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Abstract—Collaborative sensor data service is an emerging technology and it is beneficial to various applications including robotics, medicals, 

industry and military. Sensor collaborations improve technical difficultiesonthe verification and validation of sensor data or reduction of 

wireless sensor data transmission. However, typical approaches to sensor collaborations are less satisfactory. It is in part because the sensor 

calibrations are pre-fixed and therefore they are less adaptive to dynamic changes in environment. It is also because sensors are calibrated one 

time before deployment, and their collaborations do not take into consideration the dynamic movement of sensors. Their calibrations are not 

satisfactorily adaptive to environmental changes, or their collaborations are less efficient to cope with abrupt presence/absence of sensors. This 

paper proposes a two-tier deep learning technique to enable sensor devicesto be adaptive and moving sensors to be collaborative. The 

contribution of this paper is an intelligent identification of environment changes and intelligent rearrangement of wireless sensor network. 

Keywords-Artificial Neural Network, Genetic Algorithm, Collaborative Wireless Sensor Network, Sensor Data Calibration 
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I. INTRODUCTION 

A wireless sensor network is a wireless network consisting 

of spatially distributed autonomous devices using sensors to 

sense environmental conditions. Sensors are widely used to 

collect information about their environment, and the sensor 

data sets are further analyzed in a high computing device. 

Sensor data is the output of a sensor device, in some type, 

converted from the type of input data sensed about a target 

environment. The type of a sensor device is converted to a data 

form that can be read by a microcontroller unit (MCU). A 

MCU usually has software packages running to acquire sensor 

data sets from various sensor types. The first level of data 

analytics may be done at a MCU, however the main analytics 

of sensor data can be done at a sensor analytics server (SAS) as 

illustrated in Figure 1.  

 
 

Figure 1. Wireless Sensor Networks 

 

As shown in Figure 1, Sensor data processed at a MCU are 

those acquired by the sensors that are installed at that MCU. 

However, sensor data processed at a SAS are those acquired by 

various sensors, each of which is installed at a different MCU. 

For example, MCU1 has an infrared (IR) camera and an audio 

detector, and MCU2 has an IR camera and a motion detector. 

Each sensor collects sensor data, which are then transmitted to 

a SAS. At a SAS, there are data values from two camera (one 

IR and another non-IR), audio detector and motion detector, 

which are collaborated.  Figure 1 illustrates three tiers of sensor 

data services. As an example on the lower tier, there are MCUs 

on which wireless sensors are deployed and sense environment 

data. On the middle tier, there are MCUs which are empowered 

with high speed CPUs and bigger memory spaces. For 

example, Arduino UNOs with distance sensors are deployed on 

the lower tier, while Raspberry Pi or Beaglebone board with 

robust network devices are installed on the middle tier.  

Of course, Bluetooth communications are also possible. On 

the top tier, computing power units are available such as 

smartphones and servers.  

Sensors should be calibrated, and sensor data are collected 

by a calibrated sensor. The sensor calibration determines the 

sensitivity and granularity of data to be collected. For example, 

cameras collect image data when lenses are correctly focused 

and distances are properly tuned. Sound detectors can collect 

acoustic data accurately when the distance to a target object is 

accurately set. Motion detection sensors can collect object 

movement states accurately if the sensitivity of a target object 

and the triggering time are properly adjusted. 

Sensor data is one of the sources that can raise the size of big 

data, and it improves sensor data services exponentially. Sensor 

device calibration and sensitivity adjustment determines the 
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quality of sensor data services. Sensors or MCUs with sensors 

are remotely deployed. When deployed, sensors may be 

properly calibrated and adjusted to target objects or target 

environments.  

A. Problem Description 

Sensor data may not be accurate due to pre-set calibration 

which does not reflect the current environment. Although 

calibration and adjustment is set perfectly once, it may not be 

effective continually. Even if there is a way of calibrating 

sensors remotely, it is an expensive process or its calibration 

cannot be made timely. The problem that this paper describes 

includes the following: 

 Remotely deployed sensors are uneasy to calibrate 

especially as sensor collaborations are needed. 

 Once deployed, sensors data are uneasy to adapt to 

remote situation and context changes. 

B. Motivating Example 

Preset calibration for sensors does not measure what the 

real changes in environments occur. As shown in Figure 2(a), 

sensors installed in a hospital ward may be able to identify 

patient data. 

However, the very same sensor calibrated in the same way 

in hospital wards should not work accurately if it is deployed at 

Time Square in NYC (See Figure 2(b)). It is simply because 

the environmental noises between the two locations is not 

similar if not quite different.  

Uniform calibration for sensors does not identify the 

changes of environment. For example in Figure 2(c), there are 

two situations, each developed abruptly from those in Figure 

2(a) and 2(b). Hospital wards and Time Square may have 

higher noises due to attacks. The identification of any 

environmental data may not be made if the initial calibration 

last unchanged. 

 

C. Approach Sketch 

To resolve or overcome the problems and difficulties stated 

above, this paper proposes a novel approach as depicted in 

Figure 2. In the figure, the three tiers architecture of smart 

computing on the left, and our proposed approaches to make 

sensor data services intelligent on the right. Those two 

approaches are briefly described: 

 

 An artificial neural network (aNN) technique 

approach to sensor data calibration: Sensors of the 

same sensor type can be trained to adjust a target 

environment. Adjustment of sensor calibration is 

trained by an artificial neutral network at each MCU. 

Once each sensor is deployed at a site (MCU) and 

trained well for collaboration with other sensors in the 

same MCU, it starts to acquire sensor data. 

 A genetic algorithm (GA) approach to sensor data 

interpretation: Multiple series of sensor data, each 

series transmitted from a MCU, are analyzed at a 

SAS. Since a few of sensors are active or inactive 

occasionally, the software packages installed on 

MCUs or SASs should be adaptive to such missing or 

present sensors. Sensor data series are crossover, 

while a mutation of sensor data may occur in a sensor 

data series. This process can be managed and 

predicted by using a genetic algorithm. 

 

The contribution of this paper includes 

 

 Sensors can be calibrated at real time. A way of 

sensor calibration is trained to be adaptive to target 

environments.  

 Sensor collaboration becomes intelligent to identify 

the data states of unforecastable sensors. It is likely 

that some sensors are inactive to disappear or all of 

sudden active to appear. 

D. Paper Organization 

The remainder of this paper consists of the following 

sections. Section 2 introduces a few sensor technologies with 

wireless sensor networks. Techniques of artificial neural 

networks and genetic algorithms are also reviewed. Section 3 

describes the model of sensors and sensor data over wireless 

sensor networks. MCU and SAS are defined based on sensor 

data in this section. Section 4 describesartificial neural etwork 

to train and practice sensor calibrations. Sections 5 describes a 

genetic algorithmic approach to the collaboration of moving 

sensors. Section 6 shows an evaluation. Section 7 concludes 

this paper 
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II. BACKGROUND AND RELATED WORK 

A. Wireless Sensor Network 

Sensor data can be rapidly and continuously fed from 

various sensors: data monitoring scientific or environmental 

changes, data measuring health care and patients, data about 

social media sharing, etc. Sensor data is generated infinitely 

real-time and needs to collaborate analytically to make a better 

decision in cloud server [1], Fog Computing [2], Mobile Cloud 

Computing (MCC) or Mobile-Edge Computing (MEC) [3]. 

As sensor data are used in Fog Mobile-Edge Computing 

(FMEC) [4], the quality of sensor data need to be managed. 

Sensor devices may participate or disappear for many reasons 

such as energy discharge. Malicious sensor devices may 

participate or replace trusted sensors. Not only sensor devices, 

but data acquired by sensors may be another issue to verify its 

quality or validity. 

There are two types of sensor data acquisition: passive and 

active sensor data acquisition. Sensors acquire environmental 

or monitorial data actively or passively. Sensor data can be 

actively acquired by taking into consideration the differences 

between transmitting and returning signals. On the other hands, 

sensor data can be passively acquired as signal is emitted from 

environment. For example, motion detection sensors or 

proximity sensors emit signals to an object and receive the 

returning signals from the object. This type of sensors is called 

an active sensor. The light detection sensors or hall magnetic 

sensors, which generate no signals, take light or magnetic 

energy, which will be then converted into an electrical energy. 

This type of sensors is called a passive sensor.  

While sensor data transmitted from various sensors are 

analyzed collaboratively, the accuracy or the reliability of 

analytic outcome is determined by the quality of the sensor 

data.  

B. Artificial Neural Network 

Neural network techniques are used to classify sensor data 

in several areas such as sound [5] and smell [6]. The C4.5 

decision tree classifier is employed based on the features of the 

sound wave spectrogram [7]. Parameterized features extracted 

from sound wave data, which are acquired in wireless sensor 

networks, are classified using artificial neural network.  

One of the weakness of wireless sensor network is the 

limited energy of the sensor node. Reduction of sensor data 

transmission and its prediction is also studied using artificial 

neural network [8]. 

Sensor data may be missing due to several reasons such as 

disconnection to a MCU or even further to a SAS. Such 

missing sensor data can be obtained by neural network [9]. 

Training the neural network on sensor data with missing values 

artificially filled in has been introduced. 

One of the advanced technologies in artificial neural 

network is a deep artificial neural network or context-

dependent machine learning [10]. The approach that this paper 

proposes is also to leverage target context to calibrate sensors 

and sensor data as shown in Figure 3.  

 

  

C. Genetic Algorithm 

Genetic algorithm (GA) is an algorithm, introduced by John 

Holland at University of Michigan in 1970s, that mimics some 

of the processes observed in biological evolution and provides 

the steps to compute the biological evolutionary processes [11]. 

GA simulates the survival of the fittest among objects (or 

things or solutions) over the course of generation to generation 

evolutions.  

GA applies two major operations: mutation [12] and 

crossover [13]. These GA operators are applied to population 

of objects (or solutions) or their offspring. Similar to biological 

evolution process, the mutation or crossover operators take 

place randomly. When a mutation occurs, it occurs only a small 

spot of an object (or solutions).  

Similar to the evolution in the chromosome of DNA, each 

MCU defines sensor data lists (or solutions) to represent the 

problems to solve. Those solutions are then transmitted from 

MCUs, from which a SAS selects few solutions. Only those 

sensor data lists (or solutions) most successful in each sensor 

data service will produce more offspring as shown in Figure3.   

III. SENSOR DATA MODEL 

A. Sensors and Microcontroller Units (MCUs) 

A MCU has sensors, which are denoted as letters in the 

sensor set {A,B,…,Z}. For simplicity, this paper denotes each 

letter as a sensor type, and it denotes a letter with subscript as a 

sensor data. So,  

 

 MCU = { x | x is in sensor data} (1) 
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For example, at a particular time, MCU1 may transmit a 
sensor data list, [a1,c1,t1,h1]. This model is illustrated in the 
lower level sMCU’s of Figure 1. 

B. Sensor Data at Sensor Analytics Server (SAS) 

Sensor data at a SAS is a set of sensor data lists received 
from a MCU. So,  

 
 SAS = { x | x is a MCU} (2) 

 
In Figure 1, the top levels, SAS or pMCU collects sensor 

data, and so it can be a set of sMCU’s. 
For example, a SAS may receive a sensor data list 

[a1,c1,t1,h1] from MCU1, and [a2,d2,e2,g2] from MCU2 now. 
At the next time, the sequence would be [a1,c1,t1,h1], 
[a2,d2,e2,k2] and [c3,d3,e3,l3,p3] from MCU1, MCU2 and 
MCU3, respectively.  

 
.ANN Approach to Sensor Calibration 

As sensors are deployed at a target environment, tuning 
sensors and interpreting sensor data is a hard problem. Manual 
and remote calibration of sensors or pre-set calibration has 
drawbacks if not inefficient. To improve sensor calibration that 
can be adaptive to a given target environment, this paper 
proposes artificial neural network.  

In the training phase of ANN as illustrated in Figure 4, for 
given sensors, a sensor data [a1,c1,t1,h1] can be first 
considered, which is the input to the ANN together with the 
information, T1, about a given target environment. There are 
intermediate nodes, Hi’s, and output node O1. In addition to 
that, if needed, bias nodes, Bi’s, and feedback nodes, Fi’s can 
be involved as shown in the figure. These nodes appear on the 
input layer, hidden intermediate layer, or the output layer. The 
number of hidden intermediate layers in ANN is usually very 
high (i.e., multi-million times), and it will be optimized or stops 
when no more significant update is made.  

We used this ANN to find the relation between the given 
calibration parameter of sensors and the target environment. 
For example, a piezoelectric acoustic wave sensor a1 has 
parameters about delay lines, resonators, wave frequencies, etc 
[14]. We take a wave frequency 1.2 GHz as input for a1. A 
Raspberry camera module c1 has parameters such as photo 
resolution, video resolution, time elapse, focal length, focal 
ratio, etc (in part, refer to [15]). We take a focal length 9m as 
input for c1. A motion detection sensor t1 has parameters, 
detection range, radio frequency, light density for measuring, 
etc [16]. We take a detection range 30m as input for t1. An 
inductive proximity sensor h1 has parameters, operating 
distance, detection angle, etc [17]. We take an operating 
distance, 0.03m as input for h1. Note that h1 is installed near 
a1, so that noise sound generated from a bug, which is near a1, 
can be detected by h1 and therefore the noise can be filtered 
out. 

In addition to the input for the sensors, a target environment 
will be of an object such as a victim of accidents, a patient in 
hospital rooms, or an animal in wild areas. The quality of 
sensor data sets depends on the characteristics of a target 
environment. The parameters of target environments include 
the minimal bound rectangle of an object, the speed of an 
object, the thermal image of an object, etc [18]. Assume the 
target environment data set T = {ca, md, fg, bm}, which 
respectively denote car accident, murder incident, gun firing, 
bomb explosion. 

Now, we can consider a few of the input to our ANN as 
shown in Figure 4. The input will be a sensor data set plus the 
target environment data. 

 
Sensor Data Lists at Input Layer:  
{[1.2, 9, 30, 0.03, ca], [0.5, 25, 31, 0.5, md], [5.7, 2, 250, 

0.03, gf], …, [1.3, 9, 28, 0.029, bm]}  
 
The train to this input will be  
[1,0,0,…,1],  

where 0 and 1 respectively denote negative and positive 
example. Of course the bias and feedback can be considered in 
this ANN.  
 

Hidden layers: Multiple hundred millions of iteration can 
take place. There will be multiple activation functions that can 
be used from an upper hidden layer to a lower hidden layer. 
The output of this neural network will then the classification of 
the input set. 

The classification as the output of this neural network will 
be 1) the calibrated sensor data list and 2) the one disqualified 
sensor data list. 

Output Layer: The following is a subset of the output. 

 Calibrated Sensor Data List: {[1.2, 9, 30, 0.03, ca], 

[0.5, 12, 31, 0.5, md], [3.1, 2, 50, 0.03], …, [1.3, 9, 28, 

0.029]}. What each of the sensor data lists means that 

the sensor collaboration with those parameters is 

acceptable. For example, the first sensor data list 

means that the acoustic data in 1.2GHz for camera 

image with 9m focal point, 30 meter detected motion, 

30cm proximity will work for car incidents.  This is a 

calibrated sensor data list that is learned from ANN. 

 Disqualified Sensor Data List: {[0.5, 25, 31, 0.5], [5.7, 

2, 250, 0.03, gf], …, [1.3, 91, 28, 0.029, bm]}. This 

sensor data list contains sensor data lists that a SAS 

may ignore for further analysis or report errors. 

After the training phase of the neural network, the testing or 

practicing phase comes. At testing or practicing phases, those 

calibrated sensor data lists will be directly used to transmit the 

data to a SAS. 

 

 
 

Figure 4. ANN approach to sensor calibration 
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IV. GA APPROACH TO SENSOR COLLABORATION 

This section describes two major operators used in genetic 

algorithms: crossover and mutation. It is likely that the fitness 

or goodness function is determined by taking the application 

specific issues into consideration. Each application has 

different issues to make sure its goodness or fitness.  

The sensor model defined in Section III, a MCU is a set of 

sensor data (refer to Equation (1)). As an example, in order to 

define the fitness of wireless sensor network, consider a code 

segment implemented in an Arduino, which acquires sensor 

data from a dust sensor, a temperature sensor and a distance 

sensor. 

 

Sample code segment in Arduino 
(1) 
(2) 
 
(3) 
(4) 
(5) 
(6) 
(7) 
 
(8) 
(9) 
 
(10) 
 
(11) 
 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
 

#include <SPI.h> 
#include "RF24.h" 
 
struct package { 
  float dustDensity; 
  float temperature; 
int distance; 
}; 
 
typedef struct package sensorData; 
sensorData data; 
 
void setup() { 
  // omitted  
} 
 
void loop() { 

data.dustDensity = analogRead(pin5) 
data.temperature = analogRead(pin7) 
data.distance = analogRead(pin9) 

  Serial.println(data); 
} 

 

 

Note that lines (3)-(7) is a struct data type in C. As stated in 

the struct data type, three sensors are included in a MCU. The 

fitness function in this case can be defined as follows: 

 

 
Fitness S =    𝑀𝑖 

𝑚

1

 
(3) 

 

where for S = {M1, M2, …, Mm} and  Mi= {s1, s2, …, sn}, 

which are respectively from Equation (2) and (1), ||M|| is the 

normalized values, i.e.,  𝑀𝑖 =  𝑠𝑗
𝑛
1 . If a sensor sj is 

calibrated in the range [l..h] and the sensor data acquired is k, 

then 𝑠𝑗 =
𝑘−𝑙+1

ℎ−𝑙+1
. 

Sensor data acquired by MCUs can be transmitted to 

upper layers in Figure 1 and can arrive at a SAS. The 

following code segment of Python is to relay sensor data to 

upper layers. 

 

Sample code segment to transmit sensor data at real time 
(1) 
(2) 
 
(3) 
(4) 
(5) 
 
(6) 
(7) 
(8) 

(9) 

import sys, re, wirelessSN 
from datetime import datetime 
 
textIn = sys.argv[1] 
wirelessSN.begin() 
wirelessSN.openWritingPipe() 
 
for line in sys.stdin: 
  if re.search(textIn, line): 
wirelessSN.write(line) 
wirelessSN.write(datetime.now().strftime('%Y-
%m-%d') + "\t"+line+"\n") 
 

 

 

Line (3) is a keyword of our interest if any that can be to 

search the sensor data (in line (5)). Then, the line of sensor 

data is shipped out in lines (8) and (9). 

 

A. Crossover in Sensor Sequences 

Recall the model of sensors described in Section 3, a sensor 

data sequence is a sequence of characters, which is a string. 

The crossover operator can apply in a straightforward way as 

follows: 

One half the characters of a sensor data sequence are 

crossed over with the other half of another sensor data 

sequences. The outcomes should be confirmed if they are also 

available in the list, List(x). If the crossover operator takes 

place on SAS1, the outcome should be in List(SAS1). 

For example, assume that List(SAS1) = {a1,c1,d1,e1,g1, 

l1,m1,n1,p1,s1}. Consider a sensor data sequence, 

{[a1,t1,c1,h1], [d1,d1,u1,e1]} that is received at SAS1. As 

shown in Figure 3, the first half is replaced by the second half 

of the other sensor data. 

B. Mutation of Sensor Sequences 

 

 

 

 
 

Mutation probability is a measure of the likelihood that 

random characters of sensor data in sensor data sequences will 

be modified into the data of some other sensors. Note that the 

characters modified should be also in the list of the sensors 

deployed, List(). 

Mutation, which is a random change, takes place less likely 

than the crossover. A sensor data character can be mutated if a 

change occurs on  

 one or more characters of the symbol, and/or 

 one or more spaces in between. 

 
The former is called 1) replacement-based sensor mutation, 

and the latter is called 2) insertion-based sensor mutation as 
illustrated in Figure 5. 

For example, in Figure 5, the sensor data [a1,c1,g1,m1] is 
mutated to [a1,s1,g1,m1] by replacing character C by S, 
meaning that sensor C is replaced by the new sensor S.  If a 
sensor N is deployed or re-activated in a MCU, the outcome of 
an insertion-based sensor mutation will be [a1,c1,g1,m1,n1].  

An implementation of the proposed mutation techniques is 
shown below: 
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Python Coding list for Mutation 
def mutate(aParent): 
  symNo = len(aParent) 
  indx2mut = random.randint(0, symNo) - 1 
  sym2mut = aParent[indx2mut].strip() 
  sizeSym = len(sym2mut)*2 

mutPosition = random.randint(0, sizeSym) 
 

if mutPosition % 2 == 1: // replacement based 
    index = int(mutPosition / 2) 
    modifi = random.choice(string.ascii_letters + 
string.digits) 
    while sym2mut[index] is modifi: 
       modifi = random.choice(string.ascii_letters + 
string.digits) 
    symMutated = sym2mut[:index] + modifi + 
sym2mut[index+1:] 
 
else:  // insertion based 
    index = int(mutPosition / 2) 
    symMutated = sym2mut[:index] + 
random.choice(string.ascii_letters + string.digits) + 
sym2mut[index:] 
 
return symMutated 
 

 
The above program module generates a mutation based on 

a random number generated. A choice between sensor 
replacement and sensor insertion is made by the random 
number. The position selection or the character selection for 
replacement or insertion are also made by the random number 
generation. 

 

V. EXPERIMENTAL RESULT 

As illustrated in Figure 1 and Figure 3, a small collection of 
sensors is controlled by a MCU and a collection of sensor data 
received from MCUs is analyzed in a SAS. Over the course of 
three tiers, artificial neural networks and genetic algorithms are 
employed to improve the quality of sensor data. It is in part 
because sensors do not consistently participate in acquiring and 
transmitting sensor data. MCUs and SASs need to be more 
intelligent to cope with such a dynamic situation. 

For the training phase of ANN, sensor data sets are 
collected from the Dobbs Ferry campus lab, which is a quiet 
residential suburban area, and the Manhattan campus lab, on 
Broadway and 35

th
 Street, which is one of the busiest area. At 

each lab experience, 100 sensors and 50 MCUs are used for 
various combinations and testing. We examined both IR and 
non-IR sensors, and Arduino UNOs only for MCU. In our 
experiments, we evaluate the error [19] that appears on 
feedback propagation, denoted as the node F, in Figure 3. 

 

 
In the first set of experiments, the iterative execution of 

ANN loop is experimented by increasing the number of 

iterations. As increasing the layers of hidden nodes, the test of 
the errors caused from the fact that SASs do not recognize 
whether any sensor devices become presence. Figure 6(a) 
shows that there is an optimal iteration where the ANN-based  

 

 
 

(b)  wrt Sensor Type 

Figure 6. Error Evaluations 

 
classification splits the class of environment-well-adapted 

sensor data sequences and the class of invalid or less-likely 
useful sensor data sequences. Each application for different 
environment determines different optimized iteration, which 
indicates the lowest error in the figure. It is unlikely that the 
more iteration, the better training.  

In the second sets of experiments, the back-propagation 
errors in ANN are compared based on varying the ratio of 
sensors on MCU. Figure 6(b) shows three settings over 
Arduino UNOs (MCUs): 1) IR sensors only on MCUs, 2) non-
IR on MCUs, and 3) mixed sensors. One thousand iterations of 
ANN are executed. IR sensors only on MCUs are trained the 
best with the lowest error.  

In the third sets of experiments, two different environments 
are considered: one at Dobbs Ferry campus lab with the low 
noise below 40dB, and another at Manhattan campus lab with 
the high noise over 80dB. The experimental scenario the third 
evaluation is to sense accidents occurring on streets. Consider 
sensors: surveillance cameras, sound detection sensors, 
proximity sensors, and motion detection sensors. Various 
different combinations among them are installed on Arduino 
UNOs. Each MCU collects sensor data and transmits them to a 
Raspberry Pi as SAS.  
[App1] If no intelligent software is running on MCUs, all 

sensor data that are acquired by sensors are 
transmitted.  

[App2] If a sound detection sensor detects the noise from an 
accident, the surveillance camera images are 
transmitted. 

[App3] If a software piece runs to determine the truth of 
noises intelligently and adaptively, proper sensor data 
sets only are transmitted. 

[App4] Although App3 is enabled, there are sensors that can 
disappear or back in active abruptly. At a SAS, GA 
algorithms are employed to cope with mutations of 
sensor data. 

For the above four approaches, back-propagation errors are 
measured as sensors increase. Note that GA algorithms are 
employed only on App4. Since the back-propagation errors are 
measured, Figure 7(a) and (b) show the error comparison on 
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App1 - App3 only. App1 produces more errors than others, and 

it is especially worst when the base noise is high like 60dB or 
higher. App3 that employs ANN becomes very tolerant to the 
changes in target environment. 

VI. CONCLUSION 

This paper described a deep learning approach to 1) 

calibrate sensors and 2) enable sensors to be collaborated. 

Sensor calibration is not prefixed but is adaptive to 

environment changes. Sensor collaboration and their 

arrangement is not predefined but dynamically defined based 

on sensor availability. When it comes to moving sensors to be 

deployed, moving sensors are not necessarily belonging to a 

specific MCU. A deep learning technique identifies 

appearance and disappearance of sensors. Sensors and sensor 

data are formalized for an artificial neural network and a 

genetic algorithm. An artificial neural network is used to 

calibrate sensor data on MCUs. A genetic algorithm is used to 

improve sensor data sequences at SASs to cope with abrupt 

changes of sensor data for some unknown reasons. 

The two-tiered deep learning, our ANN approach 

followed by GA algorithm execution, improves the calibration 

of sensors and that approach also maintains the sensor data 

more adaptive to environments with both high and low noises. 
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Figure 7. Error Evaluations 


