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Abstract - In recent years, finite field multiplication in GF(2m) has been widely used in various applications such as error correcting codes and 

cryptography. One of the motivations for fast and area efficient  hardware solution for implementing  the arithmetic operation of  binary 

multiplication , in finite field GF (2m), comes from the fact, that they are the most time-consuming and frequently called operations in 

cryptography and other applications. So, the optimization of their hardware design is critical for overall performance of a system. Since a finite 

field multiplier is a crucial unit for overall performance of cryptographic systems, novel multiplier architectures, whose performances can be 

chosen freely, is necessary. In this paper, two Galois field multiplication algorithms (used in cryptography applications) are considered to 

analyze their performance with respect to parameters viz. area, power, delay, and the consequent Area×Time (AT) and Power×Delay 

characteristics. The objective of the analysis is to find out the most efficient GF(2m) multiplier algorithm among those considered. 

__________________________________________________*****_________________________________________________  

1. INTRODUCTION 

A variety of computer arithmetic techniques can be used to 

implement a digital multiplier. Most techniques involve 

computing a set of partial products, and then summing the 

partial products together. This method, involving partial 

products is mathematically correct, but it has the following 

two serious engineering problems:  

1. It involves 32 intermediate additions in a 32-bit 

computer, or 64 intermediate additions in a 64-bit 

computer. These additions take a lot of time. The 

engineering implementation of binary multiplication 

consists, in fact, of simplification of the mathematical 

process and compromising with the increased complexity 

hence enforced, in order to do fewer additions. When 

implemented in software, long multiplication algorithms 

have to deal with overflow during additions, which can 

be expensive. 

2. The basic school method handles the sign with a separate 

rule ("+ with + yields +", "+ with - yields -", etc.). 

Modern computers embed the sign of the number in the 

number itself, usually in the two's complement 

representation. That forces the multiplication process to 

be adapted to handle two's complement numbers, 

complicating the process a bit more. 

To multiply two numbers with n-digits using this method, one 

needs about n
2
 operations. More formally: using a natural size 

metric of number of digits, the time complexity of 

multiplying two n-digit numbers using long multiplication is 

Θ(n
2
).Therefore, to solve above problem modular 

multiplication can be used. The modular exponentiation 

applies modular multiplication repeatedly. Modular 

multiplication is a mathematical operation on integer A.B mod 

M with A, B<M where by A and B are the operand and M is 

moduls. Modular multiplication A×B mod M can be 

performed in two different ways: 

 Multiplying, i.e. computing P = A×B; then reducing, i.e. R 

= P mod M  

 Interleave the multiplication and the reduction steps. 

 

Figure-1.1: Flow-chart of steps undertaken for analysis of 

different Multiplier Algorithms 

So the performance of systems based on modular 

multiplication, e.g. the public key Cryptosystem, is primarily 
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determined by the implementation efficiency of the modular 

multiplication and exponentiation. As the operands are 

usually large (i.e. 1024 bits or more), it is necessary to 

improve upon the computation time of the 

encryption/decryption operations. Hence, it is essential to 

minimize the number of modular multiplications performed 

and to reduce the time required by a single modular 

multiplication . There are various algorithms that implement 

modular multiplication. Here following Two algorithms have 

been considered:  

1 Classic Multiplier  

2 Karatsuba-Ofman multiplier  

Starting with each of the above mentioned algorithms, the 

following methodology has been adopted for the analysis of a 

particular design based on design parameters viz. area-on-

chip, power consumption and related dlays. Subsequent 

comparison among the various designs based on the extracted 

values of the design parameters mentioned earlier has been 

provided 

2. THE BASIC MODULAR MULTIPLIER: TWO-

STEP CLASSIC MULTIPLIER 

The two-step classic multiplication in GF(2
m
) is a 

straightforward translation of the classic school multiplication 

algorithm. This method has an asymptotic complexity O(n
2
) 

[6]. In the two-step multiplication, Let a(x) and b(x) be two 

field elements, the field product c(x) given in Eq. (2.1). 

c(x)  =   a(x)b(x) mod f(x)    …… (2.1) 

Where,  

f(x) = x
m
 + fm − 1x

m − 1
 + . . . + f1x + f0  ……. (2.2) 

And, fi Є GF(2) = {0, 1}, the set {1, x, . . . , xm-1} is 

polynomial basis in GF (2
m
). 

2.1 FUNDAMENTAL CONCEPT 

This involves two steps for multiplication 

1. Polynomial multiplication  

2. Reduction modulo an irreducible polynomial [5]  

2.1.1 POLYNOMIAL MULTIPLICATION 

The product d(x) of the polynomials a(x) and b(x), i.e. d(x) = 

a(x)b(x), is a polynomial with maximum degree (2m – 2). 

Polynomial multiplication d(x) can be written in matrix form 

[3]. The coefficients of d(x) are determined by the following 

expression: 

 

… (2.3) 

This expression have addition and multiplication in GF(2). 

Assume that the following two functions can compute 

addition and multiplication for mod 2, using logical operation 

x XOR y and x AND y respectively.  

function m2xor(x, y: bit) return bit 

function m2and(x, y: bit) return bit 

The total gate complexity for the bit-parallel computation of 

the matrix-vector product given in Eq. (2.3) is m
2
 AND gates 

and (m – 1)
2
 XOR gates. The AND gates operate all in parallel 

and require a single AND gate delay TAND, while the XOR 

gates are organized as a binary tree of depth  in order 

to add j operands. The total time complexity is then found by 

considering the largest number of terms, which is equal to m 

for the computation of dm-1. Therefore, the total delay 

complexity for the bit parallel matrix-vector product is TAND + 

TXOR.  

2.1.2 REDUCTION MODULO AN 

IRREDUCIBLE POLYNOMIAL 

After the polynomial multiplication d(x) = a(x).b(x), the next 

step is a reduction modulo an irreducible polynomial f(x) 

must be performed. In modular reduction      c(x) = d(x) mod 

f(x), the degree (2m – 2) polynomial d(x) is reduced by the 

degree m irreducible polynomial f(x), resulting in a 

polynomial c(x) with degree              deg(c(x))  (m – 1). 

c(x)    =   d(x) mod f(x)  

 = ( d2m-2 x
2m-2

 + . . . . . + d1x + d0) mod f(x) 

=  cm − 1x
m - 1

 + . . . + c1x + c0         … (2.4) 

Reduction modulo f(x) can be viewed as a linear mapping of 

the (2m – 1) coefficients of d(x) into the m coefficients of 

c(x). Matrix consists of an (m × n) identity matrix and an (m × 

m – 1) matrix R named reduction matrix. The R matrix is a 

function only of the irreducible polynomial f(x) as in Eq (2.5). 

Therefore, a reduction matrix R is uniquely assigned to every 

f(x). The rj,i Є GF(2) coefficients of R can be recursively 

computed in function of f(x) as follows: 

 

     …. (2.5) 
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Where,   rj-1,i-1 = 0;  if j = 0. 

R is function of the selected irreducible polynomial. 

Therefore, by choosing an appropriate reduction polynomial 

f(x) the complexity of this operation can be reduced. The 

following function can compute the reduction matrix R 

Function 

  reduction_matrix_R(f: poly_vector) return poly_ 

matrix_m1m2 

Where, 

    poly_matrix_m1m2 is an (m × m – 1) matrix of bits.  

Finally, the two-step classic multiplication performing c(x) = 

a(x)b(x) mod f(x)            = d(x) mod f(x) using Eq.(2.4) and 

the reduction matrix computed with Eq.(2.5) can be given, 

where the previously defined functions poly_multiplication 

and reduction_matrix_R are used. 

2.2 SIMULATION , SYNTHESIS AND 

RESULTS  

A VHDL model for the classic multiplication algorithm has 

two components poly_multiplier and poly_reducer that 

implement the polynomial multiplication and the reduction 

modulo f(x), respectively. The VHDL code for each value of 

m has been synthesized using Design Compiler with 180nm 

UMC library. The script for Design Compiler has been 

written so as to include the capability to generate reports for 

Power, Time and Area of the synthesized design.  The 

procedure has been repeated for different values of m, and the 

values of each of the design parameters, hence obtained, has 

been provided in tabular format below. 

 

Table-2.1: For different m Power requirement of Classic Multiplier Algorithm 

m 

Cell Internal 

Power 

(mW) 

Net Switching 

Power 

(mW) 

Total Dynamic 

Power 

(mW) 

Cell 

Leakage 

Power 

(µW) 

Total cell 

Area 

Data 

Arrival 

Time 

(ns) 

8 3.9246 1.8381 5.7627 0.0272528 4119.096191 0.81 

16 11.3900 5.6327 17.0227 0.0746353 11695.97754 1.07 

32 52.6769 28.8272 81.5041 0.3519799 54402.57813 1.45 

64 234.1922 208.9930 443.1851 1.4260 223284.0156 1.95 

128 909.1452 1690.3625 2599.5077 5.429 854699.1563 4.283 

163 1371.254 3473.258 4844.512 8.295 1301869.125 7.943 

233 2225.3654 102960.145 105185.5104 14.83 2295698.589 24.471 

 

3. KARATSUBA-OFMAN MULTIPLICATION 

The Karatsuba-Ofman algorithm is a recursive method for 

efficient polynomial multiplication or efficient 

multiplication in positional number systems. It has recursive 

application of the divide-and-conquer, thus, Karatsuba 

algorithm leads to a running time of O(n
log2 3

)  ≈ O(n
1:585

) for  

n =  2
i
 (i > 0) [6]. It is known that two arbitrary polynomials 

in one variable of degree less or equal to (m – 1) with 

coefficients from a field GF(2
m
) can be multiplied with not 

more than m
2
 multiplications in GF(2

m
) and  (m − 1)

2
 

additions in GF(2
m
).  

3.1. FUNDAMENTAL CONCEPT 

The Karatsuba-Ofman algorithm provides a recursive 

algorithm which reduces the above multiplicative and 

additive (for large enough m) complexities [12]. A 

Karatsuba-Ofman algorithm restricted to polynomials, 

where m = 2
t
 with t an integer, Let a(x) and b(x) be two 

elements in GF(2
m
). We are interested in finding the product 

d(x) = a(x)b(x), with degree ≤ (2m – 2). Both elements can 

be represented in the polynomial basis as follow [10][14] : 

a(x) 

 = x
m/2

(x
m/2-1

am-1 + … + am/2) + ( xm/2-1 am/2-1+ ... + a0)  

= x
m/2

 AH + AL    …… (3.1) 

b(x)  

= x
m/2

(x
m/2-1

bm-1 + …… + bm/2) +( xm/2-1 bm/2-1+ ….. + b0)  

= x
m/2

 BH + BL    ……. (3.2) 

Using above expression, the polynomial product is given as 

d(x) = x
m
AHBH + x

m/2
(AHBL + ALBH) + ALBL  ...… (3.3) 

Let us define the following auxiliary polynomials 
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M0
(1)

 = AL(x) BL(x)   …… (3.4) 

 

M1
(1)

 = [AL(x) + AH(x)][BL(x) + BH(x)] …… (3.5) 

 

M2
(1)

 = AH(x)BH(x)   …… (3.6) 

Then the product is given by:  

d(x)  

= x
m
M2

(1)
(x) +x

m/2
[M1

(1)
(x) + M0

(1)
(x) + M2

(1)
(x)] + M0

(1)
(x)

     …… (3.7) 

The algorithm becomes recursive if it is applied again to the 

polynomials given in Eq. (3.3) [10]. The next iteration step 

splits the polynomials AL, BL, AH, BH, (AL + AH), and (BL + 

BH) again in half [11]. With these newly halved 

polynomials, new auxiliary polynomials M
(2)

(x) can be 

defined in a similar way to Eq. (3.6). The algorithm 

eventually terminates after t steps. In the final step the 

polynomials M
(t)

(x) are degenerated into single coefficients. 

Since every step halves the number of coefficients, the 

algorithm terminates after t = log2m steps [9][10]. 

3.2 SIMULATION, SYNTHESIS AND RESULTS 

The VHDL code for the Karatsuba-Ofman algorithm has 

been simulated on the ModelSim-6.2c for different values of 

the m. The corresponding results obtained post-simulation 

were found to match the theoretical results. The VHDL code 

for each value of m has been synthesized using Design 

Compiler with 180nm UMC library, following results have 

been obtained.  

 

Table–3.1: For different m Power requirement of Karatsuba-Ofman multiplier 

m 

Cell Internal 

Power 

(mW) 

Net Switching 

Power 

(mW) 

Total 

Dynamic 

Power 

(mW) 

Cell Leakage 

Power 

(nW) 

Total cell Area 

Data 

Arrival 

Time 

(ns) 

8 0.8923746 0.2291768 1.1216 4.4110 599.960938 0.32 

16 1.0196 0.278.8957 1.2985 5.0031 677.375977 0.33 

32 1.8970 0.4995943 2.3966 9.3389 1270.885132 0.32 

64 3.9009 1.0411 4.9420 19.195 2612.731689 0.32 

128 7.9043 2.1214 10.0257 38.9081 5296.433594 0.32 

163 15.98 4.282 20.262 78.58 10629.8964 0.32 

233 20.3058 5.4825 25.7883 99.8702 13592.66992 0.33 

 

 

4. ANALYSIS OF POLYNOMIAL MULTIPLIER 

The hardware design of the multiplier is desired to have the 

following properties: 

1. Minimum Area×Time (AT) 

2. Minimum power× Delay  

 

4.1  AT ANALYSIS 

Graph-4.1 shows Area×Time (AT) characteristics of 

multiplication algorithms. This is one of important 

characteristics to analyze the performance of multiplication 

algorithm design.  It can be inferred from the above graph 

that for small value of m, AT is highest for the Classic   

multiplier. Therefore, interleaved multiplication algorithm 

has minimum AT for all values of m. 

 

 

 

 

 

 
Graph-4.1: (Area × Time) graph of Multiplier Algorithms 

for different m 
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4.2  Power × Delay ANALYSIS 

 

 

Graph-4.2: Power × Delay Vs m for different algorithm 

Another figure of merit for the design of a multiplier is the 

product of the power and delay values. Power×Delay graph 

is shown in the Graph-4.2. It shows that the designs based 

on  Classic Multiplier algorithms have large values of the 

power-delay product, hence making them impractical for the 

design purpose. The design based on the interleaved 

multiplication algorithm has significantly low values of the 

product, making them viable options for design of a 

multiplier.  

5. CONCLUSION 

Performance analysis of two finite field multiplier 

algorithms has been done in terms of area, power and time. 

Further a comparative study between the performances of 

these algorithms has been done with the following 

inferences: 

 

1.  Synthesis results for the Classic Multiplier Algorithm 

show that total cell area, power and delay increase with 

m in orders greater than unity. It has large values of the 

power-delay product. It implies that hardware design of a 

multiplier based on the Classic Multiplier Algorithm is 

impractical for higher values of m.  

2. For all values of m, small as well as large, the Karatsuba-

Ofman multiplier yields best characteristics for area, 

power requirements and Area×Time (AT) characteristics. 

It has a significantly lower value of the power-delay 

product compared to Classic Multiplier. The design for 

Karatsuba-Ofman multiplier stands out to be best 

suitable for multiplier systems for cryptography, error-

control coding and computer algebra 

 

Based on the study of the performance of the design for each 

of the individual multiplier, and a comparative study 

between their performance parameters, it can be concluded 

that the Karatsuba-Ofman multiplier is the best option in 

two method for hardware design of an efficient   multiplier. 

This design can be used as a multiplier in systems 

cryptography and error correcting codes.  
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