
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 12 145 – 149

145
IJRITCC | December 2017, Available @ http://www.ijritcc.org

Analysis of GF (2
m
) Multiplication Algorithm: Classic Method v/s Karatsuba-

Ofman Multiplication Method

Manish Kumar Goyal

Lecturer, Government Polytechnic College, Bagidora

manishbmgoyal@gmail.com

Shiv Karan Meghwal

Lecturer, Government Polytechnic College, Dungarpur

shivkaran_sonel@yahoo.co.in

Abstract - In recent years, finite field multiplication in GF(2m) has been widely used in various applications such as error correcting codes and

cryptography. One of the motivations for fast and area efficient hardware solution for implementing the arithmetic operation of binary

multiplication , in finite field GF (2m), comes from the fact, that they are the most time-consuming and frequently called operations in

cryptography and other applications. So, the optimization of their hardware design is critical for overall performance of a system. Since a finite

field multiplier is a crucial unit for overall performance of cryptographic systems, novel multiplier architectures, whose performances can be

chosen freely, is necessary. In this paper, two Galois field multiplication algorithms (used in cryptography applications) are considered to

analyze their performance with respect to parameters viz. area, power, delay, and the consequent Area×Time (AT) and Power×Delay

characteristics. The objective of the analysis is to find out the most efficient GF(2m) multiplier algorithm among those considered.

__*****___

1. INTRODUCTION

A variety of computer arithmetic techniques can be used to

implement a digital multiplier. Most techniques involve

computing a set of partial products, and then summing the

partial products together. This method, involving partial

products is mathematically correct, but it has the following

two serious engineering problems:

1. It involves 32 intermediate additions in a 32-bit

computer, or 64 intermediate additions in a 64-bit

computer. These additions take a lot of time. The

engineering implementation of binary multiplication

consists, in fact, of simplification of the mathematical

process and compromising with the increased complexity

hence enforced, in order to do fewer additions. When

implemented in software, long multiplication algorithms

have to deal with overflow during additions, which can

be expensive.

2. The basic school method handles the sign with a separate

rule ("+ with + yields +", "+ with - yields -", etc.).

Modern computers embed the sign of the number in the

number itself, usually in the two's complement

representation. That forces the multiplication process to

be adapted to handle two's complement numbers,

complicating the process a bit more.

To multiply two numbers with n-digits using this method, one

needs about n
2
 operations. More formally: using a natural size

metric of number of digits, the time complexity of

multiplying two n-digit numbers using long multiplication is

Θ(n
2
).Therefore, to solve above problem modular

multiplication can be used. The modular exponentiation

applies modular multiplication repeatedly. Modular

multiplication is a mathematical operation on integer A.B mod

M with A, B<M where by A and B are the operand and M is

moduls. Modular multiplication A×B mod M can be

performed in two different ways:

 Multiplying, i.e. computing P = A×B; then reducing, i.e. R

= P mod M

 Interleave the multiplication and the reduction steps.

Figure-1.1: Flow-chart of steps undertaken for analysis of

different Multiplier Algorithms

So the performance of systems based on modular

multiplication, e.g. the public key Cryptosystem, is primarily

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 12 145 – 149

146
IJRITCC | December 2017, Available @ http://www.ijritcc.org

determined by the implementation efficiency of the modular

multiplication and exponentiation. As the operands are

usually large (i.e. 1024 bits or more), it is necessary to

improve upon the computation time of the

encryption/decryption operations. Hence, it is essential to

minimize the number of modular multiplications performed

and to reduce the time required by a single modular

multiplication . There are various algorithms that implement

modular multiplication. Here following Two algorithms have

been considered:

1 Classic Multiplier

2 Karatsuba-Ofman multiplier

Starting with each of the above mentioned algorithms, the

following methodology has been adopted for the analysis of a

particular design based on design parameters viz. area-on-

chip, power consumption and related dlays. Subsequent

comparison among the various designs based on the extracted

values of the design parameters mentioned earlier has been

provided

2. THE BASIC MODULAR MULTIPLIER: TWO-

STEP CLASSIC MULTIPLIER

The two-step classic multiplication in GF(2
m
) is a

straightforward translation of the classic school multiplication

algorithm. This method has an asymptotic complexity O(n
2
)

[6]. In the two-step multiplication, Let a(x) and b(x) be two

field elements, the field product c(x) given in Eq. (2.1).

c(x) = a(x)b(x) mod f(x) …… (2.1)

Where,

f(x) = x
m
 + fm − 1x

m − 1
 + . . . + f1x + f0 ……. (2.2)

And, fi Є GF(2) = {0, 1}, the set {1, x, . . . , xm-1} is

polynomial basis in GF (2
m
).

2.1 FUNDAMENTAL CONCEPT

This involves two steps for multiplication

1. Polynomial multiplication

2. Reduction modulo an irreducible polynomial [5]

2.1.1 POLYNOMIAL MULTIPLICATION

The product d(x) of the polynomials a(x) and b(x), i.e. d(x) =

a(x)b(x), is a polynomial with maximum degree (2m – 2).

Polynomial multiplication d(x) can be written in matrix form

[3]. The coefficients of d(x) are determined by the following

expression:

… (2.3)

This expression have addition and multiplication in GF(2).

Assume that the following two functions can compute

addition and multiplication for mod 2, using logical operation

x XOR y and x AND y respectively.

function m2xor(x, y: bit) return bit

function m2and(x, y: bit) return bit

The total gate complexity for the bit-parallel computation of

the matrix-vector product given in Eq. (2.3) is m
2
 AND gates

and (m – 1)
2
 XOR gates. The AND gates operate all in parallel

and require a single AND gate delay TAND, while the XOR

gates are organized as a binary tree of depth in order

to add j operands. The total time complexity is then found by

considering the largest number of terms, which is equal to m

for the computation of dm-1. Therefore, the total delay

complexity for the bit parallel matrix-vector product is TAND +

TXOR.

2.1.2 REDUCTION MODULO AN

IRREDUCIBLE POLYNOMIAL

After the polynomial multiplication d(x) = a(x).b(x), the next

step is a reduction modulo an irreducible polynomial f(x)

must be performed. In modular reduction c(x) = d(x) mod

f(x), the degree (2m – 2) polynomial d(x) is reduced by the

degree m irreducible polynomial f(x), resulting in a

polynomial c(x) with degree deg(c(x)) (m – 1).

c(x) = d(x) mod f(x)

 = (d2m-2 x
2m-2

 + + d1x + d0) mod f(x)

= cm − 1x
m - 1

 + . . . + c1x + c0 … (2.4)

Reduction modulo f(x) can be viewed as a linear mapping of

the (2m – 1) coefficients of d(x) into the m coefficients of

c(x). Matrix consists of an (m × n) identity matrix and an (m ×

m – 1) matrix R named reduction matrix. The R matrix is a

function only of the irreducible polynomial f(x) as in Eq (2.5).

Therefore, a reduction matrix R is uniquely assigned to every

f(x). The rj,i Є GF(2) coefficients of R can be recursively

computed in function of f(x) as follows:

 …. (2.5)

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 12 145 – 149

147
IJRITCC | December 2017, Available @ http://www.ijritcc.org

Where, rj-1,i-1 = 0; if j = 0.

R is function of the selected irreducible polynomial.

Therefore, by choosing an appropriate reduction polynomial

f(x) the complexity of this operation can be reduced. The

following function can compute the reduction matrix R

Function

 reduction_matrix_R(f: poly_vector) return poly_

matrix_m1m2

Where,

 poly_matrix_m1m2 is an (m × m – 1) matrix of bits.

Finally, the two-step classic multiplication performing c(x) =

a(x)b(x) mod f(x) = d(x) mod f(x) using Eq.(2.4) and

the reduction matrix computed with Eq.(2.5) can be given,

where the previously defined functions poly_multiplication

and reduction_matrix_R are used.

2.2 SIMULATION , SYNTHESIS AND

RESULTS

A VHDL model for the classic multiplication algorithm has

two components poly_multiplier and poly_reducer that

implement the polynomial multiplication and the reduction

modulo f(x), respectively. The VHDL code for each value of

m has been synthesized using Design Compiler with 180nm

UMC library. The script for Design Compiler has been

written so as to include the capability to generate reports for

Power, Time and Area of the synthesized design. The

procedure has been repeated for different values of m, and the

values of each of the design parameters, hence obtained, has

been provided in tabular format below.

Table-2.1: For different m Power requirement of Classic Multiplier Algorithm

m

Cell Internal

Power

(mW)

Net Switching

Power

(mW)

Total Dynamic

Power

(mW)

Cell

Leakage

Power

(µW)

Total cell

Area

Data

Arrival

Time

(ns)

8 3.9246 1.8381 5.7627 0.0272528 4119.096191 0.81

16 11.3900 5.6327 17.0227 0.0746353 11695.97754 1.07

32 52.6769 28.8272 81.5041 0.3519799 54402.57813 1.45

64 234.1922 208.9930 443.1851 1.4260 223284.0156 1.95

128 909.1452 1690.3625 2599.5077 5.429 854699.1563 4.283

163 1371.254 3473.258 4844.512 8.295 1301869.125 7.943

233 2225.3654 102960.145 105185.5104 14.83 2295698.589 24.471

3. KARATSUBA-OFMAN MULTIPLICATION

The Karatsuba-Ofman algorithm is a recursive method for

efficient polynomial multiplication or efficient

multiplication in positional number systems. It has recursive

application of the divide-and-conquer, thus, Karatsuba

algorithm leads to a running time of O(n
log2 3

) ≈ O(n
1:585

) for

n = 2
i
 (i > 0) [6]. It is known that two arbitrary polynomials

in one variable of degree less or equal to (m – 1) with

coefficients from a field GF(2
m
) can be multiplied with not

more than m
2
 multiplications in GF(2

m
) and (m − 1)

2

additions in GF(2
m
).

3.1. FUNDAMENTAL CONCEPT

The Karatsuba-Ofman algorithm provides a recursive

algorithm which reduces the above multiplicative and

additive (for large enough m) complexities [12]. A

Karatsuba-Ofman algorithm restricted to polynomials,

where m = 2
t
 with t an integer, Let a(x) and b(x) be two

elements in GF(2
m
). We are interested in finding the product

d(x) = a(x)b(x), with degree ≤ (2m – 2). Both elements can

be represented in the polynomial basis as follow [10][14] :

a(x)

 = x
m/2

(x
m/2-1

am-1 + … + am/2) + (xm/2-1 am/2-1+ ... + a0)

= x
m/2

 AH + AL …… (3.1)

b(x)

= x
m/2

(x
m/2-1

bm-1 + …… + bm/2) +(xm/2-1 bm/2-1+ ….. + b0)

= x
m/2

 BH + BL ……. (3.2)

Using above expression, the polynomial product is given as

d(x) = x
m
AHBH + x

m/2
(AHBL + ALBH) + ALBL ...… (3.3)

Let us define the following auxiliary polynomials

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 12 145 – 149

148
IJRITCC | December 2017, Available @ http://www.ijritcc.org

M0
(1)

 = AL(x) BL(x) …… (3.4)

M1
(1)

 = [AL(x) + AH(x)][BL(x) + BH(x)] …… (3.5)

M2
(1)

 = AH(x)BH(x) …… (3.6)

Then the product is given by:

d(x)

= x
m
M2

(1)
(x) +x

m/2
[M1

(1)
(x) + M0

(1)
(x) + M2

(1)
(x)] + M0

(1)
(x)

 …… (3.7)

The algorithm becomes recursive if it is applied again to the

polynomials given in Eq. (3.3) [10]. The next iteration step

splits the polynomials AL, BL, AH, BH, (AL + AH), and (BL +

BH) again in half [11]. With these newly halved

polynomials, new auxiliary polynomials M
(2)

(x) can be

defined in a similar way to Eq. (3.6). The algorithm

eventually terminates after t steps. In the final step the

polynomials M
(t)

(x) are degenerated into single coefficients.

Since every step halves the number of coefficients, the

algorithm terminates after t = log2m steps [9][10].

3.2 SIMULATION, SYNTHESIS AND RESULTS

The VHDL code for the Karatsuba-Ofman algorithm has

been simulated on the ModelSim-6.2c for different values of

the m. The corresponding results obtained post-simulation

were found to match the theoretical results. The VHDL code

for each value of m has been synthesized using Design

Compiler with 180nm UMC library, following results have

been obtained.

Table–3.1: For different m Power requirement of Karatsuba-Ofman multiplier

m

Cell Internal

Power

(mW)

Net Switching

Power

(mW)

Total

Dynamic

Power

(mW)

Cell Leakage

Power

(nW)

Total cell Area

Data

Arrival

Time

(ns)

8 0.8923746 0.2291768 1.1216 4.4110 599.960938 0.32

16 1.0196 0.278.8957 1.2985 5.0031 677.375977 0.33

32 1.8970 0.4995943 2.3966 9.3389 1270.885132 0.32

64 3.9009 1.0411 4.9420 19.195 2612.731689 0.32

128 7.9043 2.1214 10.0257 38.9081 5296.433594 0.32

163 15.98 4.282 20.262 78.58 10629.8964 0.32

233 20.3058 5.4825 25.7883 99.8702 13592.66992 0.33

4. ANALYSIS OF POLYNOMIAL MULTIPLIER

The hardware design of the multiplier is desired to have the

following properties:

1. Minimum Area×Time (AT)

2. Minimum power× Delay

4.1 AT ANALYSIS

Graph-4.1 shows Area×Time (AT) characteristics of

multiplication algorithms. This is one of important

characteristics to analyze the performance of multiplication

algorithm design. It can be inferred from the above graph

that for small value of m, AT is highest for the Classic

multiplier. Therefore, interleaved multiplication algorithm

has minimum AT for all values of m.

Graph-4.1: (Area × Time) graph of Multiplier Algorithms

for different m

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 12 145 – 149

4.2 Power × Delay ANALYSIS

Graph-4.2: Power × Delay Vs m for different algorithm

Another figure of merit for the design of a multiplier is the

product of the power and delay values. Power×Delay graph

is shown in the Graph-4.2. It shows that the designs based

on Classic Multiplier algorithms have large values of the

power-delay product, hence making them impractical for the

design purpose. The design based on the interleaved

multiplication algorithm has significantly low values of the

product, making them viable options for design of a

multiplier.

5. CONCLUSION

Performance analysis of two finite field multiplier

algorithms has been done in terms of area, power and time.

Further a comparative study between the performances of

these algorithms has been done with the following

inferences:

1. Synthesis results for the Classic Multiplier Algorithm

show that total cell area, power and delay increase with

m in orders greater than unity. It has large values of the

power-delay product. It implies that hardware design of a

multiplier based on the Classic Multiplier Algorithm is

impractical for higher values of m.

2. For all values of m, small as well as large, the Karatsuba-

Ofman multiplier yields best characteristics for area,

power requirements and Area×Time (AT) characteristics.

It has a significantly lower value of the power-delay

product compared to Classic Multiplier. The design for

Karatsuba-Ofman multiplier stands out to be best

suitable for multiplier systems for cryptography, error-

control coding and computer algebra

Based on the study of the performance of the design for each

of the individual multiplier, and a comparative study

between their performance parameters, it can be concluded

that the Karatsuba-Ofman multiplier is the best option in

two method for hardware design of an efficient multiplier.

This design can be used as a multiplier in systems

cryptography and error correcting codes.

REFERENCES

[1]. J.S. Milne, “Fields and Galois Theory”, Version 4.21,

September, 2008.

[2]. Chen Guanghua, Liu Ming, Zhu Jingming and Zheng

Weifeng, “Improvement of Interleaved Multiplication

Algorithm”, the 1st International Conference on Information

Science and Engineering (ICISE2009), 978-0-7695-3887-

7/09, pp. 1752-1755

[3]. Peter Kornerup, “High-Radix Modular Multiplication for

Cryptosystems”, IEEE 1063-6889/93, pp. 277 – 283

[4]. David Narh Amanor, Christof Paar, Jan Pelzl, Viktor

Bunimov, Manfred Schimmler “Efficient Hardware

Architectures for Modular Multiplication on FPGAS” 0-

7803-9362-7/05, pp.539-542

[5]. Diego Viot, Rodolfo Aurélio, Helano Castro and Jardel

Silveira, “Modular Multiplication Algorithm For Pkc”

[6]. H. Fan and M.A. Hasan, “Alternative to the Karatsuba

algorithm for software implementations of GF(2n)

multiplications”, IET Inf. Secur., 2009, Vol. 3, Iss. 2, pp. 60–

65

[7]. Gang Zhou, Harald Michalik, and Laszlo Hinsenkamp,

“Complexity Analysis and Efficient Implementations of Bit

Parallel Finite Field Multipliers Based on Karatsuba-Ofman

Algorithm on FPGAs”, IEEE Transactions On Very Large

Scale Integration (VLSI) Systems, 1063-8210, pp.1-10.

[8]. El Hadj Youssef Wajih, Zeghid Medien, Machhout Mohsen,

Bouallegue Belgacem and Tourki Rached “Efficient

Hardware Architecture of Recursive Karatsuba-Ofman

Multiplier”, 2008 International Conference on Design &

Technology of Integrated Systems in Nanoscale Era, 978-1-

4244-1577-9/08, pp.1-6.

[9]. Nadia Nedjah and Luiza de Macedo Mourelle, “A

Reconfigurable Recursive and Efficient Hardware for

Karatsuba-Ofman’s Multiplication Algorithm”, IEEE 2003,

0-7803-7729-X/03,pp.1076-1081

[10]. Serdar S. Erdem and C， etin K. Koc “A Less Recursive

Variant of Karatsuba-Ofman Algorithm for Multiplying

Operands of Size a Power of Two”, Proceedings of the 16th

IEEE Symposium on Computer Arithmetic (ARITH'03),

1063-6889/03

[11]. Steffen Peter and Peter Langend¨orfer, “An Efficient

Polynomial Multiplier in GF(2m) and its Application to ECC

Designs” EDAA-2007, 978-3-9810801-2-4

[12]. Viktor Bunimov and Prof. Dr. Manfred Schimmler, “Area

and Time Efficient Modular Multiplication of Large

Integers”, Proceedings of the Application-Specific Systems,

Architectures, and Processors (ASAP’03) ISBN0-7695-

1992-X/03 pp 1 -10.

[13]. E. Savas, A.F. Tenca, M.E. C¸ iftc¸ibasi and C¸ .K. Koc,

“Multiplier architectures for GF (p) and GF (2n)”, IEEE-

2004 Comput. Digit. Tech., Vol. 151, No. 2,pp 147-160

March 2004

[14]. J. Bhasker, “A VHDL Primer”, Thrid Edition, Pearson

Prentice Hall, 2008.

[15]. “Design Compiler Command-Line Interface Guide” Version

2006.06, synopsys.

149
 IJRITCC | December 2017, Available @ http://www.ijritcc.org

