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Abstract—In this paper, we have thoroughly examined the dynamics of a system of two mutually coupled Colpitts oscillators. Two bias-tuned 

Colpitts oscillators with identical structure are bilaterally coupled through direct coupling scheme.Numerically solving the system equations, it is 

observed that both the Colpitts oscillators oscillating in periodic mode become perfectly synchronized for some values of the coupling factors. 

For higher values of coupling factors, the system become chaotic.We have also studied the dynamics of two mutually coupled non-oscillatory 

Colpitts oscillators. With the increase of the coupling factors between two oscillators, birth of periodic oscillation observed. For increased value 

of coupling factors, system dynamics become chaotic.We develop conditions for periodic bifurcation in parameter space analytically and 

verified it through numerical solution of system equations. We also perform a simulation experiment using PSPICE circuit simulator in the radio 

frequency range with prototype Colpitts oscillator circuits and the experimental observations are in agreement with the numerical simulation 

results. 

Keywords-Colpitts oscillators; Bilateral direct coupling; birth of oscillation; synchronized oscillations; chaotic oscillations. 
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I. INTRODUCTION 

During last few decades a huge numbers of research works 
have been done on the nonlinear dynamics of a system 
involving two or more mutually coupled oscillators [1-5]. 
Several interesting dynamical phenomena have been detected 
in coupled system of two or more than two oscillators due to 
inherent nonlinearity of the oscillating device. Occurrence of 
nonlinear phenomena like quasi periodicity, chaos, 
intermittency etc. are well documented in the literature [6]. An 
interesting phenomenon, namely amplitude death, occurs when 
two coupled oscillators drive each other to fixed points and 
stop oscillating [7]. Recent experiments have led to increase 
interest in the origin and dynamics of Chimera state in two or 
more mutually coupled oscillators system [8-10]. Coupled 
electronic oscillators have important applications in various 
electronics and communication systems, e.g. spectrally pure 
signal generators, coherent modulators and detectors, power 
mixers, lock in amplifiers and filters, frequency synthesizers 
etc. [11, 12]. But to the knowledge of the authors, the 
phenomenon of manifestation of oscillations in two mutually 
coupled oscillators, initially both in non-oscillatory states, is 
not thoroughly examined. Here our intension is to observe such 
phenomenon, may be called as birth of oscillation, in a system 
of two mutually coupled bias-tuned Colpitts oscillators. This 
paper includes a comprehensive study of the dynamics of two 
mutually coupled Colpitts oscillators. Here, we have first 
observed the dynamics of two periodic COs coupled in a 
bilateral way (mutually coupled PCO-PCO system) and 
thoroughly studied the effect of variation of coupling 
coefficients using direct coupling scheme. In the second part of 
our study, we kept both the COs in non-oscillatory mode by 
properly adjusting their bias current. Then they are coupled 
bidirectionally with the same coupling scheme. Initiating with 
non-oscillatory COs in steady equilibrium state, we get limit 
cycle oscillations for some critical coupling parameters. The 
phenomenon has similarity with rhythmogenesis referred in 
nonlinear dynamics literature [13, 14]. Obviously, dynamics of 
such a system has practical importance and it needs serious 
study. A very few work in this direction could be found in the 

literature [15]. We have also observed generation of chaotic 
oscillation in such a system. An experimental verification of 
numerically obtained results has been done using a circuit 
simulation experiment. Our main intention is to explore the 
possibility of inducing periodic oscillation in two coupled COs 
kept at a non-oscillatory states.  

The paper has been organized in the following way. 
Description of the bilaterally coupled Colpitts oscillator 
(BCCO) system has been discussed in section II. The process 
of the setup of BCCO system and its circuit theoretic model 
have been discussed here. We formulate the equations 
describing dynamics of a system of bidirectionally coupled 
COs using the equations of bias current controlled CO derived 
in our earlier works [16,17]. The stability of the system 
dynamics has been studied in section III. The conditions for 
birth of periodic oscillations from a stable non-oscillatory state 
has been formulated in section III-A. In section IV, we have 
shown that numerical simulations of the system dynamics agree 
with our analytical predictions. It also indicates that the system 
can exhibit nonlinear chaotic oscillations for larger value of 
coupling factors. The observations are also verified with 
simulation experiment using PSPICE circuit simulator. The 
results of this experiment have been described in section V. 
Finally some concluding remarks are included in section VI. 
 

II. DESCRIPTION OF THE BCCO SYSTEM AND FORMULATION OF 

THE SYSTEM EQUATIONS 

The BCCO system under study is implemented by 
connecting two current controlled BJT based COs as described 
in our earlier works [16,17] through two coupling networks in 
bidirectional way. We inject a fraction of output signal of first 
oscillator into the input of the second one through a coupling 
network and a fraction of the output of the second CO into the 
input of the first one through another similar coupling network. 
A simplified block diagram of BCCO system is shown in Fig.1. 
The details of the practical coupling arrangement are discussed 
in Section 5. The effect of this coupling is examined by varying 
the coupling factors. 
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Figure 1. A simplified block diagram of the bilaterally coupled CO system. 

 
As shown in Fig.2, to form the bidirectional coupling, 

collector of the each CO is coupled with the emitter of the other 

CO by the resistors 𝑅𝑠1 and 𝑅𝑠2. By changing the values of the 
resistances Rs1 and Rs2 the coupling strength can be varied. 

 
Figure 2. ac equivalent circuit of the BCCO system. 

 
The system equations of the bidirectionally coupled 

oscillators system are formulated by considering the ac 
equivalent circuit as shown in Fig.2. The state variables of the 
first CO and the second CO are taken as (𝑥1 , 𝑦1 , 𝑧1 ) and 
(𝑥2 , 𝑦2 , 𝑧2) respectively. Applying Kirchoff’s law to both the 
loop in the Fig.2 a set of first order nonlinear autonomous 
differential equations formed which describe the dynamics of 
the BCCO system. The dynamics is described by the following 
set of differential equations. Here the first three are for the first 
CO and the rest three are for the second CO. The equations are: 

 
𝑑𝑥1

𝑑𝜏
= −

𝑔1(𝑧1−𝑎1𝑦1+𝑏1𝑦1
3)

𝑄1(1−𝑘1)
   (1a) 

  
𝑑𝑦1

𝑑𝜏
=

𝑔1(𝑘𝐹21 (𝑥2+𝑦2)−𝑧1)−ℎ𝑟1𝑦1)

𝑄1𝑘1
   (1b) 

𝑑𝑧1

𝑑𝜏
=

𝑄1𝑘1(1−𝑘1)(𝑥1+𝑦1)

𝑔1
−

𝑧1

𝑄1
   (1c) 

𝑑𝑥2

𝑑𝜏
= −

𝑔2(𝑧2−𝑎2𝑦2+𝑏2𝑦2
3)

𝑄
 2(1−𝑘2)

   (2a) 

𝑑𝑦2

𝑑𝜏
=

𝑔2(𝑘𝐹12 (𝑥1+𝑦1)−𝑧2)−ℎ𝑟2𝑦2)

𝑄2𝑘2
   (2b) 

𝑑𝑧2

𝑑𝜏
=

𝑄2𝑘2(1−𝑘2)(𝑥2+𝑦2)

𝑔2
−

𝑧2

𝑄2
   (2c) 

 
The system equation (1b) of the first CO and (2b) of the 

both COs are modified by the inclusion of the forcing signal 
term 𝑘𝐹21 𝑥2 + 𝑦2  and 𝑘𝐹12 𝑥1 +  𝑦1  respectively obtained 
from the other CO. Here𝑘𝐹12  and 𝑘𝐹21  are the coupling factors 

mentioned before. Since two oscillators are considered nearly 
identical in structure, in the simulation study we take the 
system parameters 𝑔1 = 𝑔2 =𝑔 , 𝑄1 =  𝑄2 = 𝑄, ℎ𝑟1 =  ℎ𝑟2 =
 ℎ𝑟 , 𝑘1 =  𝑘2 = 𝑘. Suitably adjusting 𝑎 and 𝑏, both the COs are 
made to operate in the oscillatory or non-oscillatory stable 
mode. 

 
 

III. STABILITY ANALYSIS OF SYSTEM EQUATIONS 

In the analytical study of the BCCO dynamics, first we 
evaluate the equilibrium points (𝑥1

∗, 𝑦1
∗, 𝑧1

∗, 𝑥2
∗, 𝑦2

∗, 𝑧2
∗) in the six 

dimensional state space by equating the time derivatives of the 
state variables 𝑥1 , 𝑦1 , 𝑧1, 𝑥2 , 𝑦2 , 𝑧2to zero in equations (1) and 
(2). This gives three possible equilibrium points P1, P2 and P3 
respectively, where P1 is (0, 0, 0, 0, 0, 0). While P2 and P3 are 
given by expressions written as 

(∓(
𝑛1

𝑄1𝑘1(1−𝑘1)
+ 1) 

𝑎1+
𝑛1
𝑚1

𝑏1
, ± 

𝑎1+
𝑛1
𝑚1

𝑏1
, ∓

𝑛1

𝑚1

 
𝑎1+

𝑛1
𝑚1

𝑏1
, ∓ 

𝑎2

𝑏2
, 

± 
𝑎2

𝑏2
, 0) . 

 Where 𝑛1 =
ℎ𝑟1

𝑄1
, 𝑚1 =

𝑔1

𝑄1
, 𝑛2 =

ℎ𝑟2

𝑄2
, 𝑚2 =

𝑔2

𝑄2
, 

The stability of steady state points is examined with the 
help of (6 × 6) transformation Jacobian matrix J(X) of the 
system evaluated at a particular non-trivial steady state point as 
represented in equation (3).  

 
J=

 

 
 
 
 
 
 
 

0 (𝑎1 − 3𝑏1𝑦1
∗2

) −1 0 0 0

0 −
𝑛1

𝑘1
−

𝑚1

𝑘1
𝑘𝐹21

𝑚1

𝑘1
𝑘𝐹21

𝑚1

𝑘1
0

𝑘1(1−𝑘1)

𝑚1

𝑘1(1−𝑘1)

𝑚1
−

1

𝑄1
0 0 0

0 0 0 0 (𝑎2 − 3𝑏2𝑦2
∗2

) −1

𝑘𝐹12
𝑚2

𝑘2
𝑘𝐹12

𝑚2

𝑘2
0 0 −

𝑛2

𝑘2
−

𝑚2

𝑘2

0 0 0
𝑘2(1−𝑘2)

𝑚2

𝑘2(1−𝑘2)

𝑚2
−

1

𝑄2  

 
 
 
 
 
 
 

 

                (3) 
Here, 𝑦1

∗ 𝑎𝑛𝑑 𝑦2
∗ indicate the value of 𝑦1  𝑎𝑛𝑑 𝑦2 

respectively at a particular equilibrium point. Obeying standard 
notations of nonlinear dynamics and representing X as the state 
vector having six components ( 𝑥1, 𝑦1 , 𝑧1, 𝑥2 , 𝑦2 , 𝑧2 ), the 
characteristics equation is written as det(J(Xs) −𝛌I) = 0, where, 
Xs is the state vector at an equilibrium point, I is the identity 
matrix and 𝛌 is Eigen value of Jacobian matrix. So for the 
system under study we get characteristics equation in the form 
as given in equation (4), 

 
𝑃6λ

6 + 𝑃5λ
5 + 𝑃4λ

4 + 𝑃3λ
3 + 𝑃2λ

2 + 𝑃1λ + 𝑃0 = 0       (4) 
 
Here, the coefficients𝑃0, 𝑃1, 𝑃2,𝑃3 ,  𝑃4 ,𝑃5and 𝑃6will depend 

on the nature of coupling, values of system parameters and the 
location of fixed point of the concerned system. 

The dynamics of BCCO system can be achieved by 
inspecting coefficients of characteristic equation (4) without 
explicitly finding roots [18]. The nature of the roots of the 
characteristic equation (4) is obtained by applying the Routh-
Hurwitz’s criteria [19], and hence the stability of a particular 
equilibrium point can be predicted. The equilibrium point 
would be stable if the roots of (4) have negative real parts.  
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A. Condition for birth of oscillation 

We can achieve the condition of bifurcation to stablenon-

oscillatory state in terms of 𝑃𝑖 's by applying the method 

defined in [18]. The conditions of periodic oscillatory 

bifurcation are as follows. 

𝑃0 > 0      (5a) 

𝑃1 > 0      (5b) 

(𝑃1𝑃2 −  𝑃0𝑃3) > 0    (5c) 

𝑃1 𝑃2𝑃3 −  𝑃1𝑃4 + 𝑃0 𝑃1𝑃5 −  𝑃3
2 > 0    (5d) 

The coefficients in equation (4) can be evaluated by solving 

the above equations (given in the appendix). Where we have 

assumed that two COs are identical which makes all the 

parameters in both the oscillators equal and the coupling 

coefficients are also equal, i. e.𝑘𝐹12 = 𝑘𝐹21 = 𝑐. 
For the equilibrium point (0,0,0,0,0,0), from the condition in 

(5a) we can get  

𝑐 <
 1−𝑘  𝑎+ 

𝑛

𝑚
 𝑘𝑄

 𝑎𝑚
    (6) 

The relation stated in (6) is also valid in the condition in (5b). 

By substituting the values of the other parameters (as stated in 

[16],[17]) except the coefficient of coupling, c in the condition 

(5c) and neglecting the higher order terms involving c, it has 

been found that c should be greater than 0.056 to get into 

periodic oscillatory bifurcation.  

So we get a range of coupling factors for which periodic Hopf 

bifurcation is possible. 

These results are consistent with intuitive predictions that a 

third or higher order system may become oscillatory if 

damping term is reduced to zero. Here because of the process 

of coupling, we get situations when damping term of a system 

is effectively minimized due to forcing term from other 

oscillator. This makes the coupled system oscillatory. 

 

IV. EVALUATION OF SYSTEM DYNAMICS THROUGH NUMERICAL 

SIMULATIONS 

 

The dynamics of the BCCO system is studied by numerical 

integration of (1) and (2) for a carefully chosen set of system 

parameters. We adopt 4th order Runge–Kutta integration 

algorithm in the normalized time domain with a step size h = 

0.01. Initial transients in the numerical solution are excluded 

by discarding more than 50% of the data points close to initial 

time and thus steady state values of the state variables are 

obtained. The values of the parameters 𝑘,𝑔,𝑄 and ℎ𝑟  of both 

the Colpitts oscillators have been taken in accordance with the 

designed experimental circuit (described in Section 5). They 

are taken as 𝑔 = 1.32,𝑄 = 4.0, 𝑘 = 0.5, ℎ𝑟 = 0.04, 𝑏 = 0.2 

for both the oscillators. 

 

A. Dynamics of mutually coupled PCO-PCO system  

At first, we would consider the effect of direct mutual 
coupling in a system of two periodic Colpitts oscillators. A 
simultaneous solution of (1) and (2) with properly chosen 
parameters gives the dynamics of mutually coupled PCO-PCO 
system. The parameter 𝑎1of the first CO is taken as 2.20, which 
gives its periodic condition of oscillation. The parameter 𝑎2 of 
the second CO is taken as 2.22. This ensures that its oscillation 
in periodic mode [16, 17] and the case of mutually coupled 
PCO-PCO system is obtained. Then, varying the value of the 

coupling parameters 𝑘𝐹1  and 𝑘𝐹2  we examine the effect of 
periodic perturbation on both the oscillators’ dynamics. The 
dynamics of the system can attain different states depending 
upon the values of coupling factors and bias current 
parameter, 𝑎 of two individual oscillators. In case of very small 
magnitude of 𝑐 (we have chosen𝑘𝐹12 = 𝑘𝐹21 = 𝑐), the system 
dynamics attains a nearly uncorrelated state. The BCCO system 
achieves a synchronized state of two oscillators for a range of 
values of 𝑐. Both the oscillators have a common frequency of 
oscillation with a relative phase shift. The system becomes 
completely synchronized for a particular range of values 
of 𝑐. Fig. 3 shows the state- space trajectories in y - z plane of 
two oscillators when coupling is very weak. Fig. 3 (c) pointed 
out that the oscillations of two COs are uncorrelated. 

 

  

(a) (b) 

 
(c) 

Figure 3. Numerically obtained phase plane plots of 𝑦 − 𝑧 of (a) CO1, (b) CO2 
and (C) mutual phase plane plot of state variables z1 –z2 of BCCO system for 
very weak coupling, 𝑘𝐹12 = 𝑘𝐹21=𝑐 =  0.0006 indicating uncorrelated states. 
(The system parameters are𝑎1 = 2.20, 𝑎2 = 2.22, 𝑔 = 1.32, 𝑄 = 4.0, 𝑘 = 0.5, ℎ𝑟  
= 0.04, 𝑏 = 0.2.). 

 

   
(a) (b) (c) 

 

Figure 4. Numerically computed response of two mutually coupled COs system 
showing the relation between  𝑧1  and 𝑧2 for different values of the coupling 
factors. The system parameters are𝑎1 = 2.20, 𝑎2 = 2.22, 𝑔 = 1.32, 𝑄 = 4.0, 𝑘 = 
0.5, ℎ𝑟  = 0.04, 𝑏 = 0.2. (a) 𝑐= 0.04, (b) 𝑐= 0.012, (c) 𝑐= 0.15. 

 
 Fig. 4 states that as coupling strength increases a state of 

synchronized oscillation approaches and at 𝑘𝐹12 = 𝑘𝐹21 = 𝑐 = 
0.15, a state of perfect synchronization happens. For further 
increase in the coupling factors the dynamics of mutually 
coupled system become apparently random. The nature of the 
phase plane trajectories between 𝑦 − 𝑧  of both the oscillators 
indicate chaos and the elliptical pattern of mutual phase space 
plot of CO1 and CO2 indicates the tendency of phase 
synchronization between two chaotic oscillations generated in 
two COs. Fig. 5 and Fig. 6 show the numerically obtained 
results. 
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(a) (b) 

  
Figure 5. Numerically calculated phase plane plot of 𝑦 − 𝑧 of BCCO system in 
direct coupling scheme for (a)CO1 and (b) CO2 respectively for coupling 
strength , 𝑘𝐹12 = 𝑘𝐹21 = 𝑐 =  0.3 (The values of other system parameters are g 
= 1.32, Q = 4.0, k = 0.5, ℎ𝑟= 0.04, a=0.6, b = 0.2). 

 

 
 

(a) (b) 
 

Figure 6. Mutual phase plane plot of state variable z1 –z2 of BCCO system in 
direct coupling scheme for different coupling factors, (a) 𝑘𝐹12 = 𝑘𝐹21 = 𝑐 =
 0.25 and (b) 𝑘𝐹12 = 𝑘𝐹21 = 𝑐 =  0.3 respectively. (The values of other system 
parameters are g = 1.32, Q = 4.0, k = 0.5, ℎ𝑟= 0.04, a=0.6, b = 0.2). 

 

 

B. System of two mutually coupled non-oscillatory CO 

circuits 

 

In the next part of our numerical study, we repeat the 

simulation study with𝑎1 = 0.65 and 𝑎2=0.65. Here, we would 

consider the effect of coupling factors on the dynamics of two 

under-biased non-oscillatory Colpitts oscillators. A 

simultaneous solution of (1) and (2) with properly chosen 

parameters gives the dynamics of the BCCO system. The 

parameters 𝑎1and 𝑎2 of both COs are taken also as 0.65. This 

ensures from [16] and [17] that both the oscillators are in 

stable non-oscillatory states. Then, varying the value of the 

coupling parameters 𝑘𝐹12  𝑎𝑛𝑑 𝑘𝐹21 we examine the effect of 

direct coupling on BCCO system dynamics. The values of 

other CO parameters are taken as similar as in the previous 

case. 

 

C. Birth of oscillation  

In this case appearance of periodic oscillating states take 
place for c =0.05 which is in agreement with the predicted 
conditions of periodic bifurcation by analytical method. It is 
observed from the results depicted in Fig. 7 that the BCCO 
system remains in non-oscillatory state until the coupling 
strength reaches the threshold value. 

 Taking coupling factor c (same for two COs) as control 
variables we get different dynamical states of BCCO system. 
For each value of parameter c, we obtain time series data set 
and phase plane trajectories of state variables. Fig 8 confirms 
that the BCCO system undergo periodic oscillatory state after a 
critical value of the coupling factor as stated in the analytical 

study. The critical value of c = 0.05 which is almost identical as 
predicted by the analytical study. 

  
(a) (b) 

Figure 7. Numerically calculated phase plane plots of state variables y-z and 
Time series (inset) of BCCO system in direct coupling scheme for very small 
coupling factor, c = 0.005. The values of other system parameters are g = 1.32, 
Q = 4.0, k = 0.5, ℎ𝑟= 0.04, a=0.6, b = 0.2. (a) CO1 and (b) CO2. 

 

 
 

CO1(a) CO1(b) 

 
 

CO2(a) CO2(b) 

 
(c) 

Figure 8. Numerically calculated (a) phase plane plots of state variables of y-z, 
(b) time series plots and (c) mutual phase plane plot of state variables z1 –z2 of 
BCCO system in direct coupling scheme for small coupling factor, c = 0.08. 
The values of other system parameters are g = 1.32, Q = 4.0, k = 0.5, ℎ𝑟= 0.04, 
a=0.6, b = 0.2. Upper plots for CO1 and lower plots for CO2. 

 
The phase relation between the periodic oscillations in two 

COs is examined by noting the relative time domain evolution 
of the state variables 𝑧1(t) and 𝑧2 (t). For this purpose we plot 
them along x and y axes respectively of x–y plane as shown in 
Fig. 8 (c). It has been detected from the Fig. 8 (c) that the phase 
plane plot of generated periodic outputs from two COs of 
BCCO is an elliptic pattern. This elliptical mutual phase plane 
indicates that there exists a constant phase relation between two 
outputs from two COs. For a small range of c values, a regular 
pattern of the curve is observed. This phenomenon is similar as 
predicted in [15]. 

 

D. Generation of chaotic oscillation 

Numerical simulations also indicate that BCCO system 
shows different chaotic dynamics for further increase of 
coupling factors. Fig. 9 and Fig. 10 show the nature of the 
system dynamics in time domain and phase plane plots for 
different values of coupling factors. Both the nature of phase 
plane and time domain plots approve that the dynamics of the 
BCCO system is aperiodic for large coupling. 
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CO1 (a) CO1 (b) 

 
 

CO2 (a) CO2 (b) 
 

 
(c) 

Figure 9. Numerically calculated (a) phase plane plot (𝑦 − 𝑧), (b) time series 
plots of state variable 𝑧 and (c) mutual phase plane plot of state variable z1 –z2 
of BCCO system in direct coupling scheme for moderate coupling factor, c = 
0.15. The values of other system parameters are g = 1.32, Q = 4.0, k = 0.5, ℎ𝑟= 
0.04, a=0.6, b = 0.2. Upper plots for CO1 and lower plots for CO2. 

 

  

CO1 (a) CO1 (b) 

 
 

CO2 (a) CO2 (b) 

 
(c) 

Figure 10. Numerically calculated (a) phase plane plot, (b) time series plots and 
(c) mutual phase plane plot of z1 –z2 of BCCO system in direct coupling 
scheme for high coupling factor, c = 0.35. The values of other system 
parameters are g = 1.32, Q = 4.0, k = 0.5, ℎ𝑟= 0.04, a=0.6, b = 0.2. Upper plots 
for CO1 and lower plots for CO2. 

 

V. EXPERIMENTAL STUDIES 

Dynamics of two mutually coupled COs is studied 
experimentally in radio frequency regions by using PSPICE 
circuit simulation software. The design procedure of both the 
COs are similar as reported in [16] and [17]. Two such COs has 
been coupled together properly to form a BCCO system. The 
coupling network has also been designed using op-amps. The 
couplings of two COs are done in such a way that the dc 
operating conditions of the oscillators are not disturbed. We 
have applied direct coupling scheme by feeding a fraction of 
output signal of one CO directly into the other CO through a 
buffer amplifier and vice versa. The coupling factor is 
controlled by varying the value of the resistor used for 

controlling the gain of the buffer amplifier.  Moreover, circuit 
parameters of both the oscillators are taken nearly equal, but 
the dc bias currents of CO1 and CO2 are chosen differently in 
order to drive two oscillators oscillating in different modes of 
oscillations. Two variable resistors are used to control the 
coefficient of coupling between the COs ( 𝑘12 and 
𝑘21 )independently. The observations are summarized as 
follows:  

(i) Keeping both CO1 and CO2 in periodic mode but a little 
different in bias current (𝐼1 = 5.5𝑚𝐴  and 𝐼2 = 5.4𝑚𝐴 ), we 
choose non zero value of 𝑘12  and𝑘21  to obtained the bilaterally 
coupled system. The frequency of oscillation of CO1 and CO2 
are obtained as 105.0 and 102.0 kHz, respectively. In BCCO, 
system behaviors of individual oscillators are modified from 
their free running mode due to coupling with other oscillator. . 
The voltages at the collector terminal and the emitter terminal 
are chosen as the state variables to be applied at the x and y 
input of the oscilloscope to plot the experimental phase-plane 
diagram. Changing the value of the coupling resistors RS1 and 
RS2, the strength of the injected current to one CO taken from 
another CO is varied. This ensures the variation of 𝑘𝐹12  
and  𝑘𝐹12 . We perform simulation experiment on this circuit 
using the circuit simulator PSPICE. A few representative 
results are depicted in Fig. 11 to Fig. 13. The dynamics of the 
system can attain different states depending upon the strength 
of coupling and operating bias current of two individual 
oscillators. In case of very small magnitude of 𝑐 the system 
dynamics reaches a nearly uncorrelated state. The BCCO 
system achieves a synchronized state of two oscillators for a 
range of values of 𝑐 . Both the oscillators have a common 
frequency of oscillation with a relative phase shift. The system 
becomes completely synchronized for a particular range of 
values of𝑘12  and𝑘21 . 

  
(a) (b) 

 
Figure 11. Experimentally (PSPICE) obtained phase plane plots of 𝑣(𝑐1+𝑐2) 

- 𝑣𝑐2for (a) CO1, (b) CO2 and (c) mutual phase plane for output taken from 
CO1 and CO2 of BCCO system for coupling strength 𝑘𝐹12 = 𝑘𝐹21 =.0006, 
indicating uncorrelated state. 

 

   
(a) (b) (c) 

Figure 12. Experimentally (PSPICE) obtained mutual phase plane for 
output taken from CO1 and CO2 of BCCO system for different coupling 
strength (a)𝑘𝐹12 = 𝑘𝐹21=0.042, (b)𝑘𝐹12 = 𝑘𝐹21=0.09, (c) 𝑘𝐹12 = 𝑘𝐹21=0.16. 
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(a) (b) 

  
(c) (d) 

 
Figure 13. Experimentally (PSPICE) obtained phase plane plot of 

𝑣(𝑐1+𝑐2) − 𝑣𝑐2of BCCO system in direct coupling scheme for (a) CO1 and (b) 

CO2 respectively for coupling strength 𝑐 =  0.3  and (c), (d) are mutual phase 
plane for output taken from CO1 and CO2 of BCCO system for different 
coupling strength  (c) 𝑘𝐹12 = 𝑘𝐹21=0.26, (d) 𝑘𝐹12 = 𝑘𝐹21=0.32. 

 
(ii) For some critical value of coupling factors the dynamics 

become apparently random. The nature of the phase plane 
trajectory specifies chaos and the elliptical pattern of mutual 
phase space of CO1 and CO2 indicates phase synchronization 
between two chaotic oscillations generated in two COs.   

(iii) In the next phase, we have chosen that bias current, I = 
1.2mA for both the oscillators which confirms non-oscillatory 
state of COs from the experimental works as described in [16] 
and [17]. The coupling factor 𝑘𝐹12  and  𝑘𝐹12  are taken equal 
and they are slowly increased by equal amounts (i.e. always 
taking kF12 = kF21 = c (say)). We observe the variation of out 
puts of two COs in phase plane plot, time and frequency 
domain for different coupling factors. Experimentally obtained 
results are depicted in Fig. 14 to Fig. 17. 

 Setting both CO1 and CO2 in non-oscillatory mode (but 
both are just on the verge of oscillation), we choose non zero 
value of 𝑘12  and𝑘21 . For a particular rang of values of coupling 
factors both the oscillators can be brought into periodic 
oscillation state. Observations of simulation experiment 
indicate that sustained oscillation is possible in non-oscillatory 
COs when two similar oscillators are coupled together. Farther 
increase in 𝑘s, the system exhibits nonlinear chaotic behavior. 

 
We observe that a stable periodic oscillation begins when 

c= 0.05. The observation is consistent with predicted analytical 
condition, which states the condition of birth of oscillation in 
this case is c =0.056. The condition has been verified for other 
values of I also and results obtained are satisfactory. We get 
chaotic oscillations when c > 0.15. This indicates that 
experimental results are in good agreement with analytical 
predictions as well as numerical simulation observations.  

We also investigate experimentally the existence of any 
types of synchronization between the stable oscillations in two 
COs. We have done this by plotting their outputs along X and 
Y direction of the same Cartesian plane as shown in Fig. 15(c), 
Fig. 16(c), and Fig. 17(c). This gives a closed elliptic curve 
which confirms constant phase difference between two 
oscillations. 

  
(a) (b) 

Figure 14. Experimentally obtained (PSPICE) time domain plots for (a) 
CO1 (𝑉(𝑐1+𝑐2))and (b) CO2 (𝑉(𝑐1+𝑐2)) when coupling is very week coupling, 

𝑘𝐹12 = 𝑘𝐹21 =  𝑐 = 0.005. 
 

 
 

 
CO1 (a) CO1 (b) CO1 (c) 

 
  

CO2 (a) CO2 (b) CO2 (c) 

 
(d) 

Figure 15. Experimentally (PSPICE) obtained (a) time domain, (b) phase 
plane ,(c) frequency domain plots and (d) mutual phase plan (VC1 – VC3) plots 
of BCCO system for small coupling, 𝑘𝐹12 = 𝑘𝐹21 = 𝑐 = 0.05. Upper plots for 
CO1 and lower plots for CO2 

 

  

CO1 (a) CO1 (b) 

  

CO2 (a) CO2 (b) 
 

 
(c) 

Figure 16. Experimentally (PSPICE) obtained (a) phase plane, (b) 
frequency domain plots and (c) mutual phase plan (VC1 – VC3) plots of BCCO 
system for moderate coupling, 𝑘𝐹12 = 𝑘𝐹21  𝑐 = 0.152. Upper plots for CO1 and 
lower plots for CO2. 

 

  
(a) (b) 
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(c) 

Figure 17. Experimentally (PSPICE) obtained (a) phase plane, (b) 
frequency domain plots and (c) mutual phase plan (VC1 – VC3) plots of BCCO 
system for moderate coupling, 𝑘𝐹12 = 𝑘𝐹21 =  𝑐 = 0.35.  

 
 

VI. CONCLUSIONS 

In this paper, we have done a detailed investigation on the 
dynamics of the BCCO system through numerical simulation as 
well as PSPICE simulation experimental studies. It is observed 
that two periodically oscillating COs when bilaterally coupled 
can enter into different states depending on the values of the 
coupling strengths. When both the coupling factor are small, 
i.e., when two COs interact very weakly with each other, their 
dynamics although affected but remains uncorrelated. 
However, the interaction of periodic COs for higher values of 
coupling factors (one or both) leads to qualitative 
synchronization of the periodic oscillations of the COs. It is 
observed that the dynamics of two mutually coupled COs 
become chaotic for some critical values of coupling factors. 
Numerical simulation of the mathematical model of the BCCO 
system reveals the influence of the coupling factors on the 
dynamics of the system. A phenomenon may be called as birth 
of oscillation in a bidirectional coupled non-oscillatory CO 
system also has been studied in this chapter. Using standard 
technique of stability analysis of stable equilibrium points of 
the coupled system, the required amount of coupling factor for 
periodic bifurcation has been predicted. We have considered 
direct coupling schemes in this study. The analytically 
predicted values are in close agreement with numerical 
simulation and circuit simulation experimental results. Beyond 
this onset value of coupling factor, we observe chaotic 
oscillations in this system through numerical simulation for 
higher values of coupling factors. Time series plots and phase 
plane trajectories of the system support the existence of chaos. 
Finally the analytical and numerical predictions are verified 
with simulation experiment using PSPICE simulation software. 
Presence of chaos like aperiodic state has been obtained for 
different values of coupling factors numerically as well as 
experimentally. For small amplitudes of coupling leads to 
periodic oscillations; but increased amount of coupling results 
into aperiodic chaotic oscillations. This present work is an 
evidence that the generation of oscillation in coupled systems is 
possible where all the nodes are in under threshold conditions. 
Qualitatively, we may understand that coupling between two 
oscillators in non-oscillatory state with proper phase and 
amplitude may reduce the internal damping of isolated 
oscillators and at some critical values of coupling factors 
internal damping becomes zero. In these conditions, 
oscillations are generated. Details studies with other coupling 
schemes (e. g. diffusive) along with a large number of coupled 
oscillators where some of the oscillators are in non-oscillatory 
state have enormous practical importance in variety of relevant 
fields. 

 

 

APPENDIX 

The coefficients in equation (4)can beevaluated by solving 
the characteristics equation stated in section III. They are:- 

 
𝑃6 = 1     (A.a) 

𝑃5 = 2(
𝑛

𝑘
+

1

𝑄
)    (A.b) 

𝑃4 =  
4𝑛

𝑘𝑄
+

𝑛2

𝑘2 +
1

𝑄2 + 2
𝑘(1−𝑘)

𝑚
+ 2 1 − 𝑘 −  

𝑚2𝐶2

𝑘2𝑄
(A.c) 

𝑃3 =  
2𝑛2

𝑘2𝑄
 +  

2𝑛

𝑘𝑄2 +  
2𝑛(1−𝑘)

𝑘
+

3𝑛(1−𝑘)

𝑚
+ 

2(1−𝑘)

𝑄
+

2𝑛 1 − 𝑘 +
𝑘 1−𝑘 

𝑚𝑄
+ (𝑎 − 3𝑏𝑦1

∗2)(1 − 𝑘) −  
𝑚𝐶

𝑘2𝑄
−

 
 𝑎−3𝑏𝑦1

∗2
 𝑚𝐶2

𝑘2 −
𝑚2𝐶2

𝑘2 − (𝑎 − 3𝑏𝑦2
∗2)(1 − 𝑘) (A.d) 

𝑃2  =  
𝑛2

𝑘2𝑄2  +  
𝑛(1−𝑘)

𝑘𝑄
+

4𝑛(1−𝑘)

𝑚𝑄
+

𝑛2(1−𝑘)

𝑚𝑘
+

𝑘(1−𝑘)

𝑚𝑄
+

(1−𝑘)

𝑘𝑄
+

 𝑎−3𝑏𝑦1
∗2

  1−𝑘 𝑛

𝑘
+ 
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)(1−𝑘)

𝑄
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𝑛2(1−𝑘)

𝑚𝑘
+
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)

𝑘
−

(𝑎−3𝑏𝑦2
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)(1−𝑘)

𝑄
−  

𝑚2𝐶2

𝑘2 −

 
𝑚 (1−𝑘)𝐶2

𝑘
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      (A.e) 
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