
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 6 Issue: 3 223 - 229

__

223

IJRITCC | March 2018, Available @ http://www.ijritcc.org

Context Aware Sensor Collaboration for Intelligent Wireless Communications

an AI Approach to Moving Sensor Managemet

John Yoon

Math/CS Department

Mercy College

Dobbs Ferry, New York, USA

jyoon@mercy.edu

Abstract—Collaborative sensor data service is an emerging technology and it is beneficial to various applications including robotics, medicals,

industry and military. Sensor collaborations improve technical difficultiesonthe verification and validation of sensor data or reduction of

wireless sensor data transmission. However, typical approaches to sensor collaborations are less satisfactory. It is in part because the sensor

calibrations are pre-fixed and therefore they are less adaptive to dynamic changes in environment. It is also because sensors are calibrated one

time before deployment, and their collaborations do not take into consideration the dynamic movement of sensors. Their calibrations are not

satisfactorily adaptive to environmental changes, or their collaborations are less efficient to cope with abrupt presence/absence of sensors. This

paper proposes a two-tier deep learning technique to enable sensor devicesto be adaptive and moving sensors to be collaborative. The

contribution of this paper is an intelligent identification of environment changes and intelligent rearrangement of wireless sensor network.

Keywords-Artificial Neural Network, Genetic Algorithm, Collaborative Wireless Sensor Network, Sensor Data Calibration

__*****___

I. INTRODUCTION

A wireless sensor network is a wireless network consisting

of spatially distributed autonomous devices using sensors to

sense environmental conditions. Sensors are widely used to

collect information about their environment, and the sensor

data sets are further analyzed in a high computing device.

Sensor data is the output of a sensor device, in some type,

converted from the type of input data sensed about a target

environment. The type of a sensor device is converted to a data

form that can be read by a microcontroller unit (MCU). A

MCU usually has software packages running to acquire sensor

data sets from various sensor types. The first level of data

analytics may be done at a MCU, however the main analytics

of sensor data can be done at a sensor analytics server (SAS) as

illustrated in Figure 1.

Figure 1. Wireless Sensor Networks

As shown in Figure 1, Sensor data processed at a MCU are

those acquired by the sensors that are installed at that MCU.

However, sensor data processed at a SAS are those acquired by

various sensors, each of which is installed at a different MCU.

For example, MCU1 has an infrared (IR) camera and an audio

detector, and MCU2 has an IR camera and a motion detector.

Each sensor collects sensor data, which are then transmitted to

a SAS. At a SAS, there are data values from two camera (one

IR and another non-IR), audio detector and motion detector,

which are collaborated. Figure 1 illustrates three tiers of sensor

data services. As an example on the lower tier, there are MCUs

on which wireless sensors are deployed and sense environment

data. On the middle tier, there are MCUs which are empowered

with high speed CPUs and bigger memory spaces. For

example, Arduino UNOs with distance sensors are deployed on

the lower tier, while Raspberry Pi or Beaglebone board with

robust network devices are installed on the middle tier.

Of course, Bluetooth communications are also possible. On

the top tier, computing power units are available such as

smartphones and servers.

Sensors should be calibrated, and sensor data are collected

by a calibrated sensor. The sensor calibration determines the

sensitivity and granularity of data to be collected. For example,

cameras collect image data when lenses are correctly focused

and distances are properly tuned. Sound detectors can collect

acoustic data accurately when the distance to a target object is

accurately set. Motion detection sensors can collect object

movement states accurately if the sensitivity of a target object

and the triggering time are properly adjusted.

Sensor data is one of the sources that can raise the size of big

data, and it improves sensor data services exponentially. Sensor

device calibration and sensitivity adjustment determines the

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 6 Issue: 3 223 - 229

__

224

IJRITCC | March 2018, Available @ http://www.ijritcc.org

quality of sensor data services. Sensors or MCUs with sensors

are remotely deployed. When deployed, sensors may be

properly calibrated and adjusted to target objects or target

environments.

A. Problem Description

Sensor data may not be accurate due to pre-set calibration

which does not reflect the current environment. Although

calibration and adjustment is set perfectly once, it may not be

effective continually. Even if there is a way of calibrating

sensors remotely, it is an expensive process or its calibration

cannot be made timely. The problem that this paper describes

includes the following:

 Remotely deployed sensors are uneasy to calibrate

especially as sensor collaborations are needed.

 Once deployed, sensors data are uneasy to adapt to

remote situation and context changes.

B. Motivating Example

Preset calibration for sensors does not measure what the

real changes in environments occur. As shown in Figure 2(a),

sensors installed in a hospital ward may be able to identify

patient data.

However, the very same sensor calibrated in the same way

in hospital wards should not work accurately if it is deployed at

Time Square in NYC (See Figure 2(b)). It is simply because

the environmental noises between the two locations is not

similar if not quite different.

Uniform calibration for sensors does not identify the

changes of environment. For example in Figure 2(c), there are

two situations, each developed abruptly from those in Figure

2(a) and 2(b). Hospital wards and Time Square may have

higher noises due to attacks. The identification of any

environmental data may not be made if the initial calibration

last unchanged.

C. Approach Sketch

To resolve or overcome the problems and difficulties stated

above, this paper proposes a novel approach as depicted in

Figure 2. In the figure, the three tiers architecture of smart

computing on the left, and our proposed approaches to make

sensor data services intelligent on the right. Those two

approaches are briefly described:

 An artificial neural network (aNN) technique

approach to sensor data calibration: Sensors of the

same sensor type can be trained to adjust a target

environment. Adjustment of sensor calibration is

trained by an artificial neutral network at each MCU.

Once each sensor is deployed at a site (MCU) and

trained well for collaboration with other sensors in the

same MCU, it starts to acquire sensor data.

 A genetic algorithm (GA) approach to sensor data

interpretation: Multiple series of sensor data, each

series transmitted from a MCU, are analyzed at a

SAS. Since a few of sensors are active or inactive

occasionally, the software packages installed on

MCUs or SASs should be adaptive to such missing or

present sensors. Sensor data series are crossover,

while a mutation of sensor data may occur in a sensor

data series. This process can be managed and

predicted by using a genetic algorithm.

The contribution of this paper includes

 Sensors can be calibrated at real time. A way of

sensor calibration is trained to be adaptive to target

environments.

 Sensor collaboration becomes intelligent to identify

the data states of unforecastable sensors. It is likely

that some sensors are inactive to disappear or all of

sudden active to appear.

D. Paper Organization

The remainder of this paper consists of the following

sections. Section 2 introduces a few sensor technologies with

wireless sensor networks. Techniques of artificial neural

networks and genetic algorithms are also reviewed. Section 3

describes the model of sensors and sensor data over wireless

sensor networks. MCU and SAS are defined based on sensor

data in this section. Section 4 describesartificial neural etwork

to train and practice sensor calibrations. Sections 5 describes a

genetic algorithmic approach to the collaboration of moving

sensors. Section 6 shows an evaluation. Section 7 concludes

this paper

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 6 Issue: 3 223 - 229

__

225

IJRITCC | March 2018, Available @ http://www.ijritcc.org

II. BACKGROUND AND RELATED WORK

A. Wireless Sensor Network

Sensor data can be rapidly and continuously fed from

various sensors: data monitoring scientific or environmental

changes, data measuring health care and patients, data about

social media sharing, etc. Sensor data is generated infinitely

real-time and needs to collaborate analytically to make a better

decision in cloud server [1], Fog Computing [2], Mobile Cloud

Computing (MCC) or Mobile-Edge Computing (MEC) [3].

As sensor data are used in Fog Mobile-Edge Computing

(FMEC) [4], the quality of sensor data need to be managed.

Sensor devices may participate or disappear for many reasons

such as energy discharge. Malicious sensor devices may

participate or replace trusted sensors. Not only sensor devices,

but data acquired by sensors may be another issue to verify its

quality or validity.

There are two types of sensor data acquisition: passive and

active sensor data acquisition. Sensors acquire environmental

or monitorial data actively or passively. Sensor data can be

actively acquired by taking into consideration the differences

between transmitting and returning signals. On the other hands,

sensor data can be passively acquired as signal is emitted from

environment. For example, motion detection sensors or

proximity sensors emit signals to an object and receive the

returning signals from the object. This type of sensors is called

an active sensor. The light detection sensors or hall magnetic

sensors, which generate no signals, take light or magnetic

energy, which will be then converted into an electrical energy.

This type of sensors is called a passive sensor.

While sensor data transmitted from various sensors are

analyzed collaboratively, the accuracy or the reliability of

analytic outcome is determined by the quality of the sensor

data.

B. Artificial Neural Network

Neural network techniques are used to classify sensor data

in several areas such as sound [5] and smell [6]. The C4.5

decision tree classifier is employed based on the features of the

sound wave spectrogram [7]. Parameterized features extracted

from sound wave data, which are acquired in wireless sensor

networks, are classified using artificial neural network.

One of the weakness of wireless sensor network is the

limited energy of the sensor node. Reduction of sensor data

transmission and its prediction is also studied using artificial

neural network [8].

Sensor data may be missing due to several reasons such as

disconnection to a MCU or even further to a SAS. Such

missing sensor data can be obtained by neural network [9].

Training the neural network on sensor data with missing values

artificially filled in has been introduced.

One of the advanced technologies in artificial neural

network is a deep artificial neural network or context-

dependent machine learning [10]. The approach that this paper

proposes is also to leverage target context to calibrate sensors

and sensor data as shown in Figure 3.

C. Genetic Algorithm

Genetic algorithm (GA) is an algorithm, introduced by John

Holland at University of Michigan in 1970s, that mimics some

of the processes observed in biological evolution and provides

the steps to compute the biological evolutionary processes [11].

GA simulates the survival of the fittest among objects (or

things or solutions) over the course of generation to generation

evolutions.

GA applies two major operations: mutation [12] and

crossover [13]. These GA operators are applied to population

of objects (or solutions) or their offspring. Similar to biological

evolution process, the mutation or crossover operators take

place randomly. When a mutation occurs, it occurs only a small

spot of an object (or solutions).

Similar to the evolution in the chromosome of DNA, each

MCU defines sensor data lists (or solutions) to represent the

problems to solve. Those solutions are then transmitted from

MCUs, from which a SAS selects few solutions. Only those

sensor data lists (or solutions) most successful in each sensor

data service will produce more offspring as shown in Figure3.

III. SENSOR DATA MODEL

A. Sensors and Microcontroller Units (MCUs)

A MCU has sensors, which are denoted as letters in the

sensor set {A,B,…,Z}. For simplicity, this paper denotes each

letter as a sensor type, and it denotes a letter with subscript as a

sensor data. So,

 MCU = { x | x is in sensor data} (1)

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 6 Issue: 3 223 - 229

__

226

IJRITCC | March 2018, Available @ http://www.ijritcc.org

For example, at a particular time, MCU1 may transmit a
sensor data list, [a1,c1,t1,h1]. This model is illustrated in the
lower level sMCU’s of Figure 1.

B. Sensor Data at Sensor Analytics Server (SAS)

Sensor data at a SAS is a set of sensor data lists received
from a MCU. So,

 SAS = { x | x is a MCU} (2)

In Figure 1, the top levels, SAS or pMCU collects sensor

data, and so it can be a set of sMCU’s.
For example, a SAS may receive a sensor data list

[a1,c1,t1,h1] from MCU1, and [a2,d2,e2,g2] from MCU2 now.
At the next time, the sequence would be [a1,c1,t1,h1],
[a2,d2,e2,k2] and [c3,d3,e3,l3,p3] from MCU1, MCU2 and
MCU3, respectively.

.ANN Approach to Sensor Calibration

As sensors are deployed at a target environment, tuning
sensors and interpreting sensor data is a hard problem. Manual
and remote calibration of sensors or pre-set calibration has
drawbacks if not inefficient. To improve sensor calibration that
can be adaptive to a given target environment, this paper
proposes artificial neural network.

In the training phase of ANN as illustrated in Figure 4, for
given sensors, a sensor data [a1,c1,t1,h1] can be first
considered, which is the input to the ANN together with the
information, T1, about a given target environment. There are
intermediate nodes, Hi’s, and output node O1. In addition to
that, if needed, bias nodes, Bi’s, and feedback nodes, Fi’s can
be involved as shown in the figure. These nodes appear on the
input layer, hidden intermediate layer, or the output layer. The
number of hidden intermediate layers in ANN is usually very
high (i.e., multi-million times), and it will be optimized or stops
when no more significant update is made.

We used this ANN to find the relation between the given
calibration parameter of sensors and the target environment.
For example, a piezoelectric acoustic wave sensor a1 has
parameters about delay lines, resonators, wave frequencies, etc
[14]. We take a wave frequency 1.2 GHz as input for a1. A
Raspberry camera module c1 has parameters such as photo
resolution, video resolution, time elapse, focal length, focal
ratio, etc (in part, refer to [15]). We take a focal length 9m as
input for c1. A motion detection sensor t1 has parameters,
detection range, radio frequency, light density for measuring,
etc [16]. We take a detection range 30m as input for t1. An
inductive proximity sensor h1 has parameters, operating
distance, detection angle, etc [17]. We take an operating
distance, 0.03m as input for h1. Note that h1 is installed near
a1, so that noise sound generated from a bug, which is near a1,
can be detected by h1 and therefore the noise can be filtered
out.

In addition to the input for the sensors, a target environment
will be of an object such as a victim of accidents, a patient in
hospital rooms, or an animal in wild areas. The quality of
sensor data sets depends on the characteristics of a target
environment. The parameters of target environments include
the minimal bound rectangle of an object, the speed of an
object, the thermal image of an object, etc [18]. Assume the
target environment data set T = {ca, md, fg, bm}, which
respectively denote car accident, murder incident, gun firing,
bomb explosion.

Now, we can consider a few of the input to our ANN as
shown in Figure 4. The input will be a sensor data set plus the
target environment data.

Sensor Data Lists at Input Layer:
{[1.2, 9, 30, 0.03, ca], [0.5, 25, 31, 0.5, md], [5.7, 2, 250,

0.03, gf], …, [1.3, 9, 28, 0.029, bm]}

The train to this input will be
[1,0,0,…,1],

where 0 and 1 respectively denote negative and positive
example. Of course the bias and feedback can be considered in
this ANN.

Hidden layers: Multiple hundred millions of iteration can
take place. There will be multiple activation functions that can
be used from an upper hidden layer to a lower hidden layer.
The output of this neural network will then the classification of
the input set.

The classification as the output of this neural network will
be 1) the calibrated sensor data list and 2) the one disqualified
sensor data list.

Output Layer: The following is a subset of the output.

 Calibrated Sensor Data List: {[1.2, 9, 30, 0.03, ca],

[0.5, 12, 31, 0.5, md], [3.1, 2, 50, 0.03], …, [1.3, 9, 28,

0.029]}. What each of the sensor data lists means that

the sensor collaboration with those parameters is

acceptable. For example, the first sensor data list

means that the acoustic data in 1.2GHz for camera

image with 9m focal point, 30 meter detected motion,

30cm proximity will work for car incidents. This is a

calibrated sensor data list that is learned from ANN.

 Disqualified Sensor Data List: {[0.5, 25, 31, 0.5], [5.7,

2, 250, 0.03, gf], …, [1.3, 91, 28, 0.029, bm]}. This

sensor data list contains sensor data lists that a SAS

may ignore for further analysis or report errors.

After the training phase of the neural network, the testing or

practicing phase comes. At testing or practicing phases, those

calibrated sensor data lists will be directly used to transmit the

data to a SAS.

Figure 4. ANN approach to sensor calibration

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 6 Issue: 3 223 - 229

__

227

IJRITCC | March 2018, Available @ http://www.ijritcc.org

IV. GA APPROACH TO SENSOR COLLABORATION

This section describes two major operators used in genetic

algorithms: crossover and mutation. It is likely that the fitness

or goodness function is determined by taking the application

specific issues into consideration. Each application has

different issues to make sure its goodness or fitness.

The sensor model defined in Section III, a MCU is a set of

sensor data (refer to Equation (1)). As an example, in order to

define the fitness of wireless sensor network, consider a code

segment implemented in an Arduino, which acquires sensor

data from a dust sensor, a temperature sensor and a distance

sensor.

Sample code segment in Arduino
(1)
(2)

(3)
(4)
(5)
(6)
(7)

(8)
(9)

(10)

(11)

(12)
(13)
(14)
(15)
(16)
(17)

#include <SPI.h>
#include "RF24.h"

struct package {
 float dustDensity;
 float temperature;
int distance;
};

typedef struct package sensorData;
sensorData data;

void setup() {
 // omitted
}

void loop() {

data.dustDensity = analogRead(pin5)
data.temperature = analogRead(pin7)
data.distance = analogRead(pin9)

 Serial.println(data);
}

Note that lines (3)-(7) is a struct data type in C. As stated in

the struct data type, three sensors are included in a MCU. The

fitness function in this case can be defined as follows:

Fitness S = 𝑀𝑖

𝑚

1

(3)

where for S = {M1, M2, …, Mm} and Mi= {s1, s2, …, sn},

which are respectively from Equation (2) and (1), ||M|| is the

normalized values, i.e., 𝑀𝑖 = 𝑠𝑗
𝑛
1 . If a sensor sj is

calibrated in the range [l..h] and the sensor data acquired is k,

then 𝑠𝑗 =
𝑘−𝑙+1

ℎ−𝑙+1
.

Sensor data acquired by MCUs can be transmitted to

upper layers in Figure 1 and can arrive at a SAS. The

following code segment of Python is to relay sensor data to

upper layers.

Sample code segment to transmit sensor data at real time
(1)
(2)

(3)
(4)
(5)

(6)
(7)
(8)

(9)

import sys, re, wirelessSN
from datetime import datetime

textIn = sys.argv[1]
wirelessSN.begin()
wirelessSN.openWritingPipe()

for line in sys.stdin:
 if re.search(textIn, line):
wirelessSN.write(line)
wirelessSN.write(datetime.now().strftime('%Y-
%m-%d') + "\t"+line+"\n")

Line (3) is a keyword of our interest if any that can be to

search the sensor data (in line (5)). Then, the line of sensor

data is shipped out in lines (8) and (9).

A. Crossover in Sensor Sequences

Recall the model of sensors described in Section 3, a sensor

data sequence is a sequence of characters, which is a string.

The crossover operator can apply in a straightforward way as

follows:

One half the characters of a sensor data sequence are

crossed over with the other half of another sensor data

sequences. The outcomes should be confirmed if they are also

available in the list, List(x). If the crossover operator takes

place on SAS1, the outcome should be in List(SAS1).

For example, assume that List(SAS1) = {a1,c1,d1,e1,g1,

l1,m1,n1,p1,s1}. Consider a sensor data sequence,

{[a1,t1,c1,h1], [d1,d1,u1,e1]} that is received at SAS1. As

shown in Figure 3, the first half is replaced by the second half

of the other sensor data.

B. Mutation of Sensor Sequences

Mutation probability is a measure of the likelihood that

random characters of sensor data in sensor data sequences will

be modified into the data of some other sensors. Note that the

characters modified should be also in the list of the sensors

deployed, List().

Mutation, which is a random change, takes place less likely

than the crossover. A sensor data character can be mutated if a

change occurs on

 one or more characters of the symbol, and/or

 one or more spaces in between.

The former is called 1) replacement-based sensor mutation,

and the latter is called 2) insertion-based sensor mutation as
illustrated in Figure 5.

For example, in Figure 5, the sensor data [a1,c1,g1,m1] is
mutated to [a1,s1,g1,m1] by replacing character C by S,
meaning that sensor C is replaced by the new sensor S. If a
sensor N is deployed or re-activated in a MCU, the outcome of
an insertion-based sensor mutation will be [a1,c1,g1,m1,n1].

An implementation of the proposed mutation techniques is
shown below:

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 6 Issue: 3 223 - 229

__

228

IJRITCC | March 2018, Available @ http://www.ijritcc.org

Python Coding list for Mutation
def mutate(aParent):
 symNo = len(aParent)
 indx2mut = random.randint(0, symNo) - 1
 sym2mut = aParent[indx2mut].strip()
 sizeSym = len(sym2mut)*2

mutPosition = random.randint(0, sizeSym)

if mutPosition % 2 == 1: // replacement based
 index = int(mutPosition / 2)
 modifi = random.choice(string.ascii_letters +
string.digits)
 while sym2mut[index] is modifi:
 modifi = random.choice(string.ascii_letters +
string.digits)
 symMutated = sym2mut[:index] + modifi +
sym2mut[index+1:]

else: // insertion based
 index = int(mutPosition / 2)
 symMutated = sym2mut[:index] +
random.choice(string.ascii_letters + string.digits) +
sym2mut[index:]

return symMutated

The above program module generates a mutation based on

a random number generated. A choice between sensor
replacement and sensor insertion is made by the random
number. The position selection or the character selection for
replacement or insertion are also made by the random number
generation.

V. EXPERIMENTAL RESULT

As illustrated in Figure 1 and Figure 3, a small collection of
sensors is controlled by a MCU and a collection of sensor data
received from MCUs is analyzed in a SAS. Over the course of
three tiers, artificial neural networks and genetic algorithms are
employed to improve the quality of sensor data. It is in part
because sensors do not consistently participate in acquiring and
transmitting sensor data. MCUs and SASs need to be more
intelligent to cope with such a dynamic situation.

For the training phase of ANN, sensor data sets are
collected from the Dobbs Ferry campus lab, which is a quiet
residential suburban area, and the Manhattan campus lab, on
Broadway and 35

th
 Street, which is one of the busiest area. At

each lab experience, 100 sensors and 50 MCUs are used for
various combinations and testing. We examined both IR and
non-IR sensors, and Arduino UNOs only for MCU. In our
experiments, we evaluate the error [19] that appears on
feedback propagation, denoted as the node F, in Figure 3.

In the first set of experiments, the iterative execution of

ANN loop is experimented by increasing the number of

iterations. As increasing the layers of hidden nodes, the test of
the errors caused from the fact that SASs do not recognize
whether any sensor devices become presence. Figure 6(a)
shows that there is an optimal iteration where the ANN-based

(b) wrt Sensor Type

Figure 6. Error Evaluations

classification splits the class of environment-well-adapted

sensor data sequences and the class of invalid or less-likely
useful sensor data sequences. Each application for different
environment determines different optimized iteration, which
indicates the lowest error in the figure. It is unlikely that the
more iteration, the better training.

In the second sets of experiments, the back-propagation
errors in ANN are compared based on varying the ratio of
sensors on MCU. Figure 6(b) shows three settings over
Arduino UNOs (MCUs): 1) IR sensors only on MCUs, 2) non-
IR on MCUs, and 3) mixed sensors. One thousand iterations of
ANN are executed. IR sensors only on MCUs are trained the
best with the lowest error.

In the third sets of experiments, two different environments
are considered: one at Dobbs Ferry campus lab with the low
noise below 40dB, and another at Manhattan campus lab with
the high noise over 80dB. The experimental scenario the third
evaluation is to sense accidents occurring on streets. Consider
sensors: surveillance cameras, sound detection sensors,
proximity sensors, and motion detection sensors. Various
different combinations among them are installed on Arduino
UNOs. Each MCU collects sensor data and transmits them to a
Raspberry Pi as SAS.
[App1] If no intelligent software is running on MCUs, all

sensor data that are acquired by sensors are
transmitted.

[App2] If a sound detection sensor detects the noise from an
accident, the surveillance camera images are
transmitted.

[App3] If a software piece runs to determine the truth of
noises intelligently and adaptively, proper sensor data
sets only are transmitted.

[App4] Although App3 is enabled, there are sensors that can
disappear or back in active abruptly. At a SAS, GA
algorithms are employed to cope with mutations of
sensor data.

For the above four approaches, back-propagation errors are
measured as sensors increase. Note that GA algorithms are
employed only on App4. Since the back-propagation errors are
measured, Figure 7(a) and (b) show the error comparison on

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 6 Issue: 3 223 - 229

__

229

IJRITCC | March 2018, Available @ http://www.ijritcc.org

App1 - App3 only. App1 produces more errors than others, and

it is especially worst when the base noise is high like 60dB or
higher. App3 that employs ANN becomes very tolerant to the
changes in target environment.

VI. CONCLUSION

This paper described a deep learning approach to 1)

calibrate sensors and 2) enable sensors to be collaborated.

Sensor calibration is not prefixed but is adaptive to

environment changes. Sensor collaboration and their

arrangement is not predefined but dynamically defined based

on sensor availability. When it comes to moving sensors to be

deployed, moving sensors are not necessarily belonging to a

specific MCU. A deep learning technique identifies

appearance and disappearance of sensors. Sensors and sensor

data are formalized for an artificial neural network and a

genetic algorithm. An artificial neural network is used to

calibrate sensor data on MCUs. A genetic algorithm is used to

improve sensor data sequences at SASs to cope with abrupt

changes of sensor data for some unknown reasons.

The two-tiered deep learning, our ANN approach

followed by GA algorithm execution, improves the calibration

of sensors and that approach also maintains the sensor data

more adaptive to environments with both high and low noises.

REFERENCES

[1] S. Bose, A. Gupta, S. Adhikary, N. Mukherjee, “Towards a
sensor-cloud infrastructure with sensor virtualization,” Proc. Of
the 2nd Workshop on Mobile Sensing, Computing and
Communication, pp. 25-30, 2015.

[2] F. Bonomi, R. Milito, J. Zhu, S. Addepalli, “Fog Computing and
Its Role in the Internet of Things,” ACM SIGCOMM 2012, pp.
13- 15, August, 2012.

[3] P. Lopez, A. Montresor, D. Epema, A. Datta, , A Treatise on
Electricity and Magnetism, 3rd ed., vol. 2. Oxford: Clarendon,
pp.68–73, 1892.

[4] S. Yi, C. Li, Q. Li, “A survey of Fog Computing: concepts,
applications and issues,” in Proc. Of the 2015 Workshop on
Mobile Big Data, pp. 37–42, 2015.

[5] J. Colonna, T. Peet, C. Ferreira, A. Jorge, E. Gomes, J. Gama,
“Autoatic classification of anuran sounds using convolutional
neural networks,” Proc. Of the 9th Int’l C* Conf. on Computer
Science & Software Engineering, 2016.

[6] S. Omatu, M. Yano, “Smell classification using weakly
responding data,” Proc. Of the 29th Annual ACM Symposium on
Applied Computing, 2010.

[7] W. Hu, N. Bulusu, C. Chou, S. Jha, A. Taylor, V. Tran, “Design
and evaluation of the hybrid sensor networks for cane toad
monitoring,” ACM Transactions on Sensor Networks, 5(1): 4,
2009.

[8] S. Zhang, Q. Zhang, S. Xiao, T. Zhu, Y. Gu, Y. Lin,
“Cooperative data reduction in wireless sensor network,” ACM
Transactions on Embedded Computing Systems, 14(4), 2015.

[9] L. Wong, H. Chen, S. Lin, D. Chen, “Imputing missing values in
sensor networks using sparse data representations,” Proc of the
17th ACM Int’l Conf on Modeling, Analysis and Smulation of
Wireless and Mobile Systems, pp. 227-230, 2014.

[10] P. Bell, P. Swietojanski, S. Renals, “Multitask learning of
context-dependent targets in deep neural network acoustic
models,” IEEE/ACM Transactions on Audio, Speech and
Language Processing, 25(2), 2017.

[11] D. Goldberg, Genetic Algorithms in search, optimization, and
machine learning, Addison-Wesley, 1989.

[12] S. Nareddy, E. Westover, K. Hillesland, W. Kim, “Genome
dynamics in coevolved genomes: database management system
for tracing mutations,” Proc. of the 5th ACM Conf. on
Bioinformatics, Computational Biology and Health Informatics,
2014, pp. 633-634.

[13] J. Bogard, “A probabilistic functional crossover operator for
genetic programming,” Proc. of the 12th Annual Conf. on
Genetic and Evolutionary Computation, 2010, pp. 925-931.

[14] How SAW Sensors Operate?, from
http://www.senseor.com/saw-technology/saw-sensors-operation,
on April 3, 2017.

[15] Raspberry Camera Module v2, from
https://www.sparkfun.com/products/14028, on March 20, 2017.

[16] FIBARO Motion Sensor, from
http://manuals.fibaro.com/content/manuals/en/FGMS-
001/FGMS-001-EN-T-v2.0.pdf, on February 25, 2017.

[17] Operating Principles for Inductive Proximity Sensors, from
http://www.fargocontrols.com/sensors/inductive_op.html, on
March 17, 2017.

[18] Total Body Thermography, from http://total-body-
thermography.com/, on March 31, 2017.

[19] D. Rumelhart, G. Hinton, R. Williams, “Learning
representations by back-prpagating errors,” Nature, 323: 533-
536, 1986.

(a) Sensors in Quiet Environment (< 40dB)

 (b) Sensors in Noisy Environment (> 80dB)

Figure 7. Error Evaluations

