
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 6 Issue: 6 254 - 259

__

254

IJRITCC | June 2018, Available @ http://www.ijritcc.org

PAS: A Sampling Based Similarity Identification Algorithm for compression of

Unicode data content

Siddiqui Sara Begum Anjum Parvez

Department of Computer Science and

Engineering, K.S.I.E.T Hingoli-431513

Maharashtra, INDIA.

E-mail id: siddiqui123sara@gmail.com

Ashru L. Korde (Author)

Department of Computer Science and

Engineering, K.S.I.E.T Hingoli-431513

Maharashtra, INDIA.

Email id:ashrukorde@gmail.com

Abstract— Generally, Users perform searches to satisfy their information needs. Now a day’s lots of people are using search engine to satisfy

information need. Server search is one of the techniques of searching the information. the Growth of data brings new changes in Server. The data

usually proposed in timely fashion in server. If there is increase in latency then it may cause a massive loss to the enterprises. The similarity

detection plays very important role in data. while there are many algorithms are used for similarity detection such as Shingle, Simhas TSA and

Position Aware sampling algorithm. The Shingle Simhash and Traits read entire files to calculate similar values. It requires the long delay in

growth of data set value. instead of reading entire Files PAS sample some data in the form of Unicode to calculate similarity characteristic

value.PAS is the advance technique of TSA. However slight modification of file will trigger the position of file content .Therefore the failure of

similarity identification is there due to some modifications.. This paper proposes an Enhanced Position-Aware Sampling algorithm (EPAS) to

identify file similarity for the Server. EPAS concurrently samples data blocks from the modulated file to avoid the position shift by the

modifications. While there is an metric is proposed to measure the similarity between different files and make the possible detection probability

close to the actual probability. In this paper describes a PAS algorithm to reduce the time overhead of similarity detection. Using PAS algorithm

we can reduce the complication and time for identifying the similarity. Our result demonstrate that the EPAS significantly outperforms the

existing well known algorithms in terms of time. Therefore, it is an effective approach of similarity identification for the Server.

Keywords: Similarity, identification, Unicode data.

__*****___

I. INTRODUCTION

The growth of the data management significantly increases and

the data risk and cost of data also increases . to address this

kind of problem many users transfer there data to the server.

And we can access that data via internet. This kind of problem

result in large volume of redundant data in server. The main

reson for this is that multiple users tends to store similar files in

the server . Here multiple users store multiple files in the

server. Unfortunately the redundant data not only consume

significant it esurses but also occupy bandwidth for this

puposes the data deduplication is required .

To overcome from all these problems we create the sampling

similarity based identification algorithm for compression of

Unicode data content in server. search techniques perform

comparably despite contrary claims in the literature. During my

evaluation of search effectiveness, I were surprised by the

difficulty I had searching my data sets. In particular,

straightforward implementations of many search techniques

server not scale to databases with hundreds of thousands of

tuples, which forced us to write “lazy” versions of their core

algorithms and reduce their memory footprint. Even then, I

were surprised by the excessive runtime of many search

techniques.

In the present data warehousing environment schemes there

are lots of issues in server computing. Some advanced data

manipulating schemes are required to extending the dats

search paradigm to relational data has been an active area of

research within the database and information retrieval

community. It proves that the effectiveness of performance

in retrieval tasks and data maintaining procedures. The

outcome confirms previous claims regarding the

unacceptable performance of these systems and underscores

the need for standardization as exemplified by the IR

community when evaluating these retrieval systems.

Position Aware similarity identification algorithms belong to

I/O bound and CPU bound tasks. Calculating the Unicode of

similar files requires lots of CPU Corresponding cycles, the

computing increases with the growth of data sets

 Position Aware similarity identify algorithms normally

require a large amount of time for detecting the similarity,

which results in long delays and if there is large data sets. it

require more time This makes it difficult to apply the

algorithms to some applications.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 6 Issue: 6 254 - 259

__

255

IJRITCC | June 2018, Available @ http://www.ijritcc.org

In this paper, we propose a Position-Aware Similarity (PAS)

identification algorithm to detect the similar files in large data

sets. This method is very effective in dealing with file

modification when performing similarity detection. And here

we use Simhash algorithm called in terms of precision and

recall. Furthermore, the time overhead, CPU and memory

occupation of PAS are much less than that of simhash. This is

because the overhead of PAS is relatively stable. It is not

increases with the growth of data size.

 The remainder of this paper is organized as follows: we

present related work in section 2. In section 3 we describe

some background knowledge. Section 4 introduces the basic

idea of PAS algorithm.Section 5 shows Sampling Based

similarity identification. Section 6 shows the evaluation results

of PAS algorithm. Section 7 shows Similarity Identification

Techniques Work Section 8 draws conclusions and Future

use.

II. RELATED WORK

In related work it involved the Server technique and similarity

detection algorithm to avoid the redundant data in server using

Unicode data content. Here we design the sampling based

similarity approach for the detection of data similarity and

perform the various task like upload file and delete files

In the past decade, a lot of research efforts have been invested

in identifying data similarity.Which we explain below.

The first one is similar web page detection with web search

engine. Detecting and removing similar web pages can save

network bandwidth, reduce storage consumption, and improve

the quality of web search engine index. Andrei et al. [17], [20]

proposed a similar web page detection technique called

Shingle algorithm which utilizes set operation to detect

similarity. Shingle is a typical sampling based approach

employed to identify similar web pages. In order to reduce the

size of shingle, Andrei presented Modm and Mins sampling

methods. This algorithm is applied to AltaVista web search

engine at present. Manku et al. [21] applied a Simhash

algorithm to detect similarity in web documents belonging to a

multi-billion page repository. Simhash algorithm practically

runs at Google web search engine combining with Google file

system [22] and MapReduce [23] to achieve batch queries.

Elsayed et al. [24] presented a MapReduce algorithm for

computing pairwise document similarity in large document

collections.

The second one is similar file detection in storage systems. In

storage systems, data similarity detection and encoding play a

crucial role in improving the resource utilization. Forman [25]

presented an approach for finding similar files and applied the

method to document repositories.This approach brings a great

reduction in storage space consumption. Ouyang [26]

presented a large-scale file compression technique based on

cluster by using Shingle similarity detection technique.

Ouyang uses Min-wise [27] sampling method to reduce the

overhead of Shingle algorithm. Han et al. [28] presented fuzzy

file block matching technique, which was first proposed for

opportunistic use of content addressable storage. Fuzzy file

block matching technique employs Shingle to represent the

fuzzy hashing of file blocks for similarity detection. It uses

Mins sampling method to decrease the overhead of shingling

algorithm.

The third one is plagiarism detection. Digital information can

be easily copied and retransmitted. This feature causes owners

copyright be easily violated. In purpose of protecting

copyright and other related rights, we need plagiarism

detection. Baker [29] described a program called dup which

can be used to locate instances of duplication or near

duplication in a software. Shivakumar [30] presented data

structures for finding overlap between documents and

implemented these data structures in SCAM.

The forth one is remote file backup. Traditional remote file

backup approaches take high bandwidth and consume a lot of

resources. Applying similarity detection to remote file backup

can greatly reduce bandwidth consumption.

Teodosiu et al. [15] proposed a Traits algorithm to find out the

client files which are similar to a given server file. Teodosiu

implemented this algorithm in DFSR. Experimental results

suggest that these optimizations may help reduce the

bandwidth required to transfer file updates across a network.

Muthitacharoen et al. [5] presented LBFS which exploits

similarity between files or versions of the same file to save

bandwidth. Cox et al. [31] presented a similaritybased

mechanism for locating a single source file to perform peer-to-

peer backup. They implemented a system prototype called

Pastiche.

The fifth one is the similarity detection for specific domains.

Hua et al. [32] explored and exploited data similarity which

supports efficient data placement for cloud. They designed a

novel multi-core-enabled and localitysensitive hashing that

can accurately capture the differentiated

similarity across data. Biswas et al. [33] proposed a cache

architecture called Mergeable. Mergeable detectsdata

similarities and merges cache blocks so as to decrease cache

storage requirements. Experimental evaluation suggested that

Mergeable reduces off-chip memory accesses and overall

power usage. Vernica et al. [34] proposed a three-stage

approach for end-to-end setsimilarity joins in parallel using the

popular MapReduce framework. Deng et al. [35] proposed a

MapReducebased framework Massjoin for scalable string

similarity joins. The approach achieves both set-based

similarity functions and character-based similarity

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 6 Issue: 6 254 - 259

__

256

IJRITCC | June 2018, Available @ http://www.ijritcc.org

functions. Most of the above work focus on a specific

application scenario, and the computational or similarity

detection overhead are increased with the growth of data

volume. In addition, the similarity detection metric may not be

able to well measure the similarity between two files.

Therefore, this paper proposes an EPAS algorithm and a new

similarity detection metric to identify file similarity for the

cloud.

According to the analysis (see Section 4 and 5.3) and

experimental results, it illustrates that the proposed similarity

metric catch the similarity between metric catch the similarity

between two files more accuratelythat that of traditional

metric. Furthermore, the overhead of EPAS is fixed and

minimized in contrast to previous work.

III. BACKGROUND

Here We used the hash key which is based on counting the

occurrences of certain Unicode strings within a file. The keys,

along with certain intermediate data, are stored in a relational

database (Figure 1).A separate program then query the

database for keys with similar values, and outputs the results.

Our code was written in PHP, and developed simultaneously

for the Windows platforms. While the code runs equally well

on platforms, we used a Windows machine for primary

development and for most data collection.

File Unicode data

Figure 1: SimHash produces two levels of file similarity data.

the key function was implemented to account for file

extensions.

 Here We can not say that two files are different if they contain

different extensions. Assign different values to any two files

with different extension. To this we compute a hash to file

extension with value between 0 and 1.if there is same

extension then this will not affect the relation between files

with same extension .

I. POSITION-AWARE SIMILARITY ALGORITH

In server if there is large similar data set with less overhead.

Then we can use the similarity detection algorithm that is

PAS. Here we use different symbols which are given in the

table bellow.

A. Traditional sampling algorithm

Suppose we sample N data blocks of file A, each data block

sizing Lenc is injected to a hash function. We then can obtain

N fingerprint values that are collected as a fingerprint set

SigA(N; Lenc). In this scenario, similarity detection problem

can be transformed into a set intersection problem. By

analogy, we will have a fingerprint set SigB(N; Lenc) of file

According to equation (1),

Table 1: Symbols used in following

FIGURE. 2: THE SAMPLING POSITIONS OF TSA AND PAS

the degree of similarity between file A and file B can be

described as equation (1), where Sim(A;B) ranges s between 0

and 1. If Sim(A;B) is reaching 1, it means the similarity of file

A and file B are very high, vice verse. After selecting a

threshold of the similarity, we can determine that file A is

similar to file B when Sim(A;B) is satisfied. This TSA is

described in algorithm 1 by using pseudo-code.

TSA is simple, but it is very sensitive to file modifications. A

small modification would cause the sampling positions shifted,

thus resulting a failure. Suppose we have a file A sizing 56KB.

We sample 6 data blocks and each data block sizes 1KB.

According to Algorithm 1, file A has N= 6; Lenc = 1KB;

FileSize = 56KB; LenR = 10KB. If we add 5KB data to file A

to form file B, file Bwill have N = 6; Lenc = 1KB; FileSize =

61KB; LenR = 11KB in terms of algorithm.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 6 Issue: 6 254 - 259

__

257

IJRITCC | June 2018, Available @ http://www.ijritcc.org

Adding 5KB data to file A has three situations including the

begging, the middle, and the end of the file A. File B1, B2,

and B3 in figure 2(a) represent

these three different situations. We can find that the above file

modifications cause the sampling position shifted and result in

an inaccuracy of similarity detection.

For example, the six sampling positions of file A are 0KB,

11KB, 22KB, 33KB, 44KB, and 55KB ((1 � 1) _ (1 + 10) =

0KB; (2� 1) _ (1 +10) = 11KB; (3 � 1) _ (1 + 10) = 22KB; (4

� 1) (1 +10) = 33KB; (5 �1) _ (1 + 10) = 44KB; (6 � 1) _ (1

+ 10) = 55KB), respectively.

However, due to the added 5KB data, the six sampling

positions of file B1,B2, and B3 are shifted to 0KB; 12KB;

24KB; 36KB; 48KB, and 60KB((1 � 1) _ (1 + 11) =0KB; (2

� 1) _ (1 + 11) = 12KB; (3 �1) _ (1 + 11) = 24KB; (4 � 1) _

(1 + 11) =36KB; (5 � 1) _ (1 + 11) = 48KB; (6 � 1) _ (1 +

11) = 60KB), respectively.

Although the Sim(A;B) is far from actual value when using

TSA, the sampling method is very simple and takes

much less overhead in contrast to the shingle algorithm and

simhash algorithm.

B. PAS algorithm

FPP[17] exploits prefetching fingerprints belonging to the

same file by leveraging file similarity, thus improving the

performance of data deduplication systems.

The experimental results suggest that FPP increases cache hit

ratio and reduces the number of disk accesses greatly. FPP

samples three data blocks in the beginning, the middle, and the

end of files to determine that a forthcoming file is similar to

the files stored in the backed storage system, by using the

TSA. This method is sample and effective. However, as

explained in section 4.1, a single bit modification would result

in a failure. Therefore, PAS is proposed to solve this problem.

II. CONCLUSION AND FUTURE SCOPE

A. Conclusion

In this paper , Overall we will study all the existing

techniques which is available in market. Each system has

some advantages and some disadvantages. Any existing

system cannot fulfill all the requirement of Server search.

They require more space and time; also some techniques

are limited for particular dataset. We Proposed an

algorithm PAS to identify the file similarity of Unicode

data in large data Set.Here many experiments are

performed to select the parameters of PAS. PAS is very

effective in detecting file similarity in contrast in

similarity identification algorithm called Simhas. PAS

required less time than Simhash. The Proposed technique

is satisfying number of requirement of server search using

different algorithms. It also shows the ranking of character

value and not requires the knowledge of database queries.

Compare to existing algorithm it is a fast process.

B. Future Scope

As a future work we can search the techniques which are

useful for all the datasets, means only single technique

can be use. Further research is necessary to investigate the

experimental design decisions that have a significant

impact on the evaluation of server search.

Sampling based similarity identification opens up several

directions for future work. The first one is using content

based chunk algorithm to sample data blocks, since this

approach can avoid content shifting incurred by data

modification. The second one is employing file metadata

to optimize the similarity detection. This is because the

file size and type which are contained in the metadata of

similar file are normally very close.

Evaluate to presented systems it is a fast process and the

Techniques are implausible to have performance

characteristics that are similar to existing systems but be

required to be used if cloud search systems are to scale to

great datasets. The memory exploitation during a search

has not been the focus of any earlier assessment

ACKNOWLEDGMENT

The preferred spelling of the word “acknowledgment” in

America is without an “e” after the “g”. Avoid the stilted

expression, “One of us (R.B.G.) thanks . . .” Instead, try

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 6 Issue: 6 254 - 259

__

258

IJRITCC | June 2018, Available @ http://www.ijritcc.org

“R.B.G. thanks”. Put applicable sponsor acknowledgments

here; DO NOT place them on the first page of your paper or as

a footnote.

REFERENCES

[1] 1.storage architecture for big data in cloud

environment,” in Green Computing and

Communications (GreenCom), 2013 IEEE and

Internet of Things (iThings/CPSCom), IEEE

International Conference on and IEEE Cyber, Physical

and Social Computing. IEEE, 2013, pp. 476– 480.

[2] J. Gantz and D. Reinsel, “The digital universe decade-

are you ready,” IDC iView, 2010.

[3] H. Biggar, “Experiencing data de-duplication:

Improving efficiency and reducing capacity

requirements,” The Enterprise Strategy Group, 2007.

[4] F. Guo and P. Efstathopoulos, “Building a high

performance deduplication system,” in Proceedings of

the 2011 USENIX conference on USENIX annual

technical conference. USENIX Association, 2011,pp.

25–25.

[5] A. Muthitacharoen, B. Chen, and D. Mazieres, “A

low-bandwidth network file system,” in ACM

SIGOPS Operating Systems Review, vol. 35, no. 5.

ACM, 2001, pp. 174–187.

[6] B. Zhu, K. Li, and R. H. Patterson, “Avoiding the disk

bottleneck in the data domain deduplication file

system.” in Fast, vol. 8, 2008, pp. 1–14.

[7] Y. Deng, “What is the future of disk drives, death or

rebirth?” ACM Computing Surveys (CSUR), vol. 43,

no. 3, p. 23, 2011.

[8] C. Wu, X. LIN, D. Yu, W. Xu, and L. Li, “End-to-end

delay minimization for scientific workflows in clouds

under budget constraint,” IEEE Transaction on Cloud

Computing (TCC), vol. 3, pp. 169–181, 2014.

[9] G. Linden, “Make data useful,”

http://home.blarg.net/_glinden/

StanfordDataMining.2006-11-29.ppt, 2006.

[10] R. Kohavi, R. M. Henne, and D. Sommerfield,

“Practical guide to controlled experiments on the web:

listen to your customers not to the hippo,” in

Proceedings of the 13th ACM SIGKDD international

conference on Knowledge discovery and data mining.

ACM, 2007, pp. 959–967.

[11] J. Hamilton, “The cost of latency,” Perspectives Blog,

2009.

[12] D. Bhagwat, K. Eshghi, D. D. Long, and M.

Lillibridge, “Extreme binning: Scalable, parallel

deduplication for chunk-based file backup,” in

Modeling, Analysis & Simulation of Computer and

Telecommunication Systems, 2009. MASCOTS’09.

IEEE International Symposium on. IEEE, 2009, pp.

[13] W. Xia, H. Jiang, D. Feng, and Y. Hua, “Silo: a

similarity-locality based near-exact deduplication

scheme with low ram overhead and high throughput,”

in Proceedings of the 2011 USENIX conference on

USENIX annual technical conference. USENIX

Association, 2011, pp. 26–28.

[14] Y. Fu, H. Jiang, and N. Xiao, “A scalable inline cluster

deduplication framework for big data protection,” in

Middleware 2012.Springer, 2012, pp. 354–373.

[15] D. Teodosiu, N. Bjorner, Y. Gurevich, M. Manasse,

and J. Porkka, “Optimizing file replication over

limited bandwidth networks using remote differential

compression,” Microsoft Research TR- 2006-157,

2006.

[16] Y. Zhou, Y. Deng, and J. Xie, “Leverage similarity

and locality to enhance fingerprint perfecting of data

deduplication,” in Proceedings of The 20th IEEE

International Conference on Parallel and Distributed

Systems. Springer, 2014.

[17] A. Z. Broder, “On the resemblance and containment of

documents,” in Compression and Complexity of

Sequences 1997. Proceedings. IEEE, 1997, pp. 21–29.

[18] G. S. Manku, A. Jain, and A. Das Sarma, “Detecting

near duplicates for web crawling,” in Proceedings of

the 16th international conference on World Wide Web.

ACM, 2007, pp. 141–150.

[19] L. Song, Y. Deng, and J. Xie, “Exploiting fingerprint

prefetching to improve the performance of data

deduplication,” in Proceedings of the 15th IEEE

International Conference on High Performance

Computing and Communications. IEEE, 2013.

[20] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G.

Zweig, “Syntactic clustering of the web,” Computer

Networks and ISDN Systems, vol. 29, no. 8, pp. 1157–

1166, 1997.

[21] M. S. Charikar, “Similarity estimation techniques from

rounding algorithms,” in Proceedings of the thiry-

fourth annual ACM symposium on Theory of

computing. ACM, 2002, pp. 380–388.

[22] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The

google file system,” in ACM SIGOPS Operating

Systems Review, vol. 37, no. 5. ACM, 2003, pp. 29–

43.

[23] J. Dean and S. Ghemawat, “Mapreduce: simplified

data processing on large clusters,” Communications of

the ACM, vol. 51, no. 1, pp. 107–113, 2008.

[24] T. Elsayed, J. Lin, and D. W. Oard, “Pairwise

document similarity in large collections with map

reduce,” in Proceedings of the 46th Annual Meeting of

the Association for Computational Linguistics on

Human Language Technologies: Short Papers.

Association for Computational Linguistics, 2008, pp.

265–268.

[25] G. Forman, K. Eshghi, and S. Chiocchetti, “Finding

similar files in large document repositories,” in

Proceedings of the eleventh ACM SIGKDD

international conference on Knowledge discovery in

data mining. ACM, 2005, pp. 394–400.

[26] Z. Ouyang, N. Memon, T. Suel, and D. Trendafilov,

“Cluster-based delta compression of a collection of

files,” in Web Information Systems Engineering,

2002. WISE 2002. Proceedings of the Third

International Conference on. IEEE, 2002, pp. 257–

266.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 6 Issue: 6 254 - 259

__

259

IJRITCC | June 2018, Available @ http://www.ijritcc.org

[27] A. Z. Broder, M. Charikar, A. M. Frieze, and M.

Mitzenmacher, “Min-wise independent permutations,”

Journal of Computer and System Sciences, vol. 60, no.

3, pp. 630–659, 2000.

[28] B. Han and P. J. Keleher, “Implementation and

performance evaluation of fuzzy file block matching.”

in USENIX Annual Technical Conference, 2007, pp.

199–204.

[29] B. S. Baker, “On finding duplication and near-

duplication in large software systems,” in Reverse

Engineering, 1995., Proceedings of 2nd Working

Conference on. IEEE, 1995, pp. 86–95.

[30] N. Shivakumar and H. Garcia-Molina, “Building a

scalable and accurate copy detection mechanism,” in

Proceedings of the first ACM international conference

on Digital libraries. ACM, 1996, pp.160–168.

