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Abstract— Gaussian mixtures are considered to be a good estimate of real life data. Any clustering algorithm that can efficiently cluster such 

mixtures is expected to work well in practical applications dealing with real life data. K-means is popular for such applications given its ease of 

implementation and scalability; yet it suffers from the plague of poor seeding. Moreover, if the Gaussian mixture has overlapping clusters, k-

means is not able to separate them if initial conditions are not good. Kmeans++ is a good seeding method with high time complexity. It can be 

made fast by using Markov chain Monte Carlo sampling. This paper proposes a method that improves seed quality and retains speed of sampling 

technique. The desired effects are demonstrated on several Gaussian mixtures.  
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I.  INTRODUCTION 

Clustering is an unsupervised machine learning task that 

requires a set of objects to be partitioned into non-overlapping 

subsets based on the similarity relations among objects. The 

similarity relations are computed based on the type of data and 

generally for numeric data Euclidean distance or other 

geometric distance is used. Often clustering is presented as an 

optimization problem that attempts to minimize the 

differences or distances among the members of same cluster 

and maximize the distances between different clusters. Such 

optimization objective function is termed as squared sum of 

errors when a standard k-means algorithm is used for 

clustering. Kmeans [1] is a popular clustering method due to 

the flexibility and ease of implementation. It can be well 

adapted to variety of applications. Also, it scales well as it is 

linear in size of data. In case when Gaussian mixtures are to be 

clustered, kmeans is most preferable due to the geometric 

distance based objective function. But the only shortfall is that 

quality of cluster output may be affected if inherent cluster 

structure consists of overlapping clusters. Separation of 

clusters in the output through kmeans depends on its initial 

conditions. Initialization of kmeans is well researched problem 

and remains a challenge till date. The time versus quality 

trade-off is prominent. In order to have very accurate estimates 

of cluster centres before the algorithm actually commences 

requires much time. If these initial estimates of centres are 

very bad, the actual output is also of poor quality. 

Kmeans is an iterative algorithm having two main steps per 

iteration. A dataset of n point of m dimensions is to be divided 

into k groups or clusters. Each cluster is represented by a 

positional representative called centroid. The algorithm takes 

input initial positions (values) of the k centroids. During each 

iteration, every point is assigned a cluster label of its nearest 

centroid. After one such pass through entire data, centroids are 

updates as mean values of the points assigned their labels.  

These steps of cluster assignment and centroid update are 

repeated until the centroids get stable. The initial values of 

centroids play a significant role in deciding the output cluster 

structure. Hence, many research works have focused on this 

problem. 

K-means was suggested originally by Lloyd [1] and Forgy 

[2] independently. The method is still the standard version of 

k-means. They suggested random initialization for centroids. 

Bradley and Fayyad [3] suggested subsampling of dataset and 

then pick the centroids that produce best cluster structure in 

terms of objective function value. But solely values of 

objective function cannot determine the quality of output if 

data consists of Gaussian mixtures. Hence, even though it 

consumes time, the subsampling technique may fail in certain 

situations. Some linear time methods suggested by Agha [4], 

are based on uniform distribution of values in the object space 

and do not consider the density of objects within the 

subregions of object space. Method by Al-Daoud and Roberts 

[5] considers dividing the object space into subregions and 

takes into account the distribution of objects within these sub-

hypercubes. Yet, due to time complexity and complicated 

computations this method did not gain popularity. Simple 

theory of statistics can be applied to observe principal 

components within the data and decide centroids accordingly.  

Su and Dy [6] suggest such techniques. Certain distance based 

approaches are KKZ [7], Maximin [8] and kmeans++ [9]. 

Kmeans++ includes theory of statistics and probability into the 

maximin technique. By far it has become most popular after 

the random technique to initialize kmeans. A comprehensive 

study of initialization methods is [10]. 
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The only drawback is kmeans++ involves too many 

distance computations and is very slow. Bachem et al [11] 

have attempted to estimate the centroids through kmeans++ 

style of picking each successive centroid to be furthest point 

from already selected centroids and use Markov Chain Monte 

Carlo sampling therein. This eliminates the need of many 

distance computations and accelerates the initialization 

process many times over. This heavy gain in time comes at 

cost of slight fall in quality. This paper attempts to improve 

the quality of afkmc2 [12] method without increasing the 

runtime in proportion. Through experiments we derive a 

generalized version through which a user can control the time 

cost and quality of centroid estimate through a single control 

parameter. 

II. BACKGROUND AND RELATED WORK 

Bachem et al [11] have recently suggested how Markov 

Chain Monte Carlo sampling can be coupled with the 

kmeans++ method to achieve a very fast initialization method. 

To discuss these schemes, consider a formal setting where 𝑋 

denotes a dataset of n points of m dimensions, that is any point 

𝑥 ∈ 𝑋 implies 𝑥 ∈ ℝ𝑚 . Let there be a finite set 𝐶 ⊂ ℝ𝑚 . 

Distance of any point 𝑥 from 𝐶 is defined as  𝑑(𝑥, 𝐶)2 =

min𝑐∈𝐶 𝑥 − 𝑐 2
2 , where   .  2

2 denotes the squared Euclidean 

distance. In the process of selecting a set of initial centres, the 

points are picked one by one and any instant C denotes the set 

of centres selected till then. The basic idea to which many 

researchers agree is that any successive centre should be the 

point that has maximum distance from already selected centres 

in order to get a full coverage of the object space. If instead of 

deterministic selection as in maximin method, a probabilistic 

approach is used then it requires some kind of sampling based 

on these distances from centres.  

𝑫𝟐– sampling : Given a set of centres C, this sampling 

strategy samples a point proportional to the probability based 

on distance of the point from centres, that is 𝑝 𝑥 𝐶 =
𝑑(𝑥,𝐶)2

 𝑑(𝑥′,𝐶)2
𝑥 ′∈𝑋

 . This strategy involves squared distances, hence 

the name. It is used in kmeans++. The first centre is uniformly 

sampled from X. rest all k-1 centres are sampled using 

probability given in (2). As is seen in (1), if C changes, the 

distances need to be recomputed. Thus, this method is of 

computation cost Θ(𝑛𝑘𝑚). 

MCMC sampling : Bachem et al [11] propose to sample 

successive centres by approximations derived from Markov 

chains. The D2 sampling is an exact sampling method, and if 

approximated properly, can be sped up. The first seed is 

selected uniformly from X. Thereafter, other centres are picked 

by constructing a Markov chain of length r using the 

Metropolis – Hastings algorithm with an independent and 

uniform distribution 1 𝑛 . At every iteration of selecting a 

centre, distances between only these r points and C need to be 

computed and the probability used for selection 

is min⁡(
𝑑(𝑦𝑗 ,𝐶)2

𝑑(𝑐𝑗−1 ,𝐶)2 , 1), where 𝑦𝑗  is the candidate at iteration 𝑗, 

𝑗 ∈ [2,3, … , 𝑘]. This technique assumes that the Markov chain 

is constructed of a length bounded by Θ(𝑘 log2 𝑛 log 𝑘). If this 

assumption is not held, the quality of solution is not 

guaranteed. But verifying whether this assumption holds or not 

is too much time consuming and may be more expensive than 

the algorithm itself. 

AFKMC2 : To free the above method from assumption 

over the distribution, Bachem et al [12] proposed a different 

distribution. The trade off is increasing chain length in the 

Markov chain process and increasing the quality of solution. 

The first centre is uniformly sampled. Then all successive 

centres are sampled according to a distribution that combines 

the true D2 sampling and a regularizing factor. Their proposal 

is following distribution: 𝑝 𝑥 𝑐1 =
1

2

𝑑(𝑥,𝑐1)2

 𝑑(𝑥′,𝑐1)2
𝑥 ′∈𝑋

+
1

2
 

1

  𝑋 
, 

where, 𝑐1 is the first centre. Thus, the sampling is done with 

respect to the first centre. 

III. PROPOSED METHOD 

This paper proposes an initialization technique for k-means 

method with a view to retain the effectiveness of k-means++ 

and alleviate its drawback of high time complexity. The 

sampling idea of AFKMC2 is indeed a good approach to speed 

up the initialization that trades off the solution quality of 

kmeans++ but follows its style. We emphasize here that any of 

the method that relies on D2 sampling has a common step – its 

initial centre is always randomly selected from the dataset. To 

highlight the possible cases when such a random initial centre 

may render entire method to be a poor initialization, consider 

following discussion. 

In case, the first centre gets chosen such that it is very close to 

the mean value of entire dataset. In this case, several points will 

have approximately equal probability of being chosen as 

second centroid. And second centroid will always lie on the 

―edge‖ of the cluster structure. Consecutively, the successive 

centres picked would be from other ―edges‖ of the object 

space. Fig1 illustrates this case. This would mean very slow 

convergence. Fig 2 shows the same effect in Touching dataset 

[13] where a wrong choice of first centroid would lead to 

clusters very different from ground truth. But this will not be 

that poor if clusters are well separated as in Fig 3, where the 

three clusters are well defined and the three centroids are good 

initialization. 
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Fig 1. Object Space with too much overlap in cluster 

 

Fig 2. Object space with two touching clusters 

 

Fig 3. Object space with well separated clusters 

Hence, instead of picking the first centre at random, we 

propose to pick the two initial centroids and then follow the 

D2 sampling for rest of the centroids. It can be combined with 

the MCMC technique to gain the required speed. The speed is 

decided by the length of Markov chain chosen. The two initial 

centroids should be picked as the two points farthest from each 

other so that it conforms to the basic idea of uniformly 

dividing the object space. 

Remaining k-2 centres are picked according to the combined 

probability of distance from both centres. Applying laws of 

probability, the combined probability is  

𝑝 𝑥 = 𝑝 𝑥 𝑐1 . 𝑝 𝑥 𝑐2 

=
1

2

𝑑(𝑥, 𝑐1)2

 𝑑(𝑥′, 𝑐1)2
𝑥′∈𝑋

.
𝑑(𝑥, 𝑐2)2

 𝑑(𝑥′, 𝑐2)2
𝑥′∈𝑋

+
1

2
 

1

  𝑋 
 

where, 𝑐1 is the first centre and 𝑐2 is the first centre We first 

multiply the distance factors and then add the normalizing 

term. 

IV. EXPERIMENTS AND RESULTS 

The proposed initialization technique is tested through 

implementation in MATLAB along with other related 

initialization methods. The datasets used are the synthetic 

datasets popularly used to test output of clustering algorithms 

– A1, A2, A3 datasets, R15 dataset and D31 dataset. The chain 

length is kept as 10, 15 and 20. The quality of output is 

measured through value of objective function and accuracy of 

clustering.  

 

 
Fig 4. Objective function value of a1 data set 

 

The objective function values are shown in Fig 4, 6, 8, 10 and 

12; it can be noted that almost for every case the proposed has 

slightly larger value which can be tolerated as a trade-off for 

gain in classification accuracy. The number of misclassified 

objects is shown in Fig 5, 7, 9, 11 and 13. The number of 

Misclassifieds is very low for the proposed method as 

compared to afkmc2. Hence, the tradeoff is justified. 

 

 
Fig 5. Misclassifieds of a1 data set 
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Fig 6. Objective function of a2 data set 

 

Fig 7. Misclassifieds of a2 data set 

 

 

 

 
Fig 8. Objective function value of a3 data set 

 

 
Fig 9. Misclassifieds of a3 data set 

 

 
Fig 10. Objective function of R15 data set 

V. CONCLUSION  

Clustering through k-means is popular due to its simplicity 

and scalability. But it requires a good initialization to prevent 

from getting trapped into bad local minima. Kmeans++ is very 

popular and effective initialization based on distances among 

the points, but very time consuming process. Afkmc2 is a 

Monte Carlo sampling method that accelerates kmeans++ 

without sacrificing the quality of clusters. Yet, both have a 

drawback of needing a good point to start themselves. We 

propose to solve this issue by digressing a bit on time and 

improving quality in the trade-off. The method of sampling the 

points for initial seeds should begin with two points that are 

farthest from each other.  

Such approach would improve kmeans++ too, though not 

analyzed in current work. For future we may consider our 

approach to test for improvement in all distance sampling 

based initialization methods of kmeans. 
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Fig 11. Misclassifieds of R15 

 

 

Fig 12. Objective function of D31 

 

 
Fig 13. Misclassifieds of D31 data set 
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