

randomly generated the integer values with a uniform

distribution over the range [0, 1M]. To execute 8 queries

that cover the different secure operators of three encrypted

database systems:

Query 1 (Range): SELECT A, B, C from T WHERE A + B

< q.

Query 2 (Count): SELECT COUNT (*) from T WHERE

A+B < q.

Query 3 (Sum): SELECT SUM (A*B) from T WHERE

A+B < q.

Query4 (Range): SELECT A, B FROM T WHERE A < 100

Query 5 (Join): SELECT SUM (t1.B * t2.A) FROM T as

t1, T as t2 WHERE t1.A = t2.B.

Query 6 (Sum): SELECT SUM (c3-Hom) AS average

FROM DBMS Table2

Query 7 (Range): SELECT A, B FROM T WHERE A < B

Query 8 (Count): SELECT count (A) FROM T WHERE A

< 100

Bandwidth:

The bandwidth of the link modifies between the client and

server that had a direct consequence on the execution time.

The execution time reduces from an average range of 0.963

seconds for performing with a 0.5 Mbps link to 0.684

seconds for a 1 Mbps link, the reduction continues also for a

10 Mbps link where the time reaches 0.390 seconds. On the

other hand, this point of results increases within no net gain

performance, because on this bandwidth range; the latency

of the link becomes the only dominant factor affecting time.

In figure 4 effects can be clearly seen which depicts the

execution time vs. the bandwidth of the link.

Figure 4: Correlation between the execution time and client

bandwidth

Latency:

The latency differs in the experiments yielded a pronounced

effect on the time required for performing a query to be

transmitted. It results to be return back to the client side –

from this time forth is known as execution time. To evaluate

the execution time by subtracting the time of the first packet

then the TCP three way handshake and the final packet

carries data corresponding to the query. The client and

server is exchanged messages using Roundtrips, sequence of

the messages are transmitted within one direction as the

number of times and one or more messages are returned as a

response. The effect of latency amplifies by the number of

roundtrips, because for each roundtrip, the latency value

should be added to the execution time. The increase of

latency versus the increase in execution time for the three

databases as shown in figure 5.2; notice the linear

relationship between the two variables.

Figure 5.2: The correlation between the client latency and

the execution time

Execution Time:

The queries selectivity controls by the parameter q. A

smaller q provides a smaller query result and a more

selective query. The execution times are compared with

SDB, MONONI (MDB) and CryptDB. Three components

of the cost are explained as follows.

 Client cost: the client layer executes at the time

taken by using in executing client protocols, any

post decryption processing and result decryption

performance.

 Server cost: the server layer executes at the time

taken by using the executing server protocols.

 DB Access: the DBMS handle the time taken for

processing queries and retrieving the data from the

server layer.

When the table size increases from 100K to 500K rows,

figure 6 depicts the results for the eight queries. To observe

the performances about figure 6,

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 6 Issue: 7 90 - 97

__

95
IJRITCC | July 2018, Available @ http://www.ijritcc.org
__

 DB access times take place at very small. Because of

about 1% query selectivity, the secure index is

moderately effective in filtering away several irrelevant

rows.

 The server cost of SDB is faster than that of MDB. Two

reasons for handle MDB:

a. The server is only computing parts of a query

for MDB.

b. MDB utilizes different homomorphic

encryption schemes which allow computation

on encrypted data to be done in an efficient

manner.

 The client cost of MDB is higher than that of SDB for

the first three queries, for the reason that the

computation involved for evaluating a query and it has

to be carried out by the client under MDB. The client

cost of MDB is higher than that of CryptDB, as a few

of the homomorphic encryption functions.

 SDB and MDB demonstrate comparable total costs for

the join query.

Figure 6: Execution times of SDB ,MDB and CryptDB

for the 8 sample queries

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 6 Issue: 7 90 - 97

__

96
IJRITCC | July 2018, Available @ http://www.ijritcc.org
__

Figure 7: Execution times vs. selectivity

In figure 7 depicts the execution times of SDB, CryptDB

and MONOMI (MDB) for about the range of query as

perform the selectivity of the query that modify (by

adjusting the parameter q) from 0 1.5 % (more selective) to

3.5 % (less selective). In Figure 6 observe that the relative

costs of the three components remain. Particularly, SDB

provides much smaller query execution times as well as

most of the costs under SDB are borne by the server.

Overall efficiency:

To the most excellent of our facts, MONOMI is the first

system that knows how to efficiently execute encrypted data

under the TPC-H queries, it difficult to make a head-to-head

comparison with state-of the- art schemes for encrypted

query processing. For instance, the only TPC-H queries that

CryptDB be capable of execute are 2, 4, 1, and 7. However,

to provide a few form of comparison, to make a highly

developed version of SDB that can able to execute the same

TPC-H queries at the same time as MONOMI. This highly

developed version of SDB called Secure DataBase, executes

as much of the query on the server as possible, using only

techniques establish in the original SDB design, and

executes the rest of the query on the client side. The

MONOMI bars in Figure 8 show the slowdown imposed by

MONOMI. The bar SDB in Figure 4 shows that MONOMI

outperforms this approach by query execution times.

Figure 8: Execution time of TPC-H queries under various

systems (8 queries)

Throughput:

The throughput of TPC-C queries perform multiple cores on

the server differs from one to eight in figure 9. CryptDB‟s

overhead, the server throughput is to measure for eight

kinds of SQL queries seen in TPC-H. The results shown in

figure 11 for handling MONOMI design, CryptDB, and

SDB. The MONOMI carry out each query over data

encrypted with RND by decrypting the relevant data using a

UDF, re-encrypting the result (if updating rows) and

executing the plaintext under the query. As a result of SDB

throughput penalty is much enormous for queries that

involve a SUM and for incrementing UPDATE statements;

HOM addition queries that occupy at the server side.

Intended for the other kinds of queries that form a superior

part of the TPC-H mix, the throughput overhead is modest.

For almost all queries, the MONOMI design performs poor

for the reason that the DBMS‟s indexes lying on the RND-

encrypted data are ineffective performance for operations on

the plaintext data. It is agreeably astonishing that the higher

security of SDB over CryptDB and MONOMI also carries

superior performance.

Figure 9: Throughput of different kinds of SQL queries

from the TPC-H query mix running under SDB, the

MONOMI design and CryptDB.

V.CONCLUSION

The effort of realizing theoretical cryptographic approaches

under real-world conditions sheds light on undiscovered

weaknesses and creates opportunities for improvements in

cryptosystems. IoT applications need a more suspicious

system design due to the challenges of the ecosystem with

regard to resource constraints. From this paper reviews,

SQL queries execute over encrypted data performing with

the encrypted database systems. Compare to encrypted

query system with the purpose of hardware encryption

database system is much better than software encryption

database system like Chiperbase, TrustedDB,

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 6 Issue: 7 90 - 97

__

97
IJRITCC | July 2018, Available @ http://www.ijritcc.org
__

VI.REFERNCES

[1]. D. J. Abadi, S. R. Madden, and N. Hachem. Column-

stores vs. rowstores: how different are they really? In

Proc. of SIGMOD, pages 967–980, Vancouver, Canada,

June 2008.

[2]. S. Agrawal, S. Chaudhuri, and V. R. Narasayya.

Automated selection of materialized views and indexes in

SQL databases. In Proc. of the 26th VLDB, pages 496–

505, Cairo, Egypt, Sept. 2000.

[3]. A. Arasu, S. Blanas, K. Eguro, R. Kaushik, D.

Kossmann, R. Ramamurthy, and R. Venkatesan.

Orthogonal security with Cipherbase. In Proc. of the 6th

CIDR, Asilomar, CA, Jan. 2013.

[4]. S. Bajaj and R. Sion, “TrustedDB: A Trusted Hardware

Based Database with Privacy and Data Confidentiality,”

Proc. ACM SIGMOD Int‟l Conf. Management of Data

(SIGMOD ‟11), pp. 205-216, 2011.

[5]. S. Bajaj and R. Sion, “TrustedDB: A Trusted Hardware

Based Outsourced Database Engine,” Proc. Int‟l Conf.

Very Large DataBases (VLDB), 2011.

[6]. D. Bogdanov et al. A universal toolkit for

cryptographically secure privacy-preserving data mining.

In PAISI, 2012.

[7]. F. Emek_ci and D. Agrawal et al. Privacy preserving

query processing using third parties. In ICDE, 2006.

[8]. C. Gentry. Fully homomorphic encryption using ideal

lattices. In STOC, 2009.

[9]. C. Gentry et al. Fully homomorphic encryption with

polylog overhead. In EUROCRYPT, 2012.

[10]. O. Goldreich, S. Micali, and A. Wigderson. How to play

any mental game. In STOC, 1987.

[11]. M. Bellare, M. Fischlin, A. O‟Neill, and T. Ristenpart,

“Deterministic encryption: Definitional equivalences and

constructions without random oracles,” in Proc. CRYPTO

2008, 2008, pp. 360-378.

[12]. J. Daemen and V. Rijmen, “Rijndael: The advanced

encryption standard,” Dr. Dobb's Journal, pp. 137-139,

2001.

[13]. E. Damiani, S. D. C. di Vimercati, S. Jajodia, S.

Paraboschi, and P. Samarati, “Balancing confidentiality

and efficiency in untrusted relational DBMSs,” in Proc.

the 10th ACM Conference on Computer and

Communications Security, Washington, DC, October

2003.

[14]. Gentry, C. A fully homomorphic encryption scheme.

Ph.D. thesis. Stanford University: AAI3382729, Advisor:

Dan Boneh. 2009.

[15]. Paillier, P. Public-key cryptosystems based on composite

degree residuosity classes. In Proceedings of the Annual

International Conference on the Theory and Applications

of Cryptographic Techniques (EUROCRYPT „99). ACM,

New York, 1999, 223-238.

[16]. Halevi, S. and Rogaway, P. A tweakable enciphering

mode. In Advances in Cryptology (CRYPTO „03). ACM,

New York, 2003.

[17]. Boldyreva, A., Chenette, N., Lee, Y., and O‟Neill, A.

Order-preserving symmetric encryption. In Proceedings of

the Annual International Conference on the Theory and

Applications of Cryptographic Techniques

(EUROCRYPT „09). ACM, New York, 2009, 224-231.

[18]. Paillier, P. Public-Key Cryptosystems Based on

Composite Degree Residuosity Classes. 1999.

[19]. Smart, N., Vercauteren, F. Fully Homomorphic

Encryption with Relatively Small Key and Ciphertext

Sizes. 2009.

[20]. Snook, M. Integer-Based Fully Homomorphic Encryption.

2011.

[21]. Popa R A, Redfield C, Zeldovich N, et al. CryptDB:

protecting confidentiality with encrypted query

processing[C]//Proceedings of the Twenty-Third ACM

Symposium on Operating Systems Principles. ACM,

2011: 85-100.

[22]. Tu S, Kaashoek M F, Madden S, et al. Processing

analytical queries over encrypted data[C]//Proceedings of

the VLDB Endowment. VLDB Endowment, 2013, 6(5):

289-300.

[23]. Fu Z, Ren K, Shu J, et al. Enabling personalized search

over encrypted outsourced data with efficiency

improvement[J]. IEEE transactions on parallel and

distributed systems, 2016, 27(9): 2546-2559.

[24]. Mattsson U, Blomkvist K. Data type preserving

encryption: U.S. Patent 7,418,098[P]. 2008-8-26.

[25]. Popa R A, Zeldovich N, Balakrishnan H. CryptDB: A

practical encrypted relational DBMS[J]. 2011.

