
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 6 Issue: 5 109 - 116

__

109
IJRITCC | May 2018, Available @ http://www.ijritcc.org

Storage Security and Predictable Folder Structures in Cloud Computing

Arpita Jain

Department of Computer Science and Engineering

Marudhar Engineering College, Bikaner

arpitajain7310@gmail.com

Sunita Chaudhary

Department of Computer Science and IT

Jagannath University, Jaipur

er.sunita03@gmail.com

Abstract—The open nature of the html content and URLs used to access other resources used to render the page leaves the folder structure and

location of those files vulnerable to robots, external hackers and malicious insider attacks, typically referred to as XSS attack. A malicious user

can study the html structure and find out the pattern or folder structure of stored files and with the help of robots or crawlers it can try to access

reset of the files residing there on server irrespective of whether he was or was not authorized to get them and could use those files file ï vary

from simple ones based on is only the resources are stolen from the web page content or the directories are crawled and all the resources from

those locations are accessed, listed or used. XSS attack is easy to be launched with little efforts while its damage is severe in case of cloud.

Keywords—Cloud computing; SAAS (Software as service); insider attack; storage security.

__*****___

I. INTRODUCTION

Web applications have evolved from a set of static web

pages’ files ma Ide from static HTML to fully dynamic

applications where end user could come and post there

custom contents on portals.[1, 10] The combined usage of

client-side and server-side made it possible to provide users

with highly sophisticated user functionality and interface

through web browsers. Current web security model relies on

storing the binary resources at a location in scripts file server

and rendering them in web pages through urls[13, 17].

However, attackers always try to fetch the data stored on

server by crawling or by robots even when he is not

authorized to access those files[10]. XSS is one of the most

popular web attack techniques. It is ranked third in the top

ten listing of the most popular web applications

vulnerabilities by OWASP group[16]. Contents Security

Policy (CSP) promises to mitigate such attacks to a great

extent. CSP is a mechanism that helps web applications to

prevent a wide class of injection attacks including XSS

vulnerability[17]. To prevent the resources to be accessible

publicly without user access control through url we must

have some algorithm to generate dynamic urls which keeps

on changing with every request and by not storing the files

in file system so that even by crawling the source code one

is not able to access the user's’ binary data.

Similarly if the adversary is some insider who have access to

the server and from the url he have an idea of possible

location of storing file then without any brute force attack or

hit and tries policy or boat he can simply navigate to the

folder location and steal the resource[1, 5, 6, 8] according to

the recent trends there are lots of measures being taken to

prevent the server administrators also to access the end user

data like as not allowing to store the server passwords in

plain text,[1,3,4] files storing the password is not readable

by any user accept the root user of the server[7], SSH login

are required, log in through username and passwords is not

promoted instead login through PPK or PEM keys is

encouraged where private key is with end user but and

public keys are stored on servers[7,8] but still it is not

impossible to steal the data, to prevent this we are storing

data on 2 servers 1st code server which stores the logic of

SAAS applications and 2nd the file server which stores the

encrypted physical resources uploaded by end users.

II. LITERATURE SURVEY

A. Automatic Generation of Content Security Policy to

Mitigate Cross Site Scripting

Content Security Policy (CSP) is effective customer side

security layer that aides in alleviating and identifying wide

scopes of web assaults including cross-website scripting

(XSS).

In any case, using CSP by site managers is an error prone

process what's more, may require critical changes in web

application code. In this paper, we propose a way to deal

with help site directs to overcome these constraints to use

the full advantages of CSP component which prompts more

safe destinations from XSS. The calculation is actualized as

a module. It doesn't meddle with the web application unique

code. The module can be "introduced" on any other web

application with least endeavors. The calculation can be

actualized as a feature of Web Server layer, not as a

component of the business rationale layer. It can be stretched

out to help creating CSP for substance that are adjusted by

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 6 Issue: 5 109 - 116

__

110
IJRITCC | May 2018, Available @ http://www.ijritcc.org

JavaScript in the wake of stacking. Current approach

investigates the static substance of URLs.

B. Insider Threat Identification by Process

Analysis

The insider risk is a standout amongst the most hurtful

assault in PC security. Customary methodologies commonly

instrument frameworks with actualizes interruption

identification components to identify people who mishandle

their benefits (the dependable or approved "insider"). These

assaults require that the clients approach assets or

information keeping in mind the end goal to degenerate or

reveal them. In this paper, we examined the utilization of

process demonstrating and ensuing examinations to the

insider issue. With process demonstrating, we initially

contemplated how a SAAS application functions, it's work

process and its fundamental engineering in formal terms. We

at that point contemplated diverse specialists who convey

specific undertakings, investigated distinctive examinations

to see how the procedure can be bargained, and its

countermeasures that can be fused into the procedure model

to enhance its protection from insider assault.

C. Securing Against Insider Attacks The combination

of the Web an open system de into the correspondence

structure of most associations has fundamentally changed

the way IT security is actualized in for all intents and

purposes each business condition. What's more, as of not

long ago, the essential reason for most security systems to

manage this has been the "channel and château" show: a

solid border is set up that partitions the earth into a confided

in inside and untrusted outside, with security concentrated

on setting up the edge, upholding access control procedures,

and securing information as it streams from outside to edge.

This way to deal with security is not really new. Ancestral

resistance is an attempted and put stock in solution for a

threatening world and has at its base a survival quality that

has served us well for many years, ideal back to the time

when ancient man initially began to walk upright and bunch

together into bunches for barrier against an exceptionally

antagonistic world.

D. Insider threats: Detecting and controlling malicious

insiders

Malignant insiders are posturing exceptional security

difficulties to associations because of their insight, abilities,

and approved access to data frameworks. Information

robbery and IT attack are two of the most repeating subjects

among violations conferred by noxious insiders. This paper

means to research the scale and extent of malevolent insider

hazards and investigate the effect of such dangers on

business operations. Associations need to actualize a multi

layered guarded ways to deal with battle insider dangers;

shielding touchy business data from pernicious insiders

require right off the bat, a compelling security arrangement

that imparts outcomes of taking or releasing private data in

an unapproved way. Besides, logging and observing

representative action is basic in recognizing and controlling

framework vulnerabilities to vindictive insiders. Thirdly,

directing intermittent and steady insider defenselessness

appraisals is basic to recognizing any holes in security

controls and keeping insiders from abusing them. What's

more, finally, yet unquestionably not slightest, taking

additional alert with advantaged clients is imperative to

proactively shielding data framework from insider dangers.

E. A System Architecture for the Detection of Insider

Attacks in Big Data Systems

In enormous information frameworks, the foundation is with

the end goal that a lot of information are facilitated far from

the clients. In such a framework data security is considered

as a noteworthy test. From a client point of view, one of the

enormous dangers in embracing huge information

frameworks is in believing the supplier who plans and

claims the foundation from getting to client information.

However there does not exist much in the writing on

location of insider assaults. In this work, we propose another

framework design in which insider assaults can be identified

by using the replication of information on different hubs in

the framework. The proposed framework utilizes a two-

advance assault identification calculation and a protected

correspondence convention to investigate forms executing in

the framework. The initial step includes the development of

control direction successions for each procedure in the

framework. The second step includes the coordinating of

these direction successions among the reproduction hubs.

Starting analyses on true hadoop and start tests demonstrate

that the proposed framework needs to consider just 20% of

the code to dissect a program and acquires 3.28% time

overhead. The proposed security framework can be executed

and worked for any enormous information framework

because of its extraneous work process.

III. DESIGN AND ARCHITECTURE

A. Algorithm Overview

Let’s assume there is an application example.com coded in

PHP using an MVC framework, say laravel. The admin of

the website is willing to protect the user uploaded files to be

directly accessible through urls. The application displays the

user specific resources from specific sources. For example

1. http://example.com/storage/something.png

2. http://example.com/storage/somethingelse. pdf

3. http://example.com/storage/somemore.jpe g

4. http://example.com/storage/somemorefiles.doc

5. http://example.com/storage/somefile.xlsx As we

can notice that by looking at the url patterns one can guess

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 6 Issue: 5 109 - 116

__

111
IJRITCC | May 2018, Available @ http://www.ijritcc.org

the actual file location of stored files on server i.e. the web

root must have a folder name storage in it and that folder

would contain all the files, this is not good for hackers

outside the system to get list of all the other files stored in

this location through brute force attack and download them

through urls and for malicious insider also it is easy to locate

the files and access/manipulate them.

Suppose if it is user based system like dropbox, google

drive, facebook then it is more harmful because anyone can

access files of all the user without their permission.

To avoid all this we need to prevent following things

1. Resources are accessible through same url

throughout their lifespan

2. Resources are readable or accessible from there file

locations, neither to hacker through urls nor to

malicious insider

3. Location of physical files is predictable through

their urls.

4. Hacker/malicious insider is able to predict/read

all the other files except the one which he is

authorized to.

We can prevent this by separating code base’s server and file

server and keep them isolated so that each server do not have

any information about each other except there URL each

time where the code server wants the file it sends a request

to file server and display the file. And the url used to get the

file would expire in 10 second and so thus the request sent

from code server to file server.

B. Algorithm Design

We suggest that the algorithm is carried on using an MVC

framework build up in PHP namely Laravel. Our script will

first authenticate user and if authenticated then only will

allow the end-user to access his/her resources. Once user

gets login then only he/she would be allowed to view the

files he /she has uploaded or upload new files.

User uploads the file on code server through html form

provided to him in front end. On receiving request from

client on code server it encrypts the file content using Key(i)

and AES256 with mode CBC and pass it on to file server

File server received the encrypted file and re encrypts it with

key(ii) store it in its own storage system in path = Storage/iv

of file name/mac of filename.value of filename and return

concatenated encrypted id, iv and hash and code server save

this for future reference.

Figure 1: Save file uploaded by end user.

Figure 2: Cloud Server Stores the Reference returned by file

server in response after storing the file securely .

We are storing file on an isolated server so that even if

end+user tries to crawl the code server through boat he won't

be able to get the file location of physical file.

We are doing double encryption so that even if one server is

hacked the hacker won’t be able to access the actual records

even if he is an insider because none of the server knows the

actual encoding/or encryption key as it is combination of 2

encrypted strings. for example even if someone tries to hack

the code server (even if he is an insider) he won't be able to

access the physical files because they are not there, if

someone tries to study the code and figure out the encryption

for stored files then also he will get partial process as second

half of encryption procedure is on files server.

Similarly if someone tries to hack file server then also even

after knowing the physical file location he won't be able to

get the actual file s it is encrypted and if he tries to decrypt

the file and get actual content then also he won't be

successful in getting file content because one mode

decryption is yet to be figured whose details are on code

server.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 6 Issue: 5 109 - 116

__

112
IJRITCC | May 2018, Available @ http://www.ijritcc.org

To Retrieve the the stored file we need to perform following

sequence of operation

URL generation: When the page loads to get the user data

the Code server generates a unique URL which is valid for

10 seconds by encrypting the time and code server’s id at

which we have saved and time and return the encrypted

string along with iv and hash in url.

Figure 3: Generating unique urls to access the

resource

To access the files we first need to generate the urls which

are globally accessible through http request. But in our case

they must be valid for only a predefined time. And after that

they expire. For that what we do is we extract the id from

code server combine it with date time and encrypt it, and

because same date and time won't repeat ever thus every

time we will have a different string to encrypt. Once we

encrypt the string we append it to the url which points to our

script which would fetch the file from file server and return

the file content. Along with this encrypted string to be

passed as GET parameter.

Request file from code server: When the browser try to

receive the file from code server then server first decrypt the

string with the help of details in url and cross check if this

url was generated in last 10 seconds if yes then it fetch the

code server id and with respect to code server id it figure out

the string which file server returned in response when we

saved the file.

Once we receive the request we cross check that the url was

generated just a few seconds back if not then it won't process

the request. This forces us to generate a new request every

time a resource is to be accessed and add block access to

content from code server from repeated request from

previously stored urls i.e. replay attack. Say some one stored

the http url and try to access the file later with same url then

he/she won't be able to do that.

Figure 4: Code Server verifying the .url which is

trying to access the resource.

Request file from file server: Once Code server validates the

request it create the request to be sent to file server from

code server to file server, for that it encrypts the response

string from file server along with current timestamp using

public key, and send the encrypted string to file server in

POST

We are sending encrypted request from cloud server to file

server so that if someone try to sniff requests from code

server to file server then he or she could not understand what

is being transferred here we are using openssl encryption we

could have used ssl. But because of availability of resources

and cost for developing the prototype of this approach

openssl was more suitable.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 6 Issue: 5 109 - 116

__

113
IJRITCC | May 2018, Available @ http://www.ijritcc.org

Figure 5: Code Server retrieving the resource from File

server through API.

Return file from File server to Code server: On receiving

request from code server file server verifies that code server

generated the request in last 10 seconds if yes then it

decodes the post data and retrieve the file id and with the

help of it finds the encrypted name of file.

We decodes the file name and fetch the file path, access the

file from the and decrypt the file content using key (ii) and

return the decoded file content to code server along with

mime type

We cross check the validation related to time for the same

reason we discussed above in step 2 and once it is verified

we return the decrypted content to code server without any

additional layers because we needed to secure access and

storage only

Returning file content to browser from code server: Code

server decrypts the content received from file server using

key (i) and return the content to browser with same file type

which file server returned to code server.

Figure 6: Code Server returning the decrypted

resource to end user.

IV. IMPLEMENTATION

A. Pseudo to upload file

This Section explains the pseudo code for uploading the

file by a user in his SAAS account and uploading it on file

server from all the way through code server.

B. Pseudo for Code Server

This section explains the pseudo code fo code server

which reads the user uploaded file , encrypts it and

forwards it to file server.

1. Var fileContent = read(uploaded file content)

2. Encrypt AES256-CBC-ENC (fileContent,K(i))

3. Var fileServerReference =

uploadFileOnFileServer()

4. Store fileServerReference in DB

C. Pseudo for File Server

This section explains the pseudo code for file server

which reads the file sent by code server, encrypts it and

stores it on its own server.

Var fileContent = read(uploaded file content)

1. Var encFileContent = AES256-CBC-ENC

(fileContent,K(i))

2. Var encName = AES256-CBC-ENC (fileName,

key(ii))

3. Var encContentType = AES256-CBC-ENC

(contentType,key(ii));

4. Store encFileContent at

encName[String]/encName[Hash].encNa me[Iv]

5. Store encName, encContentType in DB

6. Var id= DB id

7. EncryptedId = AES256-CBC-ENC (id,key(ii))

8. return EncryptedId + iv + hash +

length(encryptedId) + length(iv) + length(hash) +

randomSalt(3Digit)

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 6 Issue: 5 109 - 116

__

114
IJRITCC | May 2018, Available @ http://www.ijritcc.org

D. Pseudo to generate URLs

This section explains the pseudo code for generating unique

URLs at the time on creating HTML page to render.

1. Var Id = fetch cloud server DB id

2. Var encId = AES256-CBC-ENC(id +

timestamp,key(i))

3. Var URL = http://subdomain.com/URL/encId

4.3.3 Pseudo to retrieve the resources

This section explains the pseudo code for retrieving the

original content from file server through code server.

4.3.3.1 Pseudo for Code Server

This section explains the how code server validated the

request and if valid it sends request to file server to get the

file content.

1. Var Decrypted String = AES256-CBC-

DEC(URLsuffix)

2. Split timestamp and verify if not more than 10

seconds have passed since then.

3. Return 404 in HTTP response header if more than

10 seconds have passed

4. Var fileServerReference = Fetch Reference from

DB

5. Var fileContent =

requestContnetFromFileSever(OPENSSL-

ENC(fileServerReference + timestamp))

6. Return AES256-CBC-DEC(fileContent, key(i))

4.3.3.2 Pseudo for File Server

This section explains the how file server validated the

request and if valid it returns the decrypted content to code

server.

1. Var Decrypted String = OPENSSL-

DEC(requestInput)

2. Split timestamp and verify if not more than 10

seconds have passed since then.

3. Return 404 in HTTP response header if more than

10 seconds have passed

4. Var encName =Fetch Name from DB

5. Var Name = AES256-CBC-DEC(encName)

6. Var contentType= AES256-CBC-DEC(Fetch

contentType from DB)

7. Fetch File From

encName[String]/encName[Hash].encNa me[Iv]

8. Var fileContent =

requestContentFromFileSever(OPENSSL-

ENC(fileServerReference + timestamp))

9. Return AES256-CBC-DEC(fileContent, key(i))

4.3.4 Common Functions

This section explains the common or generic process we

used for encryption and decryption on both the servers.

4.3.3.1 AES256-CBC-ENC(string, key)

This section explains the encryption we used and how we

exchanged the IV, hash and encrypted strings.

1. Standard AES Encryption on string with key and

Random iv

2. Hash = SHA1(encrypted string +iv)

3. Create json of encrypted string, iv and hash

4. Base_64 encoding of json

4.3.3.2 AES256-CBC-DEC(string, key)

This section explains the decryption we used and how we

retrieve the original string witht e help of shared IV, hash

and encrypted strings.

1. Base_64 decoding of json

2. Fetch key,iv and hash from json

3. Verify hash

4. Decode the encrypted string with the help of key

and iv

4.3.3.3 OPENSSL-ENC

Implementation of standard OpenSSL encryption in server

side scripting in our case it is PHP with laravel framework.

4.3.3.4 OPENSSL-DEC

Implementation of standard OpenSSL decryption in server

side scripting in our case it is PHP with laravel framework

4.3.3.5 uploadFileOnFileServer

Send a post request to file server with file content in post we

can use CURL to implement this server side scripting

language

4.3.3.3 uploadFileOnFileServer

Send a post request to file server with file content in post we

can use CURL to implement this server side scripting

language

V. RESULT AND ANALYSIS

A. Impact of XSS on physical files uploaded We

illustrates the impact of having predictable URLs for binary

resources uploaded in a SAAS. We chose apache as server,

php as server side scripting html,css and jquery as client side

scripting. Aside from our methods, we also implemented a

simple encryption by merging multiple strings in a

predefined order along with some salt.

URLs are globally accessible and being indexed easily by

search engines, If we need to secure our resources which are

private and we do not want them to be accessible every time

and by anyone we need to have dynamic URLs which keeps

on changing from time to time.

An approach was suggested in

(10.1109@ICSITech.2016.7852656.pdf) where we could

change the URLs for all the http URLs of content in that

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 6 Issue: 5 109 - 116

__

115
IJRITCC | May 2018, Available @ http://www.ijritcc.org

SAAS (namely wordpress) by adding some random numbers

in the actual URLs

say if a URL was http://somedomain.com/my-article then

the author suggested that with the help of a plugin admin can

change the URL to something like

http://somedomain.com/my-article/123 but in that case

1. The URLs are accessible until admin changes them

again.

2. This approach is only concerned about the web

pages and not about the physical resources user

uploaded.

3. The folder structure or pattern of the web pages is

still predictable

We resolved all these issues in our approach by

1. Generating unique URL for each request

2. Right now we have done this only for binary files

uploaded but this could be used for any other

webresource which is accessible through URL.

3. There is no specific pattern of URLs they all look

similar with some encrypted strings.

B. Impact on real-time systems

Although this approach protects the files from being

accessible publicly, but amount of processing time for

encryption and decryption happening between end user-

code server and code server-file server adds in processing

time and CPU utilization of both the servers as a result it

takes a little longer in accessing the file but this deviation

in time to download is also dependent on network speed

hardware of end user trying to access the resource geo

location of both the server and in our case it is time to

download is approximately double of time taken to

directly download the file.

VI. CONCLUSION AND FUTURE WORK

This chapter contains conclusion and future work of this

dissertation.

A. Conclusion

We addressed the problem of global accessibility of

resources from anywhere anytime. We considered a

simple SAAS application which allows end-users to

upload their resources and access them whenever they

need it. So we introduced and approach where end-user

uploads his binary data on SAAS application and this

application encrypts the data and stores that on another

server. We showed that with the conventional URLs it is

easy for anyone to predict the folder structure and access

all the files uploaded on server. We solved this issue by

generating unique URLs for each http request these URLs

could not be reused after a predefined time in our case it is

10 seconds. Our findings show that global access to files

uploaded by end user or predictable location or

accessibility leads to XSS attack leave those resources

vulnerable to be accessed by unauthorized user which

should not be the case otherwise. We used OPENSSL, and

AES-256 with MODE CBC for encryption and decryption

and used timestamps to prevent replay attack on URLs.

Our schemes.

B. Future work

In my future course of work, I will try to enhance the

security of binary resources along with decreasing the

download time, time complexity and space complexity.

Right now in current system if we have a time limit of 10

seconds then a generated URL could be used for as many

times as possible in the window of those 10 seconds I will

try to update this as well so that if a URL is used once it

could not be reused ever not even in that time frame.

Moreover it is has great future scope to improve security

by having dynamic encryption keys for each request such

that even if a key is compromised this would not affect the

other records lying in system as they would be using

different keys for encryption.

VII. REFERENCES

[1]. Samer Attallah Mhana, Jamilah Binti Din, Rodziah Binti

Atan Department of Software Engineering and

Information System “Automatic Generation of Content

Security Policy to Mitigate Cross Site Scripting” 2016

2nd International Conference on Science in Information

Technology (ICSITech)

[2]. Matt Bishop, Heather M. Conboy, Huong Phan,

Borislava I. Simidchieva, George S. Avrunin, Lori A.

Clarke, Leon J. Osterweil, Sean Peisert “Insider Threat

Identification by Process Analysis” 2014 IEEE Security

and Privacy Workshops

[3]. David M. Lynch, “Securing Against Insider Attacks”,

The EDP Audit, Control, and Security Newsletter

Volume 34, 2006 - Issue 1

[4]. Marwan Omar, “Insider threats: Detecting and

controlling malicious insiders” 162-172. 10.4018/978-1-

4666-8345-7.ch009.

[5]. Samer Attallah Mhana, Jamilah Binti Din, Rodziah Binti

Atan “A System Architecture for the Detection of Insider

Attacks in Big Data Systems” arXiv:1612.01587v1

[cs.CR] 5 Dec 2016

[6]. Miltiadis Kandias, Nikos Virvilis, Dimitris Gritzalis “The

Insider Threat in Cloud Computing” Information Security

& Critical Infrastructure Protection Research Laboratory

Dept. of Informatics, Athens University of Economics

and Business, Greece

[7]. Sunu Mathew1, Michalis Petropoulos, Hung Q. Ngo, and

Shambhu Upadhyaya “A Data-Centric Approach to

Insider Attack Detection in Database Systems” IEEE

Journals & Magazine,

ieeexplore.ieee.org/document/8093643/.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 6 Issue: 5 109 - 116

__

116
IJRITCC | May 2018, Available @ http://www.ijritcc.org

[8]. M. Bishop and C. Gates, “Defining the Insider Threat,”

Proceedings of the Cyber Security and Information

Intelligence Research Workshop article 15 (May 2008).

[9]. Kandias M., Virvilis N., Gritzalis D. (2013) “The Insider

Threat in Cloud Computing. In: Bologna S., Hämmerli

B., Gritzalis D., Wolthusen S. (eds) Critical Information

Infrastructure Security.” CRITIS 2011. Lecture Notes in

Computer Science, vol 6983. Springer, Berlin,

Heidelberg

[10]. Mathew S., Petropoulos M., Ngo H.Q., Upadhyaya S.

(2010) “A Data-Centric Approach to Insider Attack

Detection in Database Systems.” In: Jha S., Sommer R.,

Kreibich C. (eds) Recent Advances in Intrusion

Detection. RAID 2010. Lecture Notes in Computer

Science, vol 6307. Springer, Berlin, Heidelberg

[11]. Brad Ruppert. Protecting Against Insider Attacks. SANS

Institute InfoSec Reading Room, 10 Aug. 2009.

[12]. Wali Ahmed Usmani , Diogo Marques , Ivan

Beschastnikh , Konstantin Beznosov , Tiago Guerreiro ,

Luís Carriço “Characterizing Social Insider Attacks on

Facebook” CHI 2017, May 6–11, 2017, Denver, CO,

USA

[13]. B M Magklarasands, G & Furnell, Steven. (2018). The

Insider Misuse Threat Survey: Investigating IT misuse

from legitimate users

[14]. R Claycomb, William & Legg, Phil & Gollmann, Dieter.

(2014). Guest Editorial: Emerging Trends in Research for

Insider Threat Detection. Journal of Wireless Mobile

Networks, Ubiquitous Computing, and Dependable

Applications (JoWUA). 5. 1-6.

[15]. Shivam Jain, S. B. (2014). A survey on Software as a

service (SaaS) using quality model in cloud computing.

International Journal Of Engineering And Computer

Science, 3(01), 3598-3602.

[16]. Ms. Pushpa B. Rajegore, Ms. Swapna G. kadam “Issues

& Solution of SAAS Model in Cloud Computing” IOSR

Journal of Computer Engineering (IOSR-JCE) e-ISSN:

2278-0661,p-ISSN: 2278-8727, PP 40-44

[17]. Santosh Kumar and R. H. Goudar, “Cloud Computing –

Research Issues, Challenges, Architecture, Platforms and

Applications: A Survey,” International Journal of Future

Computer and Communication vol. 1, no. 4 pp. 356-360,

2012.

[18]. Navneet Singh Patel, Prof. Rekha B.S. “Software as a

Service (SaaS): Security issues and Solutions” ISSN (e):

2250 – 3005, Vol, 04, Issue, 6,| June – 2014,

International Journal of Computational Engineering

Research (IJCER)

[19]. Imran Ashrafa “An Overview of Service Models of

Cloud Computing” Department of Information

Technology, University of The Punjab, Gujranwala

Campus, Pakistan, 15 Aug 2014, ISSN: 2321-3124

[20]. Rashmi, Dr.G.Sahoo, Dr.S.Mehfuz “Securing Software

as a Service Model of Cloud Computing: Issues and

Solutions” International Journal on Cloud Computing:

Services and Architecture (IJCCSA) ,Vol.3, No.4, August

2013

[21]. S.Satyanarayana “CLOUD COMPUTING : SAAS”

GESJ: Computer Science and Telecommunications

2012|No.4(36) ISSN 1512-1232

[22]. K.Kavitha “Study on Cloud Computing Model and its

Benefits, Challenges” International Journal of Innovative

Research in Computer and Communication Engineering

(An ISO 3297: 2007 Certified Organization) Vol. 2, Issue

1, January 2014, ISSN(Online): 2320-9801

[23]. Akash Ahlawat “Implementing SAAS: Cloud Computing

and Android Based Application Framework for .NET

Programming” International Journal of Computer Science

and Mobile Computing, Vol.4 Issue.4, April-

 2015, pg.806-811, ISSN 2320–088X

[24]. T.Venkat Narayana Rao, V. Tejaswini ,K.Preethi

“DEFENDING AGAINST WEB VULNERABILITIES

AND CROSS-SITE SCRIPTING” Journal of Global

Research in Computer Science, Volume 3, No. 5, May

2012, ISSN-2229-371X

[25]. Punam Thopate, Purva Bamm, Apeksha Kamble, Snehal

Kunjir, Prof S.M.Chawre “Cross Site Scripting Attack

Detection & Prevention System” International Journal of

Advanced Research in Computer Engineering &

Technology (IJARCET) Volume 3 Issue 11, November

2014

[26]. Garcia-Alfaro, Joaquin & Navarro-Arribas, Guillermo.

(2007). “Prevention of Cross-Site Scripting Attacks on

Current Web Applications.”

http://hdl.handle.net/10363/606. 4804. . 10.1007/978-3-

540-76843-2_45.

[27]. Gurvinder Kaur “Study of Cross-Site Scripting Attacks

and Their Countermeasures” International Journal of

Computer Applications Technology and Research

Volume 3– Issue 10, 604 - 609, 2014, ISSN: 2319–8656

[28]. Manisha S. Mahindrakar “Prevention to Cross-site

Scripting Attacks: A Survey” International Journal of

Science and Research (IJSR) ISSN (Online): 2319-7064

Impact Factor: 3.358

[29]. Suman Saha “Consideration Points: Detecting Cross-Site

Scripting” (IJCSIS) International Journal of Computer

Science and Information Security, Vol. 4, No. 1 & 2,

2009

[30]. Mike Ter Louw, V.N. Venkatakrishnan “Robust

Prevention of Cross-site Scripting Attacks for Existing

Browsers” 2009 30th IEEE Symposium on Security and

Privacy

